
Copyright @ 2009 Ananda Gunawardena 

 

 
Lecture 08 

Dynamic Memory Allocation 

 
In this lecture 

• Dynamic allocation of memory 
         malloc, calloc and realloc 

• Memory Leaks and Valgrind 

• Heap variables versus stack variables 

• Revisiting * and ** 

• Memcpy and memmove 

• Case for Dynamic Variables 

• Examples 

• Further Readings 

• Exercises 

 

Dynamic memory allocation is necessary to manage available 

memory. For example, during compile time, we may not know 

the exact memory needs to run the program. So for the most 

part, memory allocation decisions are made during the run 

time. C also does not have automatic garbage collection 

like Java does. Therefore a C programmer must manage all 

dynamic memory used during the program execution. The 

<stdlib.h> provides four functions that can be used to 

manage dynamic memory. 

 
NAME 

       calloc,  malloc,  free,  realloc  -  Allocate  and  free 

       dynamic memory 

 

SYNOPSIS 

       #include <stdlib.h> 

 

       void *calloc(size_t nmemb, size_t size); 

       void *malloc(size_t size); 

       void free(void *ptr); 

       void *realloc(void *ptr, size_t size); 

 

DESCRIPTION 

       calloc() allocates memory for an array of nmemb elements 

       of  size  bytes  each and returns a pointer to the allo- 

       cated memory.  The memory is set to zero. 

 

       malloc() allocates size bytes and returns a  pointer  to 

       the allocated memory.  The memory is not cleared. 

 

       free()  frees  the memory space pointed to by ptr, which 

       must have been returned by a previous call to  malloc(), 

       calloc()  or  realloc().  Otherwise, or if free(ptr) has 

       already been called before, undefined behaviour  occurs. 

       If ptr is NULL, no operation is performed. 

 

       realloc()  changes  the size of the memory block pointed 

       to by ptr to size bytes.  The contents will be unchanged 

       to the minimum of the old and new sizes; newly allocated 



Copyright @ 2009 Ananda Gunawardena 

 

       memory will be uninitialized.  If ptr is NULL, the  call 

       is equivalent to malloc(size); if size is equal to zero, 

       the call is equivalent  to  free(ptr).   Unless  ptr  is 

       NULL,  it  must have been returned by an earlier call to 

       malloc(), calloc() or realloc(). 

 

 

 

 

The malloc function 
The malloc function allocates a memory block of size n 

bytes (size_t is equivalent to an unsigned integer) The 

malloc function returns a pointer (void*) to the block of 

memory. That void* pointer can be used for any pointer 

type. malloc allocates a contiguous block of memory. If 

enough contiguous memory is not available, then malloc 

returns NULL. Therefore always check to make sure memory 

allocation was successful by using 

 

void* p; 

if ((p=malloc(n)) == NULL) 

    return 1; 

else 

    { /* memory is allocated */} 

     

 

Example: if we need an array of n ints, then we can do 

 

int* A = malloc(n*sizeof(int)); 

 

 

 

 

 

 

A holds the address of the first element of this block of 

4n bytes, and A can be used as an array. For example, 

 

if (A != NULL) 

 for (i=0;i<n;i++)  

     A[i] = 0;  

 

will initialize all elements in the array to 0. We note 

that A[i] is the content at address (A+i). Therefore we can 

also write 

 

for (i=0;i<n;i++)  
   *(A+i) = 0; 

 



Copyright @ 2009 Ananda Gunawardena 

 

Recall that A points to the first byte in the block and A+i 

points to the address of the ith element in the list. That 

is &A[i].  

We can also see the operator [] is equivalent to doing 

pointer arithmetic to obtain the content of the address. 

 

A dynamically allocated memory can be freed using free 

function. For example 

 

free(A); 

 

will cause the program to give back the block to the heap 

(or free memory). The argument to free is any address that 

was returned by a prior call to malloc. If free is applied 

to a location that has been freed before, a double free 

memory error may occur. We note that malloc returns a block 

of void* and therefore can be assigned to any type. 

 

double* A = (double*)malloc(n); 

int* B    = (int*)malloc(n); 

char* C   = (char*)malloc(n); 

 

In each case however, the addresses A+i, B+i, C+i are 

calculated differently.  

• A + i is calculated by adding 8i bytes to the address of A    

(assuming sizeof(double) = 8) 

• B + i is calculated by adding 4i bytes to the address of B 

• C + i is calculated by adding i bytes to the address of C 

 

calloc and realloc 
calloc and realloc are two functions that can be useful in 

dynamic memory management 

 

void *calloc(size_t nmemb, size_t size); 

 

allocates memory for an array of nmemb elements each of 

size and returns a pointer to the allocated memory. Unlike 

malloc the memory is automatically set to zero. 

 

calloc(n, sizeof(int))  

 

is equivalent to  

 

malloc(n*sizeof(int)) 

 



Copyright @ 2009 Ananda Gunawardena 

 

except for the fact that calloc block is already 

initialized. Calloc is appropriate when allocating a 

dynamic array of ints. 

 

Another useful function is realloc. Typically in order to 

resize an existing memory block, one must reallocate a new 

block, copy the old values to the new block and then free 

the old memory block. 

 

void *realloc(void *ptr, size_t size); 

 

realloc() changes the size of the memory block pointed to 

by ptr to size bytes. The contents will be unchanged to the 

minimum of the old and new sizes; newly allocated memory 

will be uninitialized. If ptr is NULL, the call is 

equivalent to malloc(size); if size is equal to zero, 

the call is equivalent to free(ptr). Unless ptr is NULL, it 

must have been returned by an earlier call to malloc(), 

calloc() or realloc(). 

 

Exercise: 

Write realloc function using malloc and free 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
 



Copyright @ 2009 Ananda Gunawardena 

 

Memory Leaks 
Memory leaks refer to memory that has been allocated by an 

application, but not properly released back once that 

memory is no longer needed. Many systems have multiple 

applications running on their systems and programming 

errors usually result in “memory leaks”. Memory leaks may 

not affect the functionality of the application, but left 

unattended in a system, memory leaks can cause the machine 

to crash. This is why, servers restart often to avoid them 

to from going down. Programmers typically allocate memory 

and then somehow may lose the reference to that memory 

block. For example, consider the following code. 

 

int A[n],i=0; 

for (i=0;i<n;i++)  

   A[i] = random(); 
 

int* B = malloc(2*n); 

B = A; 

 

The above code initializes a static array A to n random 

numbers and then requests a memory block (with reference B) 

that is twice the size of the array A. Then A is assigned 

to B (note that B = A is a legal assignment. But A = B; is 

illegal. Why?) 

 

This causes the program to lose a reference to the dynamic 

block of memory and hence that becomes garbage. We call 

this a “memory leak”. Therefore once you allocate memory 

and obtain a reference, DO NOT modify the original 

reference. You can always define other pointers and copy 

the address but the original pointer is necessary to free 

the memory. 

 

Quiz: Consider the following code. 

 
int* A = malloc(4*n); 

int *B = A; 

free(B); 

 

does this free the original memory?  

 

It is a good idea to assign NULL to a pointer that has been 

freed. Otherwise the pointer still contains the original 

address and a programmer could accidentally assign values 

to the block that has been freed. 

 



Copyright @ 2009 Ananda Gunawardena 

 

Detecting Memory leaks 
There are tools that detects and reports memory leaks. The 

most widely used tool is called “valgrind”. The Valgrind 

home page is at http://www.valgrind.org and you can find 

many resources on Valgrind there. To learn more about 

valgrind on unix, type 

 

% man valgrind 

 
NAME 

       valgrind - a suite of tools for debugging and profiling programs 

 

SYNOPSIS 

       valgrind [valgrind options] your-program [your-program options] 

 

DESCRIPTION 

       valgrind  is  a flexible program for debugging and profiling Linux exe- 

       cutables. It consists of a core, which  provides  a  synthetic  CPU  in 

       software, and a series of "tools", each of which is a debugging or pro- 

       filing tool. The architecture is modular, so that new tools can be cre- 

       ated easily and without disturbing the existing structure. 

 

       This  manual  page covers only basic usage and options.  Please see the 

       HTML documentation for more comprehensive information. 

 

INVOCATION 

       valgrind is typically invoked as follows: 

 

           valgrind program args 

 

       This runs program (with arguments args) under valgrind using  the  mem- 

       check  tool.   memcheck  performs a range of memory-checking functions, 

       including detecting accesses to uninitialized memory, misuse  of  allo- 

       cated memory (double frees, access after free, etc.) and detecting mem- 

       ory leaks. 

 

       To use a different tool, use the --tool option: 

 

           valgrind --tool=toolname program args 

 

and more………. 

 

To use Valgrind on Andrew unix, compile your code under 

 

% gcc -g -ansi -pedantic -W -Wall main.c 
 

Then run the code with Valgrind as 
 

% valgrind --tool=memcheck --leak-check=full ./a.out 

 

In addition to memcheck, valgrind has many other tools to 

check the use of functions, cache events etc. For now, we 

are only interested in making sure our programs don’t leak 

memory. The report provided by valgrind after running your 

code may look like 

 

 

 
==18768== Memcheck, a memory error detector. 



Copyright @ 2009 Ananda Gunawardena 

 

==18768== Copyright (C) 2002-2005, and GNU GPL'd, by Julian Seward et al. 

==18768== Using LibVEX rev 1471, a library for dynamic binary translation. 

==18768== Copyright (C) 2004-2005, and GNU GPL'd, by OpenWorks LLP. 

==18768== Using valgrind-3.1.0, a dynamic binary instrumentation framework. 

==18768== Copyright (C) 2000-2005, and GNU GPL'd, by Julian Seward et al. 

==18768== For more details, rerun with: -v 

==18768==  

==18768==  

==18768== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 4 from 1) 

==18768== malloc/free: in use at exit: 30 bytes in 1 blocks. 

==18768== malloc/free: 1 allocs, 0 frees, 30 bytes allocated. 

==18768== For counts of detected errors, rerun with: -v 

==18768== searching for pointers to 1 not-freed blocks. 

==18768== checked 63,760 bytes. 

==18768==  

==18768== 30 bytes in 1 blocks are definitely lost in loss record 1 of 1 

==18768==    at 0x4905599: malloc (vg_replace_malloc.c:149) 

==18768==    by 0x400565: main (valgrind1.c:12) 

==18768==  

==18768== LEAK SUMMARY: 

==18768==    definitely lost: 30 bytes in 1 blocks. 

==18768==      possibly lost: 0 bytes in 0 blocks. 

==18768==    still reachable: 0 bytes in 0 blocks. 

==18768==         suppressed: 0 bytes in 0 blocks. 

 

For now, we are interested in bytes that are definitely 

lost. Possibly lost bytes may be funny things that you may 

do with pointers such pointing to the middle of a heaped 

block etc. In all programs you write, you should look for 

memory leaks to make sure program is  



Copyright @ 2009 Ananda Gunawardena 

 

 

 
Dynamic Variables vs Automatic Variables 
Each application may use stack (low memory) and heap (high 

memory) for managing static and dynamic variables it 

assigns. A variable defined as 

 

int x; 

 

is given memory (4 bytes) from the stack space and is 

called an automatic variable. This memory is managed the 

compiler and remains in the stack as long as variable is 

within scope.    

 

We call variables that are assigned space through malloc or 

calloc dynamic variables. For example, we may assign 

 

int* A = malloc(100); 

 

and A is considered a dynamic variable. The dynamic 

variables are provided space in the “heap”. Heap is an area 

of processes virtual memory managed by an allocator. In 

most unix systems heap grows upwards (towards higher memory 

addresses). Unix kernel maintains a variable (called brk) 

that points to the top of the heap. An allocator maintains 

heap as a collection of variable size blocks. Each block is 

contiguous and either allocated or free. 

 

We will discuss more about runtime stack when we study the 

assembly language later in the course. 

 

 

Revisiting * and ** 
 

We have seen that any generic pointer variable can be 

defined as 

 

void* ptr or can be specific like int*, char* etc.. 

 

The type (int*, char*..) determines how many bytes are 

dereferenced when the actual pointer is dereferenced. For 

example, if we define the following 

 

char name[30]=”guna\0”;/* does not copy guna to name*/ 

int num = 23; 
int* intptr = &num; 

char* charptr = name; 



int main(int argc, char* argv[]){
  int** A;
  int size;
  allocateArray(A,100);
  readFile("argv[1]",A,size);
  printArray(A,size);
  return 0;
}

int allocateArray(int*** array, int n){ 
  int** arrayint = (int**)malloc(n*sizeof(int*)); 
  int i; 
  for (i=0;i<n;i++) 
    arrayint[i] = NULL;
  array = &arrayint; 
  return 0;
} 



Copyright @ 2009 Ananda Gunawardena 

 

 

Then *intptr would result in 23 and *charptr will result in 

‘g’. Explain why. 

 

intptr in the above example is a “pointer to an integer” or 

int*. So we can classify intptr as a variable of type int* 

What about then the address of intptr or &intptr?  

 

We note that intptr is a variable, and hence has an address 

in the memory. So we are really talking about the address 

of a pointer to an int (or the address of an address). This 

is of type int**. To understand this concept, let us look 

at the following function. 

 

void assignint(int** ptr){ 

     *ptr = malloc(sizeof(int)); 

} 

 

The purpose of the function is to take the address of an 

int* (that is an int**) and assign enough memory to hold an 

int. So we can make a call to the function from any calling 

program as follows. 

 

int* ptr; 

assignint(&ptr); 

*ptr = 10; 

 

 

Case for Dynamic Memory Allocation  
Managing memory is an important part of C programming. How 

much memory is available for static allocation depends on 

the system. A typical system may have from 1MB-5MB of free 

memory for stack space. Often we are asked to program 

devices with limited memory. In these cases C is the 

language of choice as we have many ways to manage limited 

memory. Case for dynamic memory is clear. Assume that you 

wanted to allocate a table of ints of size 100x100 in a 

device that only has 512K working memory. The table would 

require a contiguous block of 40K bytes. Now assume that 

you do not have 40K bytes of free memory in one block 

available. Your program has already used 392K bytes of 

memory and only 120K bytes of memory is currently 

available, but in 6 blocks of size 20K each. Therefore we 

cannot request a block of size more than 20K memory. Now as 

a programmer you are to decide how best to use this memory.  

We need to store 10,000 integers that require 40,000 bytes. 

Each row with 100 integers would require 400 bytes each. 



Copyright @ 2009 Ananda Gunawardena 

 

Therefore each block of 20K bytes can store up to 50 

integer rows. Now we can devise a strategy to use a 

flexible structure to store the integers. That would 

require allocating an array of 100 int*’s and each location 

in the array pointing to a block of size 400 bytes. 

Although we are using 40K bytes (400 ints) + 400 bytes (100 

int*’s) all memory can be allocated using available memory.  

  

Memcpy and memmove  
Memcpy and memmove are two functions that come in handy in 

dealing with memory copying. 

 

The prototype of the memcpy function is 

#include <string.h> 

void *memcpy(void *dest, const void *src, size_t n); 

 

DESCRIPTION 

The memcpy() function copies n bytes from memory area src 

to memory area dest.  The memory areas should  not  overlap.  

 

RETURN VALUE 

The memcpy() function returns a pointer to dest. 
 

Here is an example of copying n values from one array to 

another. 

 

void arraycpy(int A[], int B[], int n) { 

    memcpy(A,B,n*sizeof(int)); 

} 

 

What assumptions did we make in this memory copy? 

 

Exercise: Write a function a betterArrayCopy that copies n 

integers from array B starting at startB to array A, 

starting at startA.  

 

void betterArrayCopy(int A[], int B[], int startA, int 

startB, int num) { 

 

 

 

 

 

 

 

 

 



Copyright @ 2009 Ananda Gunawardena 

 

} 

 

When using memcpy, the source and destination CANNOT 

overlap. 

 

When source and destination overlaps, then we can use the 

function memmove. The prototype of the function memmove is 

 

NAME 

memmove - copy memory area 

 

SYNOPSIS 

#include <string.h> 

void *memmove(void *dest, const void *src, size_t n); 

 

DESCRIPTION 

The  memmove()  function  copies n bytes from memory area 

src to memory area dest.  The memory areas may overlap. 

 

RETURN VALUE 

The memmove() function returns a pointer to dest. 

 

Exercise: Write a function that shifts n integers 

in array A to the right by one starting from ith 

location. Assume that A has enough memory to 

perform the operation. 
 

void shift(int A[], int n, int i){ 

 

 
 

 

 

} 
 

Example Programs  
This code can be found on course democode folders. 

 

Program 8.1: Write a program that allocates dynamic memory 

required for n integers.  

 

#include <stdlib.h> 

 

int* A = NULL; 

if ((A = malloc(sizeof(int)*n)) != NULL) 



Copyright @ 2009 Ananda Gunawardena 

 

  { 

    for (i=0;i<n;i++) 

      *(A+i) = 0; // you can replace *(A+i) by A[i] if you wish 

  } 

else 

  { printf("malloc failed: Exiting Program!\n\n"); 

    exit( EXIT_FAILURE ); 
   } 

 

 

Program 8.2: Write a program that allocates dynamic memory 

required for n strings each with m length. 

 

 

#include <stdlib.h> 

 

char** A = NULL; // char* is a string. 

                 // char** is an array of strings 

     

if ((A = malloc(n)) != NULL) 

  { 
    for (i=0;i<n;i++) 

      A[i] = (char*)malloc(m);  

  } 

else 

  { printf("malloc failed: Exiting Program!\n\n"); 
    exit( EXIT_FAILURE ); 

   } 

 

 

Program 8.3: Write a function that gets a word from stdin. 

Assume the max word length is 50. Return the address of the 

word. 

 

#define MAX_WORD_LENGTH 50 

 
char* getword() { 

   char* s = malloc(MAX_WORD_LENGTH*sizeof(char)); 

   if (s == NULL) 
    {     

       printf("malloc failed: Exiting Program!\n\n"); 

       exit( EXIT_FAILURE );  

     } 

   printf("Enter a word (<%d chars): ",MAX_WORD_LENGTH); 

   scanf(“%s”,s); 

   return s; 
} 

 



Copyright @ 2009 Ananda Gunawardena 

 

We can write another version of getword where it takes an 

address of a string as an argument and allocates memory and 

reads a string into it.   

 

void getWord(char **word) 

{ 

 *word =  malloc(MAX_WORD_LENGTH*sizeof(char)); 
 if (*word==NULL) 

 { 

     printf("malloc failed: Exiting Program!\n\n"); 

           exit( EXIT_FAILURE );  

 } 
 

 printf("Enter a word (<%d chars): ",MAX_WORD_LENGTH); 

 fflush(stdout); 

 scanf( "%s", *word ); /* DANGER: vulnerable to buffer overflow*/ 

} 

 

 

Further Readings 
 
[1] K & R – Chapter 5 – Pointers and Arrays



Copyright @ 2009 Ananda Gunawardena 

 

 

Exercises 
1. Consider the following code. What is wrong with this 

code? 

     char* answer; 

     printf(“Please type something: “); 

     gets(answer); 
     printf(“you typed %s \n”,answer); 

 

2. Why isn’t a pointer NULL after calling free? 
 

3. I wanted to allocate space to hold a string s. So I 
did malloc(strlen(s)). It did not work. Why? 

 

4. I am allocating a large array for some numeric work. 
So I wrote: double *array = 
malloc(256*256*sizeof(double); 

Malloc is not returning NULL. But the program is 

acting strangely, as if it’s overwriting memory, or 

malloc isn’t allocating as much as I asked for, or 

something like that. What is wrong with me? 

 

5. Rewrite program_6_2 to allocate a random block of size 
m (between 1 and 10) that can hold m integers for each 

A[i]. 

6. What is the purpose of this program.  
 

#include <stdio.h> 
#include <stdlib.h> 

#include <string.h> 

 

void intptr(int** ptr){ 

  *ptr = malloc(4); 

}   

 

int main(int argc, char* argv[]){ 

  int* ptr; 

  intptr(&ptr);  

  *ptr = 25; 

  int num = ptr; 

 

  printf("%d \n", sizeof("gunawar") + 1); 

  char* ptr1 = malloc(10); 

  char* ptr2 = ptr1; 

  strcpy(ptr1,"guna"); 

  free(ptr1); 

  printf("%s\n", ptr2);  

  return EXIT_SUCCESS; 

} 

 

 



Copyright @ 2009 Ananda Gunawardena 

 

Answers 
1. Consider the following code. What is wrong with this 

code? 

     char* answer; 

     printf(“Please type something: “); 

     gets(answer); 

     printf(“you typed %s \n”,answer); 
 

ANSWER: gets assumes that you have already allocated memory 

to hold a string. But answer is just a pointer variable. No 

memory was allocated using malloc. Here is a follow up 
question. Rewrite the code so that it may not segfault. 

 

2. Why isn’t a pointer NULL after calling free? 
 

ANSWER: free(ptr) only deallocates the memory pointed to by 
the ptr. However, the pointer still contains a value that 

can be misused if the programmer is not careful. Therefore, 

it is always a good idea to assign ptr = NULL; after 

freeing the memory. 

 

 

3. I wanted to allocate space to hold a string s. So I 
did malloc(strlen(s)). It did not work. Why? 

 

ANSWER: strlen(s) returns the number of characters required 
to represent the string. For example, “guna” requires 4 

characters. However, a string also must end with a ‘\0’ 

character and therefore it is necessary to allocate one 

more the strlen(word) 

 

4. I am allocating a large array for some numeric work. 
So I wrote: double *array = 

malloc(256*256*sizeof(double); 

Malloc is not returning NULL. But the program is 

acting strangely, as if it’s overwriting memory, or 

malloc isn’t allocating as much as I asked for, or 

something like that. What is wrong with me? 

 

ANSWER: nothing is wrong with you ☺☺☺☺ . here is what happens. 

When you multiply 256*256*sizeof(double), the 
multiplication can happen in short int mode. Therefore 

it is possible that the answer can overflow the max 

size allocated for an int variable. Hence enough 

memory may not have been allocated. To fix the 
problem, make sure you multiply in the unsigned int 

mode, that has a much larger range of values. 



Copyright @ 2009 Ananda Gunawardena 

 

 

  5. Rewrite program_6_2 to allocate a random block of size 

m (between 1 and 10) that can hold m integers for each 

A[i]. 


