
10 Things I like / dislike about C so far

1. it is very powerful - fast, user a lot of control

2. it is beautiful - has a very few primitives, consistent

3. Dislike the memory allocation

4. Dont know how to use a debugger

5. Relatively small langauges - no 70000000 classes that comes with it

6. I feeel like an awesome computer hacker when I program

7. When I use other peoples programs I feel like I am at risk of exposing myself

8. Segmentation faults - i hate it

9. it does not have weird things like garbage collection

10. pointers are helpful in understanding the underlying system stuff

1. void Question1() {
2. int x, *y;
3. x=30;
4. y=&x;
5. y++;
6. printf("x=%d y=%d\n", x, *y);
7. }
8
9. int main(int argc, char *argv[]) {
10. Question1();
11. return 0;
12. }

1. void Question2() {
2. int x, y, *p1;
3.
4. x=5;
5. p1=&x;
6.
7. y = x + (*p1);
8.
9. printf("y=%d\n", y);
10. }
11.
12. int main(int argc, char *argv[]) {
13. Question2();
14. return 0;
15. }

Copyright @ 2009 Ananda Gunawardena

Lecture 04

C Arrays & pointers
In this lecture

• Introduction to 1D arrays

• Array representation, access and updates

• Passing arrays to functions

• Array as a const pointer

• Dynamic arrays and resizing

• Passing pointers to/from functions

• Further readings

• Exercises

4.1 Introduction to 1D Array
C arrays are NOT objects. They do not have any inherited

properties like length or do not contain methods like

contains. C arrays are made up of primitives. A C array can

be viewed as a contiguous memory block. The size of the

block depends on the type of the array. For example, if we

declare

char A[10];

would require 10 bytes of storage for A. On the other hand,

int A[10];

would require 10*sizeof(int) amount of storage.

In general, the sizeof(A) returns the number of bytes

required to store the array.

4.2 Array representation, access and updates
Arrays can be accessed and updated using its index. An

array of n elements, has indices ranging from 0 to

n-1. An element can be updated simply by assigning

A[i] = x;

A great care must be taken in dealing with arrays. Unlike

in Java, where array index out of bounds exception is

thrown when indices go out of the 0..n-1 range, C arrays

may not display any warnings if out of bounds indices are

accessed. Instead, compiler may access the elements out of

bounds, thus leading to critical run time errors.

Copyright @ 2009 Ananda Gunawardena

Arrays can also be initialized as they are declared. For

example,

int A[] = {1,2,3,4}

defines and initializes an array of size 4.

4.3 Passing arrays to functions
Arrays can be passed to functions using the array name.

Array name is a const pointer to the array. For example, if

we declare

int A[10];

Then A is the address of the first element of the array. A

can be thought of as const int* and can be passed to a

function as follows.

int foo(int array[], int size){

 …..

}

For example, call foo as : foo(A,10);

Note that array size was passed to the function to make

sure function foo accesses only the valid elements. Unlike

Java arrays where size of the array is an attribute, C

arrays do not carry size into function. Therefore the size

is also typically provided as an argument to an external

function.

4.5 Array as a const pointer
As stated above the name of the array is a const pointer to

the first element of the array. Hence think of A as the

address of A[0], A+1 as the address of A[1] etc. Assigning

a value to a const pointer is illegal. For example,

int A[n];
int* ptr = A ; /* is valid */

however

A = ptr; /* is invalid as A cannot be changed */

Copyright @ 2009 Ananda Gunawardena

Note that in the above example, the difference between A

and ptr is that

ptr is a pointer to an integer or int*

and

A is a const pointer to an integer or const int*

Moreover, A is a static array managed by the compiler in

the run time stack and ptr is just a pointer variables. The

function sizeof(A) returns total bytes required for A,

while sizeof(ptr) returns the number of bytes required for

an address variable. We will discuss more about the

similarities and differences between A and ptr later.

4.6 Dynamic Arrays and Resizing
Arrays by definition are static structures, meaning that

size cannot be changed during run time. When an array is

defined as

int A[n];

then A is considered a static array and memory is allocated

from the run time stack for A. When A goes out of scope,

the memory is deallocated and A no longer can be

referenced.

However, C allows dynamic declaration of an array as

follows.

int* A = (int*)malloc(sizeof(int)*n)

The above code declares a memory block of size

n*sizeof(int) that can be accessed using the pointer A. For

example, A can be initialized as follows:

int i;

for (i=0; i<n; i++)

 A[i] = 0;

Note that although A was declared as a pointer, A can be

treated as an array. The difference between

int A[10] and int* A = malloc(10*sizeof(int))

Copyright @ 2009 Ananda Gunawardena

is that latter is assigned memory in the dynamic heap (and

hence must be managed by the programmer) and former is

assigned memory from the run time stack (and hence managed

by the compiler)

When defined dynamically as

int* A = (int*)malloc(sizeof(int)*n)

arrays can be resized easily. For example, if we want to

double the size of the array, then we can do the following.

int* tmp = (int*)malloc(sizeof(int)*2*n)

int i;

for (i=0; i<n; i++)

 tmp[i] = A[i];

free(A);

A = tmp;

Note that the above code assigns a new block of memory,

copy old content from A to tmp, free original memory

allocated for A and reassign A pointer. Note that free(A)

only frees the memory associated with A, but the variable A

still exists.

4.7 Arrays and Pointers
Arrays and pointers are closely related in C. In fact an

array declared as

int A[10];

can be accessed using its pointer representation. The name

of the array A is a constant pointer to the first element

of the array. So A can be considered a const int*. Since A

is a constant pointer, A = NULL would be an illegal

statement.

Other elements in the array can be accessed using their

pointer representation as follows.

&A[0] = A

&A[1] = A + 1

&A[2] = A + 2

…..

&A[n-1] = A + n-1

Copyright @ 2009 Ananda Gunawardena

If the address of the first element in the array of A (or

&A[0]) is FFBBAA0B then the address of the next element

A[1] is given by adding 4 bytes to A.

That is

&A[1] = A + 1 = FFBBAA0B + 4 = FFBBAA0F

And

&A[2] = A + 2 = FFBBAA0B + 8 = FFBBAA13

Note that the when doing address arithmetic, the number of

bytes added depends on the type of the pointer. That is

int* adds 4 bytes, char* adds 1 byte etc. You can type in

this simple program to understand how a 1-D array is

stored.

Program_4_1:

#include <stdio.h>

#define n 5

int main(int argc, char* argv[]){

 int A[n],i=0;

 for (i=0;i<n;i++)

 printf(“%x “,A+i);

 printf(“\n”);

}

4.8 Array of Pointers
C arrays can be of any type. We define array of ints,

chars, doubles etc. We can also define an array of pointers

as follows. Here is the code to define an array of n char

pointers or an array of strings.

char* A[n];

each cell in the array A[i] is a char* and so it can point

to a character. You should initialize all the pointers (or

char*) to NULL with

for (i=0; i<n; i++)

 A[i] = NULL;

Now if you would like to assign a string to each A[i] you

can do something like this.

bf802330 bf802334 bf802338 bf80233c bf802340

Copyright @ 2009 Ananda Gunawardena

A[i] = malloc(length_of_string + 1);

Again this only allocates memory for a string and you still

need to copy the characters into this string. So if you are

building a dynamic dictionary (n words) you need to

allocate memory for n char*’s and then allocate just the

right amount of memory for each string.

4.9 Functions that take pointer arguments
Pointers or memory addresses can be passed to a function as

arguments. This may allow indirect manipulation of a memory

location. For example, if we want to write a swap function

that will swap two values, then we can do the following.

void intswap(int* ptrA, int* ptrB){

 int temp = *ptrA;

 *ptrA = *ptrB;
 *ptrB = temp;

}

To use this function in the main, we can write the code as

follows.

int A = 10, B = 56;

intswap(&A, &B);

note that the addresses of the variables A and B are passed

into the intswap function and the function manipulates the

Copyright @ 2009 Ananda Gunawardena

data at those addresses directly. This is equivalent to

passing values by “reference”. It is really passing the

values that are addresses instead of copies of variables.

However this can be dangerous since we are giving access to

the original values.

One way to avoid this situation is to provide only “read”

access to the data using a pointer. Consider the following

function.

void foo(const int* ptr){

 /* do something */

}

The function takes the address of an integer variable, but

is not allowed to change its content. It only has read

privileges.

printf(“%d”, *ptr) is legal

scanf(“%d”, ptr) is illegal

4.10 Functions that Return pointers
Pointers can be returned from functions. For example, you

can think of a function that allocates a block of memory

and pass a pointer to that memory back to the main program.

Consider the following generic function that returns a

block of memory.

void* allocate(short bytes){

 void* temp = malloc(bytes);

 return temp;

}

The function can be used in the main as follows.

int* A = (int*)allocate(sizeof(int)*100);

char* S = (char*)allocate(sizeof(char)*n+1);

since the function returns a void* it can be allocated for

any pointer type, int*, double*, char* etc. However, you

need to take great care in using the array. You must be

aware of the segmentation of the array (4 byte blocks for

int, 1 byte blocks for chars etc)

Copyright @ 2009 Ananda Gunawardena

4.10 Starting to think like a C programmer
We have spent quite a bit of time now talking about C

language. It is possible that so far your thinking was

based on your first “computer” language Java. You may have

been trying to think like a Java programmer and convert

that thought to C. Now it is time to think like a C

programmer. Being able to think directly in C will make you

a better C programmer. Here are 15 things to remember when

you start a C program from scratch.

1. include <stdio.h> in all your programs
2. Declare functions and variables before using them
3. increment and decrement with ++ and – operators.
4. Use x += 5 instead of x = x + 5
5. A string is an array of characters ending with a ‘\0”.

Don’t ever forget the null character.

6. Array of size n has indices from 0 to n-1. Although C
will allow you to access A[n] it is very dangerous.

7. A character can be represented by an integer (ASCII
value) and can be used as such.

8. The unary operator & produces an address
9. The unary operator * dereference a pointer
10. Arguments to functions are always passed by value. But

the argument can be an address of just a value

11. For efficiency, pointers can be passed to or return
from a function.

12. Logical false is zero and anything else is true
13. You can do things like for(;;) or while(i++) for

program efficiency and writability

14. Use /* .. */ instead of //
15. Always compile your program with –ansi –pedantic –Wall

flags

Further Readings

1. K & R – 1.6, 1.7, 1.8, 1.9, 4.1, 5.1,5.3, 5.7

Copyright @ 2009 Ananda Gunawardena

2. Exercises
1. Write a function foo that takes a file name as a

string, and reads each string in the file, allocate

memory and create an array of strings (of multiple

lengths) and return the address of the array back to

the calling program. Assume the max size of the file

is set in MAX_WORDS (#define MAX_WORDS = 100)

2. What could be a possible error in the following code?

 int* foo(int n){
 int A[10], *x;

 strcpy(A,”guna”);

 x = A;

 return x;

 }

3. What can be wrong with the following code?

 int A[10], i, *ptr;

 for (i=0;i<10;i++)

 ptr = A + i;
 printf(“%d “, *(ptr+1));

4. The C library string.h contains the function

strcpy(dest,src) that copies src string to a dest

string. Write a alternative version of the strcpy with

the following prototype. The function returns 0 if

successful and returns 1 if fails for some reason.

int mystrcpy(char* dest, const char* src){

}

Is it possible to check inside the function, whether

there is enough memory available in dest to copy src?

Justify your answer.

5. What is the output of the following code?
void foo() {

 int x, *y;

 x=30;

 y=&x;

 y++;

 printf("x=%d y=%d\n", x, *y);

}

Copyright @ 2009 Ananda Gunawardena

6. What is the output of the following code. If there is

an error state the type of the error
void foo() {

 char *string, *x;

 string = (char *)malloc(20);

 strcpy(string, "Hello World.");

 x=string;

 for(; *x != '\0'; x++) {

 printf("%c", *x);

 }

 printf("\n");

}

int main(int argc, char *argv[]) {

 foo();

 return 0;

}

Copyright @ 2009 Ananda Gunawardena

ANSWERS

1. Write a function foo that takes a file name as a

string, and reads each string in the file, allocate

memory and create an array of strings (of multiple

lengths) and return the address of the array back to

the calling program. Assume the max size of the file

to be MAX_WORDS

Answer: char** foo(char* filename){

 char tmp[100];

 char* list[MAX_WORDS];

 int i = 0;

 FILE* fp = fopen(filename,”r”);
 while (fscanf(fp,”%s”,tmp)>0){

 list[i] = malloc(strlen(tmp)+1);

 strcpy(list[i++],tmp);

 }

 return list;

 }

2. What could be a possible error in the following code?

 int* foo(int n){
 int A[10], *x;

 Strcpy(A,”guna”);

 x = A;

 return x;

 }

ANSWER: A is a local allocation of memory, and when x is

returned A no longer exists. Therefore, any effort to

dereference the address returned by x could cause errors.

3. What can be wrong with the following code?

 int A[10], i, *ptr;

 for (i=0;i<10;i++)
 ptr = A + i;

 printf(“%d “, *(ptr+1));

Answer: After loop is executed the ptr points to the last

thing in the array (A[9]). Now *(ptr+1) tried to
dereference the content at A[10], something that does not

exists.

Copyright @ 2009 Ananda Gunawardena

4. The C library string.h contains the function

strcpy(dest,src) that copies src string to a dest

string. Write an alternative version of the strcpy

with the following prototype. The function returns 0

if successful and returns 1 if fails for some reason.

int mystrcpy(char* dest, const char* src){

 int i = 0;

 while (i<strlen(src) && src[i] != ‘\0’) {

 dest[i] = src[i++];

 dest[i] = ‘\0’;
 return 0;

}

Is it possible to check inside the function, whether

there is enough memory available in dest to copy src?

Justify your answer.

Answer: The passed argument dest is a copy of the

address of the memory available to dest. However, the
mystrcpy does not know anything about the max size

available to copy src. So obviously the code above is

dangerous since we could overwrite some memory not

allocated to us.

