
Shell Programming II

15-123

Systems Skills in C and Unix



Regular Expressions

• Shell scripts can include utilities such as

– grep

• Pattern matching

– sed– sed

• Stream editor

– awk

• Pattern scanning and processing



sed revisited

• A stream editor

• Offspring of the unix “ed”

• Very useful tool

– cat file.txt | sed ‘s/<.*>//’ > file2.txt– cat file.txt | sed ‘s/<.*>//’ > file2.txt

• Syntax:  
– sed ‘s <delimiter> regex <delimiter> replacement <delimiter> flags’

– Flags: -l for local (first match) or g (global) – all matches



Inter Process Communication (IPC)

• Pipes

– Creates the IPC

– ls | sort | echo

• 4 processes in play• 4 processes in play

• Each call spans a new process

– Using folk



Editing in Place

• cat somefile.txt | tr -d "\015" "\012" | fold > 

somefile.txt

• What does it do?

• What are some of the problems?



How does pipes work

• A finite buffer to allow communication

– Typically 8K

• If input file is less than the buffer

– We may be ok– We may be ok

• What if input file is more than the buffer

– Redirecting output to the same file is a bad idea



How to deal with this?

• Use a temp file

– cat ${1} | tr -d "\015" "\012" | fold > ${1}.tmp

mv ${1}.tmp ${1}

• Better process• Better process

– cat "${1}" | tr -d "\015" "\012" | fold > 

"/usr/tmp/${1}.$$"  mv "/usr/tmp/${1}.$$" "${1}“

• /usr/tmp is cleared upon reboot



Pipes, Loops and Sub shells

#!/bin/sh

FILE=${1}

cat ${FILE}  |  

while read value  while read value  

do    

echo ${value}  

done

• while loop in a sub shell



What is the problem?
#!/bin/sh

FILE=${1}  

max=0

cat ${FILE} |  

while read value  

do    do    

if [ ${value} -gt ${max} ]; 

then      

max=${value}    

fi

done

echo ${max}



The fix
#!/bin/sh

FILE=${1}  

max=0  

values=`cat ${FILE}`

for value in ${values}  

do    if [ ${value} -gt ${max} ]; do    if [ ${value} -gt ${max} ]; 

then      

max=${value}    

fi

done

echo ${max}



Arrays in bash
array[2]=23

array[3]=45

array[1]=4

To dereference an array variable, we can use, for example

echo  ${array[1]}

Array elements need not be consecutive and some members of the array can

be left uninitialized.  Here is an example of printing an array in bash. Note the

C style loop. Also note the spaces between tokens.

for ((  i=1  ;  i<=3  ;  i++  ))

do

echo ${array[$i]}

done



Coding ExamplesCoding Examples


