Regular Expressions

with a brief intro to FSM

15-123
Systems Skills in C and Unix

Case for regular expressions

* Many web applications require pattern
matching
— look for <a href> tag for links
— Token search

* Aregular expression
— A pattern that defines a@of strings_

— ~—
— Special syntax used to represent the class

 Eg; *.c - any pattern that ends with .c

Formal Languages

 Formal language consists of

— An alphabet 20\/ b)c)_,ﬁ
— Formal grammar

 Formal grammar defines
— Strings that belong to language %GLC) CaL) .

* Formal languages with formal semantics
generates rules for semantic specifications of
programming languages

Automaton

* An automaton (or automata in plural) is a
machine that can recognize valid strings

generated by a formal language.
* A finite automata is a mathematical model of
a finite state machine (FSM), an abstract

model under which all modern computers are
built.

QY’; p—
h

E“ 10”5 sowa

e A FSM is a machine that consists of a set of
finite states and a E@n5|t|onJME.

Automaton

() L P4] Qo Q‘ | Q,
De® T
/) bl © | o
wha Sk o | ‘ | |

 The FSM can be in any one of the states and
can transit from one state to another based on
a series of rules given by a transition function.

Example

What does this machine represents? Describe the kind of
strings it will accept.

T
a‘aac%a.l;-% o X b ()

J

i)p‘\) “)a;) (L\qLL)M/_// }

("‘\D S*\(\;&)ﬂv»\r les <t loagt Vi L

exdn WIn g

Exercise

 Draw a FSM that accepts any string with even
number of A’s. Assume the alphabet is {A,B}

5 »
&

e’

. | & |«

Build a FSM RRAL

C Q|4 |&
e Stream: “I| love cats” 24) e)4
e Pattern: “cat” t
OMen

:v%ccs . |
t p a = @ _.I Lﬂ'& CA -
6/ N T

\C/ . N{«lc'ﬂ

_J

.
F i

Regular Expressions

Regex versus FSM

* Aregular expressions and FSM’s are
equivalent concepts.

* Regular expression is that can be

recognized by a FSM.

* Discussion focus limited to Deterministic Finite
Automata(DFA)

Regular Expression

* regex defines a class of patterns

— Patterns that ends with

* Regex utilities in unix
— QGrep, awk, sed
Gree) 4

The grep command

grep
NAME

grep. egrep, farep - print lines matching a pattem

SYNOPSIS
arep [r:-pti::-ns]E...]
arep [options] [-e P2 RN | -f FILE] [FILE...]

DESCEIPTION
grep searchesthe named input FILEs (or standard input if no files are
named.or the file name - is given) for lines confaining a match to
the given PATTERN. By default, grep prints the matching lines.

Source: ynix manual

Simple grep examples

e grep ('<a hr@ guna.html > output.txt

\/_/_/

* |s | grep “guna”

"Q’(M’w

Regular Expression Grammar

* Regex grammar defines a set of rules for
finding patterns. Grammar categories

Regular Expression Grammar

 Alternation

* The vertical bar is used to describe alternating
choices among two or more choices.

— the notation a@ b | cindicates that we can choose
a or b or c as part of the string.

— Another example is thatt‘(c | s)atj describes the
expressions “cat” or “sat”. n

Regular Expression Grammar

Grouping

Parenthesis can be used to describe the scope
and precedence of operators.

In the example above (c|s) indicates that we
can either begin with c or s but must

immediately follow by “at”
Q\Sa\'

Regular Expression Grammar

N
e Quantification v‘\)_(/

* Quantification is the notation used to define the
number of symbols that could appear in the string.

 The most common quantifiers are

s

— The ? mark indicates that there is zero or one of the
previous expression. (ab) ? — {) QL

— The “*” indicates that zero or more of the previous

i \
exprfs’s’lf)n ?an be accepted. (%)* — % C]ﬁ)_ab)m aL}aL&U«
— The “+” indicates that one or more of the previous

expression can be accepted. (A\.}\’ N %’qb) MLL) RN \

Examples of *, ?, +
O\(QO‘)L_,) QS,)QAL):

(@)+1b? ¢ — (ﬂm)’\\a\oc)”a&abbc

Other facts

: Gy,
. Qmatches a single character 1eb

. @matches any string ¥

. []"} matches any string of alphabetic
characters *5%

e [ag].* matches any string that starts witha or g
0[a-d]. matches any string that starts with a,b,c or

. (g(ab) matches any string that begins with ab. In
general, to match all lines that begins with any

string use /string
/\([MD

Finding non-matches

* To exclude a pattern 0 ﬂ — (nclusn

—(["clasﬁ ’\o 4] OxClui—

— Eo: [AN0-9] — Clay g|R® TL\Q doey it “‘U\w(»(
Eg: [0-9] 3 T 0.

Group Matches

r\/‘-—\

— grep “<hl([1-4]))>.*h)([1-3})>" filename
* What patterns match? \L \7

— grep “h\([1-4]\).*h\1” filename (()) C

» Back-reference \'i\/

Character Classes

* \d digit [0-9]

* \D non-digit [*0-9]

* \w word character [0-9a-z_A-Z]

* \W non-word character [*0-9a-z_A-Z]

* \s a whitespace character [\t\n\r\f]

* \S a non-whitespace character [* \t\n\r\f]

More regex notation

 {n,m} at least n but not more than m times
ﬁ{qﬁg — 0\4)444/ aaas
 {n,}— match at least n times

* {n} — match exactly n times

R 120 @b)Y

More examples of regex

* Find all files that begins with “guna”

W \ 5‘““&”

* Find all files that does not begins with “guna”

* Find all directories in current folder. Write
them to an external file.

\s —C | grep "ad" > ©atfxt

Summarized Facts about regex

No - _—
* Two regular expressions may be LCES I

concatenated; the resulting regular expression
matches any string formed by concatenating
two substrings that respectively match the
concatenated sub expressions.

 Two regular expressions may be joined by the
infix operator | the resulting regular
expression matches any string matching either

sub expression i
L9 | \ bty

0\ I 1\

Summarized Facts about regex

* Repetition takes precedence over concatenation, which
in turn takes precedence over alternation. A whole sub
expression may be enclosed in parentheses to override
these precedence rules

* The backreferenc@, where n is a single digit, matches
the substring previously matched by the nth
parenthesized sub expression of the regular
expression.

* |n basic regular expressions the metacharacters ?, +, {,
J,J,a\nd%lose their special meaning; instead use the
backslashed versions \?, \+, \{, \[, \(, and \).

grig I 0_‘_ [

Text Processing Languages

e awk

— Text processing language

— awk ‘/pattern/’ somefile

— awk '{if (53 < 1980) print S3, " ",55,56,57,58}' somefile
e sed

— A stream editor doy

_ Cat-

sedlg/wn@n/?@ﬁsun.txt —| Sep |—
e Perl
— A powerful scripting language — ﬁ») el Re&
. .))

— We wiill discuss this next

exercises

 Download an index.html file from your
favorite website

— Use wget

* Change all URL's www.cnn.com to
www.foxnews.com

— Use sed

Coding Examples

