
Systems Programming with C

15-123

Systems Skills in C and Unix

Why Systems Programming?

• To access computers resources at a lower level

using system calls

– Examples

• Managing files, processes, IPC etc..• Managing files, processes, IPC etc..

• Managing Files

– In Unix, any I/O component is a file

• stdin, stdout, device files, sockets

– All files created, open, read the same way

What is a system call?

• A direct request to the operating system to do

something on behalf of the program

• Typically programs are executed in user mode

• System call allows a switch from user mode to kernel • System call allows a switch from user mode to kernel

mode

Code

Code

System call

code

User mode

Kernel mode

Unix Kernel

• The core of the unix operating system

• Managing

– Processes

– Files– Files

– Networking etc..

• More details from OS courses

in Kernel Mode

• All programs run in
– user mode

• can be replaced by another process at any time

– kernel mode
• cannot be arbitrarily replaced by another process. • cannot be arbitrarily replaced by another process.

• A process in kernel mode
– can be suspended by an interrupt or exception.

• A C system call
– A software instruction that generates an OS interrupt

or operating system trap
– Assembly instruction Xo80

Using System Calls

• To manage

– the file system

• Open, creat, close, read

– control processes– control processes

• folk, exec

– provide communication between multiple

processes.

• pipes

File SystemsFile Systems

Create System Call

#include <fcntl.h>

int creat(char* filename, mode_t mode)

• The mode

– is an octal number

• Example: 0444 indicates that r access for USER, GROUP and
ALL for the file.

– If the file exists, the creat is ignored and prior content
and rights are maintained.

Opening Files

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(char* filename, int flags, mode_t mode);int open(char* filename, int flags, mode_t mode);
– Flags: O_RDONLY, OWRONLY, O_RDWR, O_CREAT, O_TRUNC, O_APPEND

– Mode: Specifies permission bits of the file

• S_IRUSR, S_IWUSR, S_IXUSR – owner permission

• S_IRGRP, S_IWGRP, S_IXGRP – group permission

• S_IROTH, S_IWOTH, S_IXOTH – other permission

More on open

• Each open call generates a file descriptor (by kernel)

• Kernel keeps track of all open files

– Up to 16 in general

• Each unix shell starts with 3 standard files• Each unix shell starts with 3 standard files

– stdin (descriptor 0)

– stdout (descriptor 1)

– stderr (descriptor 2)

• All other file descriptors are assigned

sequentially

Reading/Writing Files

• Low level read and write

• #include <unistd.h>

• ssize_t read(int fd, void *buf, size_t n);

– Returns num bytes read or -1– Returns num bytes read or -1

• ssize_t write(int fd, const void *buf, size_t n);

– Returns num bytes written or -1

lseek function

• #include <sys/types.h>

• #include <unistd.h>

• lseek moves the cursor to a desired position

long lseek(int fd, int offset, int origin)long lseek(int fd, int offset, int origin)
origin position

0 beginning of the file

1 Current position

2 End of the file

End of the file

• Examples

Closing a file

• include <unistd.h>

• int close(int fd);

– Return 0 (success)

– Return -1 (error)– Return -1 (error)

Example

int main(void){

char c;

while (read(0,&c,1) != 0)

write(1, &c, 1);write(1, &c, 1);

exit(0);

}

• What does it do?

Example

int foo(char s[], int size){

char* tmp = s;

while (--size>0 && read(0,tmp,1)!=0 &&
*tmp++ != '\n');*tmp++ != '\n');

*tmp = '\0';

return (tmp-s);

}

• What does it do?

What about size_t and ssize_t

• size_t – unsigned int

• ssize_t - signed int

• How does this affect the range of values in

each type?each type?

– with 32-bit int?

What can go wrong with read and

write?

• processing fewer bytes than requested

– reaching EOF

– Reading text lines from stdin

– Reading and writing network sockets– Reading and writing network sockets

• Network delays

• Buffering constraints

Reading file metadata

• How can we find information about a file

• #include <unistd.h>

• #include <sys/stat.h>

• int stat(const char* filename, struct stat *buf);• int stat(const char* filename, struct stat *buf);

• int fstat(int fd, struct stat *buf);

What is struct stat?

Accessing File Status

stat(char* file, struct stat *buf);

fstat(int fd, struct stat *buf);

struct stat buf; // defines a struct stat to hold file
information

stat(“filename”, &buf) ; // now the file information is placed
in the bufin the buf

st_atime --- Last access time

st_mtime --- last modify time

st_ctime --- Last status change time

st_size --- total size of file

st_uid – user ID of owner

st_mode – file status (directory or not)

Example
#include <sys/types.h>

#include <sys/stat.h>

#include <dirent.h>

struct stat statbuf;

char dirpath[256];

getcwd(dirpath,256);

DIR *dir = opendir(dirpath);

struct dirent *dp;

for (dp=readdir(dir); dp != NULL ; dp=readdir(dir)){for (dp=readdir(dir); dp != NULL ; dp=readdir(dir)){

stat(dp->d_name, &statbuf);

printf("the file name is %s \n", dp->d_name);

printf("dir = %d\n", S_ISDIR(statbuf.st_mode));

printf("file size is %ld in bytes \n", statbuf.st_size);

printf("last modified time is %ld in seconds \n", statbuf.st_mtime);

printf("last access time is %ld in seconds \n", statbuf.st_atime);

printf("The device containing the file is %d\n", statbuf.st_dev);

printf("File serial number is %d\n\n", statbuf.st_ino);

}

How to determine a file type

• S_ISREG

– A regular file?

• S_ISDIR

– Is a directory?– Is a directory?

– printf("dir = %d\n", S_ISDIR(statbuf.st_mode));

• S_ISSOCK

– A network socket

Working Directory

#include <unistd.h>

char* getcwd(char * dirname, int);

Accessing Directories

struct dirent *readdir(DIR* dp)

returns a pointer to the next entry in the directory. A NULL pointer is
returned when the end of the directory is reached. The struct direct
has the following format.

struct dirent {

u-long d_ino; /* i-node number for the dir
entry */

u_short d_reclen; /* length of this record */

u_short d_namelen ; /* length of the string in
d_name */

char d_name[MAXNAMLEN+1] ; /* directory name */

};

Creating and removing Directories

• int mkdir(char* name, int mode);

• int rmdir(char* name);

– returns 0 or -1 for success or failure.

• mkdir(“newfiles”, 0400);• mkdir(“newfiles”, 0400);

• rmdir(“newfiles”);

Example

#include <string.h>

#include <sys/types.h>

#include <sys/dir.h>

int search (char* file, char* dir){

DIR *dirptr=opendir(dir);

struct dirent *entry = readdir(dirptr);struct dirent *entry = readdir(dirptr);

while (entry != NULL) {

if (strlen(entry->d_name) == strlen(file) && (strcmp(entry->d_name, file) == 0)

return 0; /* return success */

entry = readdir(dirptr);

}

return 1; /* return failure */

}

File Management summary

• creat(), open(), close()
– managing I/O channels

• read(), write()
– handling input and output operations

• lseek()
– for random access of files

• link(FILE1, FILE2), unlink(FILE)
– aliasing and removing files– aliasing and removing files

• stat()
– getting file status

• access(), chmod(), chown()
– for access control

– int access(const char *pathname, int mode);

• chdir()
– for changing working directory

• mkdir()
– for creating a directory

Dealing with system call interfaces

• System calls interface often change
– place system calls in subroutines so subroutines

• Error in System Calls
– returns -1

– store the error number in a variable called “errno” given in a header
file called /usr/include/errno.h.

• Using perror• Using perror
– When a system call returns an error, the function perror can be used

to print a diagnostic message. If we call perror(), then it displays the
argument string, a colon, and then the error message, as directed by
"errno", followed by a newline.

if (unlink("text.txt")==-1){

perror("");

}

Process ControlProcess Control

Process Control

• exec(), fork(), wait(), exit()

– for process control

• getuid()

– for process ownership– for process ownership

• getpid()

– for process ID

• signal() , kill(), alarm()

– for process control

Other system functions

• mmap(), shmget(), mprotect(), mlock()

– manipulate low level memory attributes

• time(), gettimer(), settimer(),settimeofday(),

alarm()alarm()

– time management functions

• pipe()

– for creating inter-process communication

Coding ExamplesCoding Examples

