
Problem Set 4. Capacitors and symmetries Due: 10 February 2023
Electromagnetism and Light at 3:00 pm

Reading: Sternheim and Kane, chapter 16, sections 12–13;
Electromagnetism and Optics, chapter IV–V.

Please show all of the necessary steps in solving the following problems. Full credit will
only be given for complete solutions.

1. The cell membranes in our bodies are naturally occurring examples of capacitors. The
capacitance per unit area of a certain type of axon, which is a part of a nerve cell, is
0.0100 Fm−2.

a. For a cylindrical axon 0.100 m long and 2.50 µm in radius, find the surface area and
the capacitance of this axon.

b. If the potential di�erence across the membrane is 0.0700 V, how much electric energy
is stored in the axon?

2. A parallel plate capacitor has a capacitance of 2.00 µF when the plates are separated
by a 1.00 mm vacuum. The capacitor is then connected to a battery that generates a 50.0
V potential di�erence between the plates.

a. How much charge is on the plates?
b. What is the magnitude of the electric field between the plates?
c. If the capacitor is filled with a material whose dielectric constant is K = 5.00, what is

the capacitance?
d. With a 50.0 V potential di�erence again, what is the magnitude of the electric field

inside the slab of dielectric between the plates?

3. Consider a pair of concentric spherical shells of radii a < b, where the inner shell has
a charge of −Q and the outer shell has a charge Q. The charge is spread uniformly over
each shell.

a. Calculate the potential di�erence between the inner and the outer shells.
b. What is the capacitance C of these spheres?
c. Now suppose that the radii of the spheres are nearly equal, b = a+ `, where ` � a.

Express the capacitance in terms of ` and the surface area of a sphere, A, to leading
order in the ` � a limit. How does your formula compare with the capacitance of a
square, parallel-plate capacitor?

4. An electron moves with an initial horizontal velocity, ®v0 = v0 x̂, with v0 = 2.00×107 ms−1.
It passes through a region 20.0 cm long in which there is a uniform electric field ®E = E ŷ,
where E = 5.00×103 NC−1.

a. How long with the electron be in the electric field?
b. How far will the electron be deflected up or down when

it leaves the field?
c. What is the final velocity of the electron after it has left

the electric field?
d. What is the angle between the final and the initial ve-

locity of the electron?
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5. Let us examine the e�ects of some symmetry transformations on the electric field, ®E(®r).

For each case, start from a general electric field at ®r1 of the form ®E(®r1) =
©«
Ex

Ey

Ez

ª®¬. Imagine

a symmetry transformation that sends ®r1 to ®r2. If these two points are connected by

a symmetry, the electric field at ®r2, ®E(®r2) =
©«
E ′x
E ′y
E ′z

ª®¬, must be directly related to the field

®r1—that is, we can determine {E ′x,E
′
y,E

′
z} in terms of {Ex,Ey,Ez}.

a. If ®r2 is related to ®r1 by a translation, what is ®E(®r2)?

b. If ®r2 = r ŷ is related to ®r1 = r x̂ by a rotation by 90◦ about the ẑ-axis, what is ®E(®r2)?

6. Consider a point charge Q at the origin. Through a single rotation about the x̂-axis by
180◦, we deduced that the electric field at a point on the x̂-axis, ®r0 = x x̂, must have the
form ®E(®r0) = E(x) x̂.

a. Which of the re�ection symmetries of a point charge at the origin leave a point ®r0 = x x̂
on the x̂-axis fixed.

b. Using only reflection symmetries, show again that ®E(®r0) = E(x) x̂. Is it possible to do
so with just one reflection?

7–8. Symmetric shapes [10 points]
We explained how we could infer properties of the electric field—usually its direction—
from the symmetries of the charge distribution producing it. Consider these two shapes:
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ŷ

shape 1

........................................................................................................................................

•

•

•

x̂

ŷ
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You can assume each is symmetric about the z = 0 plane. Notice that the first is a simple
model for a benzene molecule (a regular hexagon) and the second is a model for a water
molecule. Each shape is placed in three-dimensional space.

a. What are the symmetries of shape 1, i.e. the transformations of space that would
not alter the picture of the charge distribution? [Note: you do not need to describe
the transformations in a mathematical form, but you should explain them precisely
enough that it is clear what you mean.]

b. What are the symmetries of shape 2?
c. In what direction does the electric field point along the x̂-axis for each of the shapes?

Explain why. Which of the symmetries did you use?
d. In what direction does the electric field point along the ẑ-axis for each of the shapes?

Explain why. Which of the symmetries did you use?
e. Explain why you know that the electric field in the xy plane has no ẑ-component for

all three of the shapes.
f. Give an example of a line in the xy plane (and not the x̂ or ŷ-axes!) where you know

the exact direction of the electric field for shape 1.

This problem shows you why symmetries are so important; you can deduce many of the
properties about the electric field for each shape without having performed any integrals.


