

2e74d820 2e74d834 2e74d848

Copyright @ 2009 Ananda Gunawardena

Lecture 05

2D Arrays and pointer to a pointer(**)

In this lecture

• More about 2D arrays

• How a 2D array is stored

• Accessing a 2D array using pointers

• Looking at array of strings

• ** or pointer to a pointer

• Passing pointer to a function

• Further readings

• Exercises

More about 2D arrays
An array is a contiguous block of memory. A 2D array of

size m by n is defined as

char A[m][n];

The number of bytes necessary to hold A is

m*n*sizeof(char). The elements of A can be accessed using

A[i][j] where i can be thought of as the row index and j

can be thought of as the column index.

Now we take a look at how 2D arrays are store their

elements. For example,

#define n 2

#define m 3

int A[n][m];

OR can be defined and initialized as

int A[2][3]={{1,2,3},{4,5,6}};

Copyright @ 2009 Ananda Gunawardena

How a 2D array is stored
A 2D array is stored in the memory as follows. Entries in

row 0 are stored first followed by row 1 and so on.

Here n represent the number of rows and m represents the

number of columns. 2-D arrays are represented as a

contiguous block of n blocks each with size m (i.e. can

hold m integers(or any data type) in each block). The

entries are stored in the memory as shown above.

Recall that when a 1D array is declared as

int A[n];

the name of the array A, is viewed as a pointer (const) to

the block of memory where the array A is stored. In other

words, A, A+1, A+2, etc represent the addresses of A[0],

A[1], A[2] etc..

We can access array elements using [] operator as A[i] OR

using pointer operator *(A+i). In fact, [] operator must

exactly perform the operations as follows.

Find the address of the ith element of A using A+i and

dereference A+i to find the element A[i]

Accessing 2D arrays using Pointers
So how does 2D arrays and pointers relate?

A 2D array is viewed as an array of 1D arrays. That is,

each row in a 2D array is a 1D array. Therefore given a 2D

array A,

int A[m][n]

we can think of A[0] as the address of row 0, A[1] as

address of row 1 etc..

Hence to find, say A[0][2] we do the following

A[0][2] = *(A[0] + 2)

In general, A[i][j] = *(A[i] + j)

Copyright @ 2009 Ananda Gunawardena

A[0] A[1]

We also note that A[0] = *A

Therefore A[i][j] = *(A[i] + j) = *(*(A+i) + j)

Recall that char* and a 1D array of characters have lot in

common.

char* ch ; /*defines the address of a character with no

memory allocated*/

char ch[20] ; /* ch is also the address of a char (const

pointer), but memory is allocated from the stack*/

Similarly, if A is a 2D array, we can think of A as a

pointer to a pointer to an integer. That is int**

A dereference of A, or *A gives the address of row 0 or

A[0] and A[0] is an int*

Dereference of A[0] gives the first entry of A or A[0][0]

that is **A = A[0][0]

Looking at Array of Strings
Consider the definition

char* A[n];

This defines a static array of char*’s that can be used to

store strings of variable length. For example, lets assume

that we need to store string S in the array location A[i].

Then we must do two things to make this happen.

1. Assign enough memory to hold S
a. A[i]=(char*)malloc(strlen(S)+1);

2. Copy string S to the memory allocated
a. Strcpy(A[i],S);

Copyright @ 2009 Ananda Gunawardena

We note that total memory allocated can be calculated as

follows.

1. Memory allocated for array A = sizeof(char*)*n bytes

2. Memory allocated for each individual string S is

strlen(S)+1 bytes

We also note that A, which is an array of char*’s can be

viewed as a char**. We note that

/*define a static array of char*’s*/

char* A[n];

and

/* define a dynamic array of char*’s */

char** B = malloc(sizeof(char*)*n);

are equivalent. However, A is allocated memory from the

stack while B is allocated memory from heap.

Question: How do we resize B to double its size w/o any

memory leaks?

Passing Pointers to functions

All arguments to C functions are passed by value. That is,

a copy of the variable is placed in the run time stack

during the function call. For example, the function

int foo(int x) {
 ………

}

is called as foo(a), the function is given a copy of the

calling variable a. Any changes to the local variable x

will NOT affect the value of global a.

So how does one pass a variable that can be changed by a

function?

For a variable to changed by the function, its address must

be given to the function. For example, the function foo

int foo(int* ptr){
 …

}

Copyright @ 2009 Ananda Gunawardena

Can be called as foo(&A);

In this case the copy of the address of A is given to the

function foo and function can now change the value of the

variable A by dereferencing A.

For example, the following function foo allocates memory

for an address of a pointer variable passed.

int allocate(int** A, int n){

 if ((A=malloc(n*sizeof(int))) != NULL)
 return 0;

 return 1;

}

The function can be called as:

int* ptr;

if (allocate(&ptr,10)! = 1)

 do_something;

We note that a copy of ptr is given to function foo, and

foo has allocated enough memory for an array of 10

integers. Now ptr can be considered an array of 10 ints.

For example, after calling allocate, we can initialize the

array as

for (i=0; i<10; i++)

 ptr[i] = 0;

So now we think of ** as a pointer to a pointer or the

address of a pointer. Just as 1D array of ints is thought

of as const int*, we can think of a 2D array as a const

int**

Understanding how pointers work is critical to

understanding how to work with C language. Now we have

discussed two types of pointers, * and **

We can think of int* as an address of an int and int** as

an address of int*

Copyright @ 2009 Ananda Gunawardena

For example, consider the following:

int x = 10;

int* p = &x;

int** q = &p;

Look inside the memory to see how they are represented

reveals the following.

Insert Discussion from lecture

Passing Pointers to functions play a major role in this

course. Passing a pointer to a function gives the access to

a calling variable directly. This is often more efficient

than passing a copy of the variable whose copy is placed in

the run time stack. However, great care must be taken when

passing pointers to functions, as functions are now able to

alter the value of the calling variable. In order to

protect the pointer (ptr) or content at that pointer (*ptr)

one can do the following.

int foo(const int* ptr){

 /* *ptr cannot be changed */

}

Or

int foo(int* const ptr){

 /* ptr cannot be changed */

}

Or

int foo(const int* const ptr){

Copyright @ 2009 Ananda Gunawardena

 /* neither ptr nor *ptr cannot be changed */

}

Each of the versions above can be used to take advantage of

the pointer concept. They provide the efficiency of using a

pointer while protecting the content from the changes.

Example 5.1

Write a function that takes the name of a file (char*) that

contains ints, an array of ints and the address of a

variable count and reads the file into the array. Assume

that the array has enough space to hold the file. count

should be updated to the number of entries in the file.

Answer:

int foo(char* filename, int A[], int* countptr){

 FILE* fp=NULL;

 int num=0;

 if ((fp=fopen(filename,”r”)) != NULL){

 while (fscanf(fp,”%d”,&num)>0)

 { A[*countptr]= num;

 *countptr += 1;

 }

 return 0;

 }

 else return 1;

Insert Discussion from lecture

Example 5.2

Consider the following declaration.

int** matrix;

Write a function matrixAllocate that takes two integers, m

and n and allocate an m by n block of memory.

int matrixAllocate(int*** Mptr, int n, int m){

 *Mptr = (int**)malloc(m*sizeof(int*));

 int i=0;

 for (i=0;i<m;i++)

 (*Mptr)[i] = malloc(n*sizeof(int));

}

Copyright @ 2009 Ananda Gunawardena

insert Discussion from lecture

Example 5.3

Write a C function swap that takes the name of a 2D array,

num rows, num columns, and two values i and j and swap the

two rows i and j. All error checking must be done.

int swap(int M[m][n], int I, int j){

}

Insert Discussion from lecture

Further Readings
See K & R sections 5.7-5.9

Exercises
[1] Write a function freeAll(char* A[],int n) that takes an

array of char*’s and delete all memory associated with A

[2] Learn more about valgrind, a tool to check memory

leaks. Type: man valgrind

