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Abstract

Mobile devices have become for many the preferred way of interacting with the
Internet, social media and the enterprise. However, mobile devices still do not
have the computing power and battery life that will allow them to perform
effectively over long periods of time or for executing applications that require
extensive communication or computation, or low latency. Cyber-foraging is a
technique to enable mobile devices to extend their computing power and storage
by offloading computation or data to more powerful servers located in the cloud
or in single-hop proximity. This reports presents a catalogue of architectural
tactics for cyber-foraging that was derived from the results of a systematic
literature review (SLR) on architectures for cyber-foraging systems. Elements
of the architectures identified in the primary studies were codified in the form
of Architectural Tactics for Cyber-Foraging. These tactics will help architects
extend their design reasoning towards cyber-foraging as a way to support the
mobile applications of the present and the future.



Chapter 1

Introduction

Mobile Cloud Computing (MCC) refers to the combination of mobile devices and
cloud computing in which cloud resources perform computing-intensive tasks
and store massive amounts of data. Increased mobile device capabilities, com-
bined with better network coverage and speeds, have enabled MCC such that
mobile devices have become for many the preferred form for interacting with
the Internet, social media, and the enterprise. However, mobile devices still
offer less computational power than conventional desktop or server comput-
ers, and limited battery life remains a problem especially for computation- and
communication-intensive applications.

Cyber-foraging is an area of work within MCC that leverages external re-
sources (i.e., cloud servers or local servers called surrogates) to augment the
computation and storage capabilities of resource-limited mobile devices while
extending their battery life. There are two main forms of cyber-foraging. One
is computation offload, which is the offload of expensive computation in order
to extend battery life and increase computational capability. The second is
data staging to improve data transfers between mobile devices and the cloud by
temporarily staging data in transit.

One of the main challenges of building cyber-foraging systems is the dynamic
nature of the environments that they operate in. For example, the connection
to an external resource may not be available when needed or may become un-
available during a computation offload or data staging operation. As another
example, multiple external resources may be available for a cyber-foraging sys-
tem but not all have the required capabilities. Adding capabilities to deal with
the dynamicity of the environment has to be balanced against resource con-
sumption on the mobile device so as to not defeat the benefits of cyber-foraging.
Being able to reason about the behavior of a cyber-foraging system in light of
this uncertainty is key to meeting all its desired quality attributes, which is why
software architectures are especially important for cyber-foraging systems.

Given the potential complexity of cyber-foraging systems, it would be of
great value for software architects to have a set of reusable software architec-
tures and design decisions that can guide the development of these types of
systems, but also the rationale that went to making these decisions, as well as
the external context/environment in which they were made; this is called archi-
tectural knowledge [KLvV06][LA06]. One way to capture architectural knowl-
edge is in the form of architectural tactics. We define architectural tactics as
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design decisions that influence the achievement of a quality attribute response
[BCK12].

This report contains a catalogue of architectural tactics for cyber-foraging
that was derived from the results of an SLR on architectures for cyber-foraging
systems. The details of the SLR can be found at http://www.cs.vu.nl/
~patricia/Patricia_Lago/Shared_files/SLR-ArchCyberForaging.pdf. A
set of 57 primary studies was identified.1 Table 1.1 shows the computation of-
fload systems found in the primary studies and Table 1.2 shows the data staging
systems. The columns in the table correspond to decisions on where, when and
what to offload from the perspective of the mobile device.

• Where to offload? Is computation and/or data offloaded to proximate
(single-hop) resources or remote (multi-hop) resources?

• When to offload? With optimization in mind, when does it make sense to
offload? Is computation always offload or is there a runtime decision on
whether or not to offload?

• What to offload? What is the granularity of the computation that is
offloaded? What is the size of the payload to use the computation? What
type of data is offloaded? What data operations are offloaded?

The preliminary analysis of these studies has been published in [LLP14].

Table 1.1: Computation Offload Systems in Primary Studies
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mHealthMon [AP13] X X X X
Mobile Agents [AB13] X X X X X
Clone-to-Clone (C2C) [ACH12] X X X X
Chroma [BGSH07] X X X X
Collaborative Applications [CH11] X X X X X
Computation and
Compilation Offload [CKK+04] X X X X
Cloud Media Services [CP13] X X X X
Roam [CSW+04] X X X X X X X
CloneCloud [CM09] X X X X
MAUI [Cue12] X X X X X
Kahawai [Cue12] X X X X
HPC-as-a-Service [Dug11] X X X X X
OpenCL-Enabled Kernels [EW11] X X X X X X
Real Options Analysis [EML11] X X X X X

Continued on next page

1The total of primary studies is 57 but the total of systems analyzed is 52 for computation
offload and 8 for data staging for a total of 60 systems because two of the computation offload
studies present two different systems and one study presents systems for both computation
offload and data staging.
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Table 1.1 – Continued from previous page
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3DMA [FMD05] X X X X
Spectra [FPS02] X X X X
AlfredO [GRJ+09] X X X X X
Collective Surrogates [Goy11] X X X X X X
Grid-Enhanced Mobile
Devices [Gua08] X X X X X
Cloudlets [HLSS11] X X X X X
Virtual Phone [HSL11] X X X X
Single-Server Offloading [Ima12] X X X X
Cloud Operating System [Ima12] X X X X X
Android Extensions [I+12] X X X X
ThinAV [JBA12] X X X X X
Cuckoo [KPKB12] X X X X X X
ThinkAir [KAH+12] X X X X X
MACS [KK12] X X X X X X
Scavenger [Kri10] X X X X X
AMCO [KT13] X X X X X X
MCo [Lee12] X X X X X
PowerSense [MCF+11] X X X X
AIDE [MGB+02] X X X X X
Application Virtualization [ML13] X X X X X
PARM [MV03] X X X X
Resource Furnishing
System [OSP07] X X X X X
Cloud Personal Assistant [OG13] X X X X X
SOME [PCCY12] X X X X
SmartVirtCloud [PXJZ13] X X X X X
Odessa [RSM+11] X X X X X
Smartphone-Based Social
Sensing [Rac12] X X X X X
MAPCloud [RVMV12] X X X X X X
VM-Based Cloudlets [SBCD09] X X X X X
IC-Cloud [SPN+13] X X X X X
SPADE [SVF08] X X X X
Slingshot [SF05] X X X X
Offloading Toolkit and
Service [YOC08] X X X X X X
Mobile Data Stream
Application Framework [YCY+13] X X X X X
Heterogeneous Auto-
Offloading Framework [ZGHC09] X X X X
Weblets [ZKJG11] X X X X
DPartner [ZHZ+12] X X X X X
Elastic HTML5 [ZJGK12] X X X X X X

Chapter 2 presents the architectural tactics for cyber-foraging that were
codified from the primary studies, grouped into functional and non-functional
tactics. Chapter 3 presents related work. Chapter 4 concludes the report and
outlines the next steps in our research.
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Table 1.2: Data Staging Systems in Primary Studies

System Where When What
Data Type Data Operations
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Edge Proxy [ATAdL06] X X X X
Mobile Information Access Architecture
for Occasionally-Connected
Computing [BWYH06] X X X X
Trusted and Unmanaged Data Staging
Surrogates [FSTS03] X X X X
Android Extensions [I+12] X X X X
Telemedik [KMM+07] X X X X X
Feel the World [PEPD13] X X X X X X
Large-Scale Mobile
Crowdsensing [XSP+13] X X X X
Sonora [YQC+12] X X X X X X
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Chapter 2

Architectural Tactics for
Cyber-Foraging

The tactics that are presented in this chapter were extracted from the literature
based on (1) common components found in the studies, (2) quality attributes
explicitly stated in the studies, and (3) quality attributes inferred from system
and component descriptions. We codified common design decisions into archi-
tectural tactics and grouped these tactics into functional and non-functional
tactics.

Figure 2.1 presents the set of identified tactics. The top levels of the figure
are the tactic categories. The boxes with solid lines under each category are the
tactics. A box with a dashed line under a tactic is a variation of that tactic.
Each tactic is described using the following template:

• Motivation: rationale behind the tactic

• Description: components introduced by the tactic and explanation of their
roles

• Constraints: necessary conditions for applying the tactic in an existing
software architecture

• Example: previous application of the tactic in one or more systems; the ex-
ample(s) map back to the elements of the architecture diagram presented
in the description

• Dependencies: whether the tactic requires other tactics to be applied

• Variations (Optional): slight variations of the tactic.

The tactics are divided into functional and non-functional tactics. Func-
tional tactics are broad and basic in nature and correspond to the architectural
elements that are necessary to meet cyber-foraging functional requirements.
Non-functional tactics are more specific and correspond to architecture deci-
sions made to achieve certain quality attributes. Non-functional tactics have to
be used in conjunction with functional tactics.

The tactics described in this chapter will include a nearby surrogate as the
offload target to take advantage of the lower latency and battery consumption
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Figure 2.1: Architectural Tactics for Cyber-Foraging

that come from using WiFi or short-range radio instead of broadband wireless
(e.g., 3G/4G) [BBV09][LM02]. The notion is that the elements of the tactic that
apply to the surrogate will also apply to a remote cloud server as the offload
target.

2.1 Functional Architectural Tactics for Cyber-
Foraging

2.1.1 Computation Offload
A scenario for Computation Offload from a mobile device to a surrogate is the
following: The user of a mobile device executes a cyber-foraging-enabled mobile
application. The application offloads the computation to a nearby surrogate
with minimal disruption to the mobile device user.

The Computation Offload tactic can be found in the computation offload
systems shown in Table 1.1 for which What to Offload - Granularity is Compo-
nent, Service, or Application. It can also be mapped to the data staging systems
in Table 1.2 for whichWhat to Offload - Data Operations corresponds to Storage
because even though these systems are using the surrogate for extended storage
they are indeed offloading the data management computation.

The Computation Offload tactic needs to be combined with a Surrogate
Provisioning tactic (Section 2.1.3) that prepares the surrogate for computation
offload. It also needs to be combined with a Surrogate Discovery tactic (Sec-
tion 2.1.4) to discover surrogates in the environment. This tactic is also often
combined with non-functional tactics to achieve desired system qualities. For ex-
ample, it is often combined with Resource Optimization tactics (Section 2.2.1)
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to make better decisions on resource usage and with Fault Tolerance tactics
(Section 2.2.2) to attempt to provide continued operations.
Motivation. Mobile devices still do not have the computing power and battery
life that will allow them to perform effectively over long periods of time or for
executing applications that require extensive communication or computation.
Computation Offload extends battery life by offloading computation-intensive
portions of an application to nearby surrogates with greater computation power.
In addition, the single-hop proximity of surrogates combined with the use of
WiFi or short-range radio instead of broadband wireless (e.g., 3G/4G) also
decreases latency [BBV09][LM02] and improves the user experience especially
for highly-interactive applications.
Description. Figure 2.2 shows the main components of this tactic with num-
bers that indicate the sequence of operations. The Computation Offload tactic
requires an Offload Client running on the Mobile Device and an Offload Server
running on the Surrogate. This pair of components communicates to coordinate
the offload operation. The Cyber-Foraging Enabled Mobile App invokes the Of-
fload Client when it encounters a portion of code that has been identified as
offloadable computation and passes it any App Metadata that is required to set
up the Offloaded Code. The Offload Client then coordinates with the Offload
Server to set up the Offloaded Code so that it can be invoked by the Cyber-
Foraging Enabled Mobile App. The Offloaded Code runs inside a Container
on the Surrogate. Examples of a Container are a virtual machine, application
server, web server, or the operating system. Figure 2.2 shows the Cyber-Foraging
Enabled Mobile App communicating directly with the Offloaded Code. An al-
ternative is for the Cyber-Foraging Enabled Mobile App to always communicate
through the Offload Client. This latter alternative has the potential for perfor-
mance problems as the number of mobile clients using the surrogate increases
because the Offload Server becomes a bottleneck. However, some systems that
implement Fault Tolerance tactics (Section 2.2.2) place the responsibility of de-
tecting and managing disconnections in the Offload Client and Offload Server
which therefore benefits from the single point of communication of the latter
alternative.
Constraints. The tactic as described assumes that (1) offloaded computation
already exists on the surrogate (provisioned via the application of a Surrogate
Provisioning tactic (Section 2.1.3)), (2) computation that is marked for offload
is always offloaded, and (3) the surrogate is always available.
Example. An example of how to apply the Computation Offload tactic is the
Mobile Agents system [AB13] shown in Figure 2.3. In the Mobile Agents system
applications are manually partitioned into components that have to be executed
locally and components that can be offloaded. These offloadable components
are set up as Mobile Agents using the Java Agent Development Environment
(JADE). At runtime, the Execution Manager determines if the agent marked
as offloadable should be offloaded based on a comparison of local and remote
execution times (Section 2.2.1.1 contains details on runtime partitioning). If
so, the Execution Manager sends the Mobile Agent (which carries its input
parameters) to the Agent Management System so that it can migrate the Mobile
Agent to the JVM Container in the Cloud Host. After migration, the offloaded
component starts executing and communicates directly with the Mobile App.
Dependencies. The Computation Offload tactic requires a Surrogate Provi-
sioning tactic (Section 2.1.3) that prepares the surrogate for computation of-
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Figure 2.2: Computation Offload Tactic

Figure 2.3: Mobile Agents as an Example of the Computation Offload Tactic

fload.
Variation: Stateful Computation Offload. The tactic as described as-
sumes that the offload operation is stateless. This means that no mobile app
state needs to be transferred between the Offload Client and the Offload Server
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during the offload operation. This is what happens when the granularity of the
offload operation is a module or class, a service, or a complete application (or
server portion of an application). When the granularity of the offload operation
is at the process or at the method level, the state of the program or object that
the contains the process or method being offloaded has to be transferred to the
equivalent program or object on the surrogate. In this case, a state synchroniza-
tion operation in a State Manager component that is invoked either periodically
or on-demand has to execute before the offloaded code is executed to guarantee
that the state is equivalent on both sides. This stateful variation of the tactic
can be mapped to the computation offload systems in Table 1.1 for which What
to Offload - Granularity corresponds to Process or Function.

An example of how to apply the Stateful Computation Offload tactic is
the CloneCloud system [CM09] shown in Figure 2.4, marked with numbers
that indicate the sequence of operations. In CloneCloud, the Container on the
Surrogate is a Clone Application VM of the Application VM that is executing on
the mobile device. At runtime, when a computation block of the Instrumented
Mobile App is marked for offload, a Migrator component running in the VM is
invoked that puts the running process into a sleep state and transfers this state
to the Clone Application VM via the pair of Node Managers running on both
the mobile device and the surrogate. The Migrator in the Clone Application
VM creates a new process with the received state and marks it as runnable so
it executes. The cloned process executes from the beginning of the computation
block until it reaches the end of the computation block. The Migrator on the
cloned VM then transfers the new process state back to the mobile device. The
Migrator on the mobile device receives the new process state, merges it with
the sleeping process, and then wakes up the sleeping process to continue its
execution.

2.1.2 Data Staging
A scenario for Data Staging is the following: A mobile application is being used
by multiple users to collect data in the field. Upon detection that it is close
to a surrogate, the mobile application offloads the collected data. When the
operation is complete, the mobile device deletes the transmitted data to free
up storage space. In addition, when the surrogate establishes connectivity to
the main data center in the cloud, it forwards the data that was collected by
the multiple users, where it is integrated into the enterprise data repository.
An additional capability of the application is to provide data visualizations
pertaining to the data collected by the user, the data collected in the region
that is served by the surrogate, and the data collected by the entire set of users.
Therefore, data is pushed from the enterprise data center to the surrogate either
on-demand or periodically so that the data is closer to the user and accessible
even if the surrogate is disconnected from the enterprise.

The Data Staging tactics require a configuration such as the one shown in
Part(c) of Figure ?? in which the mobile device is connected to a surrogate
and the surrogate is connected to the enterprise or cloud data center, even if
connectivity is intermittent or periodic.

The Data Staging tactics need to be combined with a Surrogate Provisioning
tactic (Section 2.1.3) that prepares the surrogate for data staging. This tactic is
also often combined with other functional and non-functional tactics to achieve
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Figure 2.4: CloneCloud as an Example of the the Stateful Computation Offload
Tactic

desired system qualities. It is typically combined with a Surrogate Discovery
tactic (Section 2.1.4) to discover surrogates in the environment. It is also often
combined with Fault Tolerance tactics (Section 2.2.2) to attempt to provide
continued operations.

2.1.2.1 Pre-Fetching

The Pre-Fetching tactic can be found in the data staging systems shown in
Table 1.2 for which What to Offload - Data Operations is Pre-Fetching.
Motivation. Data-intensive mobile apps often rely on data located in the
cloud. However, access to this data is likely over a lower-bandwidth and multi-
hop connection, compared to the higher-bandwidth, single-hop connection that
exists between a mobile device and a surrogate. Pre-fetching anticipates data
needs in order to minimize communication to the cloud and reduce latency. The
surrogate, according to a defined pre-fetch algorithm, retrieves data from the
cloud and stores it locally so that it is available to the mobile device when it
needs it. Access to the cloud is therefore only necessary when the data is not
already available on the surrogate.
Description. Figure 2.5 presents the main components of this tactic. The
Pre-Fetching tactic requires a Data Staging Client that runs on the Mobile
Client and a Data Staging Manager that runs on the Surrogate. The Data
Staging Client handles all data operations on behalf of a Cyber-Foraging-Enabled
Mobile App. Before sending the data operation to the Data Staging Manager,
the Data Staging Client captures and also sends along any Pre-Fetch Hints that
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are used by the Pre-Fetch Algorithm to determine and anticipate data needs.
Examples of pre-fetching hints include mobile device location, user profile and
preferences, and the user’s schedule. The Data Staging Manager first executes
the data operation against the local Cache. If the operation is successful it
returns the results of the data operation. If the operation is not successful the
Data Staging Manager obtains the data from the Cloud Data Repository in the
Enterprise Cloud (or the equivalent of a master data repository), stores it in
the local Cache, and returns the results of the data operation to the Mobile
Client. Asynchronously, either periodically or triggered by certain conditions,
the Data Staging Manager will use the Pre-Fetch Hints from the Mobile Client
and any local data such as the user’s access history as parameters to a Pre-Fetch
Algorithm that will calculate the data set that is likely to be needed next by
the Cyber-Foraging Enabled Mobile App. It will then retrieve this data set from
the Cloud Data Repository and store it in the local Cache so that it is available
when it is needed by the Cyber-Foraging Enabled Mobile App. Similarly, either
periodically or in response to certain conditions, that Data Staging Manager will
sync the Cache with the Cloud Data Repository to ensure that data is consistent
locally and remotely.

Figure 2.5: Pre-Fetching Tactic

Constraints. The tactic as presented requires connectivity between the mobile
device and the surrogate for access to any data that is being staged, and even-
tual connectivity between the surrogate and the enterprise cloud to serve cache
misses and synchronize data. The tactic also assumes that there is a mechanism
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in place, either manual or automatic, to resolve any synchronization conflicts
between the Cache and the Cloud Data Repository, especially if cached data is
not read-only.
Example. An example of how to apply the Pre-Fetching tactic is the Trusted
and Unmanaged Data Staging Surrogates system [FSTS03] shown in Figure 2.6.
Data is staged on a Staging Server in the Surrogate. A Client Proxy running
on the Wimpy Client intercepts all data operations. If it detects high latency it
sends the data operation to the Surrogate, which then uses a pre-defined User
Role to determine the initial set of files that the user is going to need based
on the this role. The User Role basically establishes the set of files that are
commonly used together. The Staging Server obtains the set of files from the
File Server and caches them on the surrogate.1 After the Cache has been loaded
with the initial data set, all data operations are routed to the Staging Server. If
the requested file exists in the Cache then the data operation takes place locally
on the surrogate. If the file is not available in the Cache it obtains the file from
the File Server and stores it in the Cache, along with any other files that are
predicted to be required based on the request.

Figure 2.6: Trusted and Unmanaged Data Staging Surrogates as an Example
of the Pre-Fetching Tactic

Dependencies. The Pre-Fetching tactic requires a Surrogate Provisioning tac-
tic (Section 2.1.3) that prepares the surrogate for data staging.

2.1.2.2 In-Bound Pre-Processing

The In-Bound Pre-Processing tactic can be found in the data staging systems
shown in Table 1.2 for which What to Offload - Data Operations is In-Bound

1For simplicity, the desktop and its trusted authority role are not included in the discussion
of this tactic but are addressed in Section 2.2.4.1.
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Processing.
Motivation. Data-intensive mobile apps often rely on data that resides in
the cloud. However, access to this data is likely over a lower-bandwidth and
multi-hop connection, that in addition consumes more energy than the single-
hop connection that exists between a mobile device and a surrogate. In order
to reduce the amount of data received by the mobile device, avoid direct com-
munication to the cloud for every data operation, and avoid the computation
costs of processing this data for visualization on mobile devices, the surrogate
pre-processes the data that is retrieved or pushed from the enterprise cloud.
The mobile device receives data that is ready to be consumed, or filtered such
that it only receives data of interest or relevance.
Description. Figure 2.7 shows the main elements of the In-Bound Processing
tactic. This tactic requires a Communications Manager that runs on the Mobile
Client and handles all communication with the Data Processor on the Surrogate.
The Mobile Client can request data on demand or periodically (synchronous) or
can register with the surrogate for data of interest (asynchronous). In the case of
synchronous requests, as shown by the S# operations in Figure 2.7, the Cyber-
Foraging-Enabled Mobile App requests data via the Communications Manager.
The Data Processor retrieves the data from the Cloud Data Repository and
pre-processes it according to defined algorithms/rules before sending the data
to the mobile app. The Data Processor may store data in its local Cache
for additional processing, to serve additional requests based on the same data,
or if the algorithm/rules involve partitioning or priorization of data such that
it is sent incrementally upon request. In case of asynchronous requests, as
shown by the A# operations in Figure 2.7, the Cyber-Foraging-Enabled Mobile
App registers for data of interest via the Communications Manager. The Data
Processor periodically polls the Enterprise Cloud for the data of interest (e.g.,
new data, updated data, data conditions satisfied) and when conditions are met
it sends the data asynchronously back to the mobile app using some form of
callback mechanism.
Constraints. The tactic as presented requires (1) connectivity between the
mobile device and the surrogate for access to any data that is being staged, and
(2) connectivity between the surrogate and the enterprise cloud to receive data
as required.
Example. An example of how to apply the In-Bound Pre-Processing tactic
is the Edge Proxy system [ATAdL06] shown in Figure 2.8. The Edge Proxy
system uses a surrogate called an Edge Server to monitor changes in web pages
on behalf of aWeb Browser running on theMobile Device. The user marks areas
of interest on a web page (e.g., stock prices, temperature, news) and sends them
to an Edge Proxy running on the Edge Server via the Mobile Proxy. The Edge
Proxy saves the current state of the web page along with the areas of interest
in its Cache. The Edge Proxy then does high-frequency polling of the web page
on the Web Server and notifies the Mobile Device if it detects a change in the
areas of interest compared to the cached web page. Instead of sending separate
messages for the web page and its embedded objects, the Edge Proxy bundles
the web page with all its embedded objects in a single batch update message,
further reducing the amount of communication between the Mobile Device and
the Surrogate.
Dependencies. The In-Bound Pre-Processing tactic requires a Surrogate Pro-
visioning tactic (Section 2.1.3) that prepares the surrogate for data staging.

13



Figure 2.7: In-Bound Pre-Processing Tactic

Figure 2.8: Edge Proxy an Example of the In-Bound Pre-Processing Tactic

2.1.2.3 Out-Bound Pre-Processing

The Out-Bound Pre-Processing tactic can be found in the data staging systems
shown in Table 1.2 for which What to Offload - Data Operations is Out-Bound
Processing.
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Motivation. Data-intensive mobile apps are often used to collect data in the
field, where Internet connectivity might not be available to mobile devices or
might be costly. In addition, although the field-collected data is valuable, it
might be overwhelming for a device to transmit all data collected to the enter-
prise, especially if Internet connectivity is a scarce resource. In these cases, a
surrogate can pre-process – clean, filter, summarize, or merge – the data that is
received from the mobile devices that it serves such that the data that is sent on
to the enterprise cloud is ready for consumption and serves an immediate need.
Complete data from the mobile device and/or the surrogate can be uploaded to
the cloud when network connectivity is available.
Description. Figure 2.9 shows the main components of the Out-Bound Pre-
Processing tactic. This tactic requires aMobile Sensing App that uses a Commu-
nications Manager on the mobile device to buffer data to send to its counterpart
on the Surrogate. The Communications Manager can also batch data accord-
ing to user or application preferences to conserve the energy spent on turning
the radio on and off for communication. The Communications Manager on the
Surrogate receives the data and stores it in a local Cache. One or more Data
Processing Applications on the Surrogate can either subscribe to data coming
in from the Mobile Device, perform continuous processing and forwarding of
the data as it is coming in, or provide on-demand capabilities to other mobile
devices being served by the same surrogate or cloud applications.

Figure 2.9: Out-Bound Pre-Processing Tactic

Constraints. The tactic as presented requires (1) eventual connectivity be-
tween the mobile device and the surrogate to offload data captured in the field
and (2) eventual connectivity between the surrogate and the enterprise cloud to
offload data that is staged on the surrogate.
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Example. An example of how to apply to Out-Bound Processing tactic is
the Large-Scale Mobile Crowdsensing system [XSP+13]. Crowdsensing refers to
individuals using mobile devices with sensors that share information about an
event or task of interest such as environmental monitoring, public safety, traffic
monitoring, or collaborative searches. As shown in Figure 2.10, the Large-Scale
Mobile Crowdsensing system relies on a single Crowdsensing Participation App
to gather data from one or more sensors on the Mobile Device and create a Data
Sensing Stream that is sent to a Proxy VM on a surrogate called a Cloudlet. The
Proxy VM serves the role of both Communications Manager and Cache and is
essentially a proxy of the mobile device that handles all requests for sensor data
on behalf of the mobile device. A Cloudlet can run one or more Proxy VMs
that each corresponds to a mobile device that is participating in a crowdsensing
task. In addition, the Proxy VM can perform processing on the data sensing
stream to, for example, enforce privacy settings. One or more Crowdsensing
Application VMs that also run on the surrogate access the Proxy VM to obtain
the sensed data to process locally or to format and send the data to applications
running in the cloud on an Application Server.

Figure 2.10: Large-Scale Mobile Crowdsensing as an Example of the Out-Bound
Pre-Processing Tactic

Dependencies. The Out-Bound Pre-Processing tactic requires a Surrogate
Provisioning tactic (Section 2.1.3) that prepares the surrogate for data staging.

2.1.3 Surrogate Provisioning
To be able to use a surrogate for cyber-foraging, it has to be provisioned with
the offloaded computation and/or the computational elements that enable data
staging. A scenario for surrogate provisioning is as follows: a mobile device
needs to execute a computation-intensive task. Instead of executing the task
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locally, it locates a surrogate and sends it a request to execute the computation
on its behalf. The surrogate first checks if it already has the computation to
support the task. Because it does not, it sees if it can locate the computation
in a cloud repository. Because the surrogate is not able to locate the capability
in the cloud, the mobile device sends the computation to the surrogate for
installation. Once the surrogate installs and starts the computation it notifies
the mobile device that it is ready, executes the computation, and sends back
the results of the computation.

The Surrogate Provisioning tactics are a pre-requisite for Data Staging (Sec-
tion 2.1.2) and Computation Offload (Section 2.1.1) tactics. Surrogate Provi-
sioning tactics need to be matched with a Surrogate Discovery tactic (Section
2.1.4) that can enable the mobile device to locate and use the surrogate for
cyber-foraging.

2.1.3.1 Pre-Provisioned Surrogate

Many of the systems described in the primary studies assume that the of-
floaded computation and/or data staging elements are already installed (pre-
provisioned) on the surrogate at deployment time. The computation offload
systems shown in Table 1.1 that make this assumption are those for which
What to Offload -Payload is (1) Parameters but not Computation, Source Lo-
cation nor Setup Instructions, (2) Application State, (3) Device Context, or (4)
Continuous Data. It is also true of all the data staging systems shown in Table
1.2. However, for these systems, there is no detail of how the surrogates were
provisioned with the necessary offloaded computation and or data staging ele-
ments. This observation relates to one of the findings from the SLR that states
that most systems tend to focus on the algorithms and implementation details
for enabling cyber-foraging and not on system-level concerns such as ease of
distribution and installation that have to be considered when moving from ex-
perimental prototypes to operational systems. Indeed, a cyber-foraging system
could be implemented with a static, hard-coded connection between the mobile
device and the offloaded computation or data staging elements in the surrogate.
However, this static link between mobile device and surrogate does not enable
the flexibility that is implied by cyber-foraging as the opportunistic leverage of
resource-rich surrogates.
Motivation. Pre-provisioned surrogates have the advantage of shorter response
time to offload requests from mobile devices because the offloaded computation
or data staging elements already reside on the surrogate. In an operational
setting in which surrogates support multiple clients, a surrogate should have
minimal management capabilities that (1) help surrogate administrators to in-
stall capabilities (offloaded computation and data staging computing elements)
and appropriate execution containers, and (2) maintain a list of these capabili-
ties (similar to a service registry).
Description. Figure 2.11 shows the main components of the Pre-Provisioned
Surrogate tactic. This tactic requires a Surrogate Manager that acts as a man-
agement component for the Surrogate. The Surrogate Manager is accessed by
a system administrator from a Local User Interface running on the Surrogate
or a Remote User Interface that resides on an external Admin Client (e.g., lap-
top, desktop, mobile device). When a system administrator uses the Surrogate
Manager to install a new offload or data staging capability on the Surrogate,
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the capability it is stored in a Capabilities Repository such as a file system or
database. The Capabilities Repository contains the set of capabilities that are
either started when the Surrogate is started, or started on demand when the
Offload Server (from the Computation Offload tactic (Section 2.1.1)) or the
Data Staging Manager (from the Data Staging tactics (Section 2.1.2)) receive
a request from a mobile device. In the latter case, the Capability Metadata
contains metadata that enables to set up these capabilities on-demand, such
as resource requirements, installation scripts, and configuration data. Installed
capabilities are then registered in a Capability Registry that is used by Surrogate
Discovery (from the Surrogate Discovery tactics (Section 2.1.4)) for advertising
capabilities to mobile cyber-foraging clients.

Figure 2.11: Pre-Provisioned Surrogate Tactic

Examples. This tactic is not present in any of the systems, but could be
integrated into any of the cyber-foraging systems in the primary studies that
assumes that offloaded computation and/or data staging elements are already
available on the surrogate at runtime. What would vary between pre-provisioned
systems that implement this tactic is the form of the capabilities that are stored
in the repository and capability metadata. The form of the capabilities and their
metadata depends on the What to Offload - Granularity architecture decision.

• For systems that offload at the process level, such as CloneCloud [CM09]
shown in Figure 2.4 the capabilities take the form of a container to which
the process and its state can migrate. For CloneCloud this is an Applica-
tion VM.
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• For systems that offload at the Method, Function or Operation level the
capabilities take the form of the larger programming construct that these
are a part of (i.e., class, module or program). As an example, if the MAUI
system [Cue12] would implement this tactic the capabilities would take the
form of .NET components that are stored in the Capabilities Repository
and at runtime would be deployed inside a .NET CLR environment (i.e.,
execution container).

• For systems that offload at the Class, Module, Component, Task, Service,
Application, Program or Server level the capabilities take this exact form
because they are self contained. As an example, if the AIDE system
[MGB+02] implemented this tactic the capabilities would take the form
of Java classes that at runtime would be deployed inside a JVM.

In addition, something that would also vary across these systems is whether
the offloaded computation is started once and always running, as in the mHealth-
Mon system [AP13], or if it is started upon offload request as in the Grid-
Enhanced Mobile Devices system [Gua08]. In mHealthMon the services that
correspond to offloaded computation are running and waiting for requests from
mobile clients. Even though it is not explicitly stated in the study, starting up
the system would involve starting all the services. If mHealthMon implemented
this tactic, a startup process would start all the services in the Capabilities
Repository. In Grid-Enhanced Mobile Devices, upon an offload request an ob-
ject called a deputy object is created on the surrogate to manage all the mobile
device’s requests and then destroyed when the mobile device terminates the con-
nection. This latter approach also promotes scalability and elasticity, as shown
in the Just-In Time Containers tactic (Section 2.2.3.1).

2.1.3.2 Surrogate Provisioning from the Mobile Device

The Surrogate Provisioning from the Mobile Device tactic can be found in the
computation offload systems shown in Table 1.1 for which What to Offload -
Payload is Computation.
Motivation. In Pre-Provisioned Surrogates (Section 2.1.3.1) a mobile device
can only execute applications that already exist on the surrogate. Provisioning
the surrogate from the mobile device has the advantage of enabling the execu-
tion of a greater number of applications because surrogates are provisioned at
runtime. The mobile device sends the offloaded computation to the surrogate at
runtime. The surrogate installs the computation inside an execution container
and starts the application on behalf of the mobile device.
Description. Figure 2.12 shows the main elements of the Surrogate Provision-
ing from the Mobile Device tactic with numbers that indicate the sequence of
operations. In this tactic each Cyber-Foraging-Enabled Mobile App has one or
more files that correspond to Offloaded Code for Cyber-Foraging-Enabled Mobile
App, such as a class, module or application. The Cyber-Foraging-Enabled Mo-
bile App starts the offload process. The Offload Client sends the Offloaded Code
for Cyber-Foraging-Enabled Mobile App to the Offload Server on the Surro-
gate. The Offload Server installs the offloaded code in an execution Container
and notifies the mobile app that it is ready for execution. At this point the
Cyber-Foraging-Enabled Mobile App starts the execution of the offloaded code.

19



Figure 2.12: Surrogate Provisioning from the Mobile Device Tactic

Constraints. The tactic as presented requires a pre-established agreement
between mobile devices and surrogates on the format of the offloaded code (e.g.,
Java class, Python script, Windows application). In addition, depending on
the size of the offloaded code (i.e., payload), the tactic may require additional
components on the mobile device and surrogate to manage and provide reliable
communications during the transmission of the offloaded code.
Example. An example of how to apply the Surrogate Provisioning from the
Mobile Devices tactic is the VM-Based Cloudlets system [SBCD09] shown in
Figure 2.13. In this system, an Application Overlay is created for each Cyber-
Foraging Enabled Mobile App by starting a Base VM (a minimally configured
VM with a guest (OS) installed), installing the application in the Base VM,
and then suspending the VM. The binary difference is calculated between the
resulting VM image file and the Base VM, and saved as an Application Overlay.
At runtime the Application Overlay is sent by the KCM Client to the KCM
Server. The KCM Server performs VM Synthesis by taking the same Base VM
from which the Application Overlay was created and applying the overlay to it
in order to recreate the VM with the installed application.The resulting VM is
called a Launch VM and is started within a VM Manager (in this system it
is VirtualBox2). Once the Launch VM is started and ready, the KCM Client
is notified that the application is ready for execution. The user then interacts

2https://www.virtualbox.org/
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with the application via a VNC Client.3

Figure 2.13: VM-Based Cloudlets as an Example of the Surrogate Provisioning
from the Mobile Device Tactic

2.1.3.3 Surrogate Provisioning from the Cloud

The Surrogate Provisioning from the Cloud tactic can be found in the compu-
tation offload systems shown in Table 1.1 for which What to Offload - Payload
is Source Location, which are the Roam [CSW+04] and the Elastic HTML5
[ZJGK12] systems. For these two systems the payload is the URL of the lo-
cation of the offloaded computation. It can also be found in the Collective
Surrogates [Goy11] and MAPCloud [RVMV12] systems for which What to Of-
fload - Payload is Setup Instructions. In the first system the payload is a script
that obtains the offloaded computation from the cloud; in the second system it
is an application request that is modeled as a workflow of tasks to be located
in the cloud.

3VNC stands for Virtual Network Computing and is a protocol for remote access to graph-
ical user interfaces.
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Motivation. Provisioning surrogates from the mobile device has the advantage
of enabling the execution of a greater number of applications (Section 2.1.3.2)
compared to pre-provisioned surrogates (Section 2.1.3.1). However, the size of
the computation that is sent to the surrogate at runtime can be significant. In
the examples for the MAUI system [Cue12], the size of the .NET components
transmitted at runtime is between 0.2 MB and 13.8 MB. In the examples for
the VM-Based Cloudlets system [SBCD09], the size of an application overlay
is between 63 MB and 196 MB. An alternative is to send the location of the
computation in the form of a URL for the surrogate to download and install.
The payload in this case is almost insignificant but the time to provision may
be longer due to potentially higher and unpredictable latency between the cloud
and the surrogate. However, the mobile device is not consuming battery due
to high transmission costs. In addition, because the computation exists in a
defined place in the cloud it is easier to update because it does not have to be
sent to each mobile device after patches or upgrades.
Description. Figure 2.14 shows the main elements of the Surrogate Provision-
ing from the Cloud tactic with numbers that indicate the sequence of operations.
In this tactic the Cyber-Foraging-Enabled Mobile App contains the URL that in-
dicates the location from which the offloaded code has to be downloaded. The
Cyber-Foraging-Enabled Mobile App starts the offload process by sending the
URL to the Offload Client, which in turn sends it to the Offload Server on the
Surrogate. The Offload Server downloads the offload code from an Offload Code
Repository at the URL, installs it in an execution Container, and notifies the
mobile app that it is ready for execution. At this point the Cyber-Foraging-
Enabled Mobile App starts the execution of the Offloaded Code.
Constraints. The tactic as presented requires connectivity between the sur-
rogate and the cloud and potentially additional components on the surrogate
and cloud server to manage and provide reliable communications during the
transmission of the offloaded code. Also, the computation has to exist at the
indicated location. In addition, it requires a pre-established agreement between
surrogates and the cloud servers on the format of the offloaded code (e.g., Java
class, Python script, Windows application).
Example. An example of how to apply the Surrogate Provisioning from the
Cloud tactic is the Collective Surrogates system [Goy11]. As shown in Figure
2.15, at runtime once a Participating Node is assigned to an offload operation,
the Offload Client sends a shell script to a Daemon running on the Participating
Node which executes the script on behalf of the client. The script downloads the
application that corresponds to the offloaded code from an Application Repos-
itory on an Internet Server, installs the application and starts it. Once the
Application is started and ready, the Offload Client is notified that the applica-
tion is ready for execution. The user then interacts with the application via a
Client Interface.

2.1.4 Surrogate Discovery
In order to leverage cyber-foraging, mobile devices need to be able to locate
available surrogates on which to offload computation or stage data. A sce-
nario for surrogate discovery is follows: a mobile device needs to execute a
computation-intensive task and has already decided that it will offload the task
to a surrogate. The mobile device is able to locate all nearby surrogates and

22



Figure 2.14: Surrogate Provisioning from the Cloud

Figure 2.15: Collective Surrogates as an Example of the Surrogate Provisioning
from the Cloud Tactic
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selects the surrogate that is the best match for the offloaded task.
The Surrogate Discovery tactics are a pre-requisite for Data Staging (Section

2.1.2) and Computation Offload (Section 2.1.1) tactics. The surrogate discovery
protocol becomes the initial part of the offload process. Surrogate Discovery
tactics need to be matched with a Surrogate Provisioning tactic (Section 2.1.3)
that prepares the surrogate for cyber-foraging.

2.1.4.1 Local Surrogate Directory

The Local Surrogate Directory tactic can be found in six systems that maintain a
list of potential surrogates on which to offload computation or stage data: Roam
[CSW+04]. Spectra [FPS02], Cuckoo [KPKB12], SPADE [SVF08], Offloading
Toolkit and Service [YOC08], and Heterogeneous Auto-Offloading Framework
for Mobile Web Browsers [ZGHC09].
Motivation. For mobile devices to leverage nearby surrogates they need to
know where the surrogates are located; that is, they need to know their network
address (i.e., surrogate IP address or URL). A simple solution is for mobile
devices to maintain a list of potential surrogates with their network addresses
or URLs, in addition to any information that can help the mobile device to
select the best offload target in case more than one is available. The list can be
static, or updated based on network conditions or offload execution data. An
advantage of a local list is that it will potentially include only surrogates that
are trusted by the mobile device.
Description. The Local Surrogate Directory Tactic has two parts. One part
involves the Surrogate Directory UI which populates and maintains the Surro-
gate Directory. The other part involves the components that interact during
the offload process as shown in Figure 2.16 with numbers that indicate the
sequence of operations. At runtime, the Cyber-Foraging Mobile App calls the
Offload Client to start the offload process. The Offload Client obtains that list
of potential surrogates from the Surrogate Directory and pings each Surrogate
to see if it is available for offload. The Offload Server of each available Surro-
gate responds to the Offload Client with any Surrogate Metadata data required
by the discovery protocol, such as current load or available capabilities. Based
on this information and any network information available, the Offload Client
selects the best surrogate for offload and starts the actual offload operation with
the selected Surrogate. Optionally, the Offload Client may update the Surrogate
Directory based on the availability and performance of the selected surrogate.
Constraints. The tactic as presented places the responsibility of surrogate
identification on the mobile device user. If surrogate metadata changes or new
surrogates are made available, a cyber-foraging system will not have an auto-
mated way of updating the surrogate directory.
Examples. The systems that implement the Local Surrogate Directory tactic
maintain a list of potential surrogates for offload. What varies between systems
is how the list is populated and whether or not the list is updated based on
network conditions or offload execution data.

• Roam [CSW+04] maintains a list of servers that can accept offloadable
components, along with their characteristics. These characteristics are
used at runtime to determine an appropriate offload target.
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Figure 2.16: Local Surrogate Directory

• Spectra [FPS02] keeps a list of surrogates that are willing to host compu-
tation in a configuration file. As the system executes, the status of each
surrogate is updated (e.g., availability, CPU load, file cache state).

• Cuckoo [KPKB12] has a component called a Resource Manager that main-
tains a list of surrogates. If the surrogate has a visual display, upon loading
it shows a QR code4 that is read by the mobile device and then added to
the list of resources (surrogates) it can use for offload. If it does not have
a visual display, the resource description file for the surrogate has to be
copied to the mobile device so that it can be added to the list.

• SPADE [SVF08] users have to associate remote computers called Cycle
Providers to specific tasks that are part of a job. At runtime, the mobile
device uses this list to locate cycle providers based on each of the tasks that
it needs to execute. An interesting aspect of this system is that surrogates
have functionality to discover other surrogates on the same network and
can provide this list back to the mobile device. However, the mobile device
does not have capabilities to discover surrogates on its own. Details of this
system are shown as an example in Figure 2.17. A single User Interface
acts as the UI for maintaining the Cycle Provider List and for starting an

4A QR code, or Quick Response Code, is a machine-readable code consisting of an array of
black and white squares that typically contains URLs or other information that can be read
by the camera on a smartphone (http://www.qrcode.com/en/).
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offload job. The Job Manager selects a Cycle Provider for each task and
starts the offload for each in a separate process so that tasks can execute
in parallel.

• Offloading Toolkit and Service [YOC08] maintains a list of surrogates
(service providers) that are queried at runtime for desired capabilities.
Each surrogate maintains its own service registry.

• Heterogeneous Auto-Offloading Framework for Mobile Web Browsers [ZGHC09]
queries all potential surrogates on its list for matching required capabili-
ties. Each matching surrogate sends back quality information (e.g., server
capability and network bandwidth) and the client decides whether to of-
fload the computation to a matching surrogate or execute locally.

Figure 2.17: SPADE as an Example of the Local Surrogate Directory Tactic

2.1.4.2 Cloud Surrogate Directory

The Cloud Surrogate Directory tactic can be found in 12 systems in which the
mobile device contacts a cloud server that maintains a list of potential surro-
gates on which to offload computation or stage data: Mobile Agents [AB13],
HPC-as-a-Service [Dug11], Collective Surrogates [Goy11], Grid-Enhanced Mo-
bile Devices [Gua08], ThinAV [JBA12], MCo [Lee12], Resource Furnishing Sys-
tem [OSP07], Cloud Personal Assistant (CPA) [OG13], MAPCloud [RVMV12],
Large-Scale Mobile Crowdsensing [XSP+13], Mobile Data Stream Application
Framework [YCY+13], and Weblets [ZKJG11].
Motivation. In the Local Surrogate Directory tactic (Section 2.1.4.1) the mo-
bile device is responsible for populating and maintaining the list of surrogates
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on which it can offload computation. This is a rather static solution because
as more surrogates become available in the environment there is no automated
way of discovering these new surrogates or updating their metadata as changes
occur. Maintaining the surrogate directory in the cloud has the advantage of a
centralized location for surrogate registration. All surrogate metadata is pop-
ulated and updated in this central repository. All the mobile device needs to
know is the network address of the cloud server that manages the surrogate
directory. In addition, optimal surrogate selection algorithms can run in the
cloud, which is an additional offload operation that can lead to battery savings
on the mobile device. Regarding trust, in this tactic the mobile device only
needs to trust the cloud surrogate directory server assuming that the directory
only contains trusted surrogates (Section 2.2.4.1).
Description. In the Cloud Surrogate Directory tactic the Surrogate Directory
is located in a Cloud Server. Figure 2.18 shows the main elements of the tactic
with numbers that indicate the sequence of operations. The Cyber-Foraging-
Enabled Mobile App starts the offload process by querying the Surrogate Di-
rectory via the Surrogate Directory Interface. This is the same interface that
would be used by any program that populates and maintains the Surrogate
Directory or by Surrogates that provide live data. The Surrogate Directory In-
terface selects the optimal surrogate from the directory based on data such as
mobile device characteristics, type of offload request, surrogate availability, sur-
rogate load, or any other data that is available in the directory or was provided
by the mobile device as query parameters. The Surrogate Directory Interface
then sends the Offload Client the data for the selected surrogate which includes
the surrogate address. The Offload Client contacts the Offload Server of the
selected Surrogate to continue the offload process.
Constraints. The tactic as presented requires the mobile device to know the
address of the cloud server that holds the surrogate directory. The cloud server
can become a single-point-of-failure if it becomes unavailable to mobile devices.
In the cases that the cloud server acts as an intermediary it also becomes a
potential bottleneck. Cloud servers that perform service discovery instead of
simply maintaining a surrogate directory suffer from the traditional challenges
of service discovery in service-oriented computing [PTDL08].
Examples. The systems that implement the Cloud Surrogate Directory tactic
maintain a list of potential surrogates on a centralized cloud server. What varies
between systems is (1) the parameters that are used for surrogate selection, (2)
whether the surrogate selection algorithm runs on the cloud server or the mobile
device, (3) whether the surrogate directory maintains lists of surrogates or a list
of services that are hosted on each surrogate, and (4) whether the cloud server
returns a surrogate address or forwards the offload request to the surrogate
therefore acting as an intermediary.

• Mobile Agents [AB13]: As shown in Figure 2.19, the Execution Manager
on the mobile device contacts a Cloud Directory Service to get a list of
available surrogates and selects the one with the highest communication
link speed with the mobile device as well as the highest computing power.

• HPC-as-a-Service [Dug11]: The mobile device queries a centralized repos-
itory of HPC (high-performance computing) services to locate a service
with given characteristics.
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Figure 2.18: Cloud Surrogate Directory

• Collective Surrogates [Goy11]: The mobile device contacts a Collective
Manager that manages a set of surrogates (participating nodes) and uses
profile and historic information to determine the specific surrogate on
which the computation will be offloaded.

• Grid-Enhanced Mobile Devices [Gua08]: Mobile devices contact the Grid
Gateway which locates Grid services available on surrogates and then for-
wards the offload request, acting as as intermediary.

• ThinAV [JBA12]: The cloud server (ThinAV Server) submits received
offload requests to surrogates and returns results to mobile clients when
available. The ThinAV Server acts as an intermediary.

• MCo [Lee12]: Upon receipt of a computation offload request from a mobile
device, the Master Node (Cloud Server) searches its list of Worker Nodes
(Surrogates) on which computation can be offloaded. Once a Worker Node
is selected the offload request is forwarded. The Master Node acts as an
intermediary.

• Resource Furnishing System [OSP07]: A Dispatching Surrogate maintains
the software list of known surrogates (application servers), and selects an
application server based on contents of the request packet and application
server load.
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• Cloud Personal Assistant (CPA) [OG13]: CPA receives a set of tasks
to execute from a mobile device, discovers the necessary cloud services,
invokes them and then delivers the results back to the mobile device, acting
as an intermediary.

• MAPCloud [RVMV12]: For each offload request (modeled as a workflow of
tasks) from a mobile device, the Broker consults the registry of available
surrogates and services and returns the addresses of services that can
execute each task.

• Large-Scale Mobile Crowdsensing [XSP+13]: A cloud server (Application
Server) consults a global registry for a list of suirrogates (Cloudlets) that
are located in a certain area.

• Mobile Data Stream Application Framework [YCY+13]: Mobile devices
send offload requests to a cloud server (Resource Manager) which then
assigns a surrogate (Application Master) to handle the request.

• Weblets [ZKJG11]: A Cloud Elasticity Service (CES) allocates surrogates
to offload requests based on usage information (e.g., compute power, band-
width and storage).

Variation: Intermediary Cloud Surrogate Directory. The tactic as de-
scribed returns the address of the selected surrogate to the mobile device, which
then contacts the surrogate directly. In Grid-Enhanced Mobile Devices [Gua08],
ThinAV [JBA12], MCo [Lee12], Cloud Personal Assistant (CPA) [OG13], and
Large-Scale Mobile Crowdsensing [XSP+13] the Cloud Server does not return
the surrogate address to the mobile device, but rather forwards the offload re-
quest to the selected Surrogate and then returns the results to the mobile device.
In this variation the Cloud Server acts as an intermediary between the Mobile
Device and the Surrogate.

2.1.4.3 Surrogate Broadcast

The Surrogate Broadcast tactic can be found in 5 systems in which surrogates
broadcast or advertise their presence to mobile devices: Scavenger [Kri10], Real
Options Analysis [EML11], Application Virtualization on Cloudlets [ML13],
VM-Based Cloudlets [SBCD09], and Slingshot [SF05].
Motivation. The Local Surrogate Directory (Section 2.1.4.1) and Cloud Surro-
gate Directory (Section 2.1.4.2) tactics require a directory of potential surrogates
to be maintained either on the mobile device or on a cloud server, respectively.
Having surrogates broadcast their availability and metadata to mobile devices
removes the burden of having to maintain surrogate directories up to date. It
creates a much more dynamic environment in which mobile devices can dis-
cover nearby surrogates without needing to know their addresses in advance
or retrieving the addresses from a cloud server that could potentially not be
available when needed.
Description. As shown in Figure 2.20, in the Surrogate Broadcast tactic all
Surrogates broadcast selected metadata using a Broadcast Component. The
numbers in the figure indicate the sequence of operations, starting with the
broadcast operation as 0 to mean that it occurs in advance of the offload re-
quest. The Cyber-Foraging-Enabled Mobile App initiates the offload request.
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Figure 2.19: Mobile Agents as an Example of the Cloud Surrogate Directory
Tactic

The Offload Client finds available surrogates by analyzing broadcast informa-
tion which will include at least the surrogate address. The Offload Client then
selects the optimal surrogate and starts the offload process by contacting the Of-
fload Server of the selected surrogate. In addition to basic surrogate metadata
such as surrogate address, the surrogate can also broadcast data retrieved from
a Capability Metadata repository as described in the Pre-Provisioning tactic
(Section 2.1.3.1).
Constraints. The tactic as described requires an agreement between mobile de-
vices and surrogates on the broadcast protocol. Regarding trust, mobile devices
will require additional components to determine whether broadcast information
is coming from a valid, trusted surrogate (Section 2.2.4.1).
Examples. The surrogates in the systems that implement the Surrogate Broad-
cast tactic broadcast their availability and selected metadata to mobile devices
for discovery. What varies between systems is the broadcast mechanism and
the information or metadata that they broadcast.

• Scavenger [Kri10]: Surrogates periodically broadcast their service descrip-
tions using UDP broadcast.5 As shown in Figure 2.21, a Presence Daemon

5UDP stands for User Datagram Protocol and is one of the core protocols of the IP suite.
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Figure 2.20: Surrogate Broadcast

running on each Surrogate periodically packs all its service descriptions
into a single UDP packet and broadcasts it onto the local subnet. An
Application running on a mobile device uses the Scavenger Library to find
available surrogates, select the optimal surrogate on which to offload, and
finally contact the Scavenger Front-End of the selected surrogate.

• Real Options Analysis [EML11]: As surrogates come online, they broad-
cast their availability and address over a broadcast channel.

• Application Virtualization on Cloudlets [ML13] and VM-Based Cloudlets
[SBCD09]: Surrogate information that includes surrogate address is broad-
cast using an implementaton of Zeroconf.6

• Slingshot [SF05]: This system uses UPnP7 to discover new surrogates in
its surrounding network environment.

UDP broadcast is the broadcasting of UDP packets to an entire subnet.
6Zerconf stands for Zero Configuration Networking and is a set technologies that enables

automated network configuration of devices and services without the use of central services
such as DNS or DHCP (www.zeroconf.org).

7UPnP stands for Universal Plug and Play and is a set of networking protocols that enable
networked devices to seamlessly discover each other’s presence on the network and establish
functional network services (www.upnp.org).
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Figure 2.21: Scavenger as an Example of the Surrogate Broadcast Tactic

2.2 Non-Functional Architectural Tactics for Cyber-
Foraging

2.2.1 Resource Optimization
A scenario for Runtime Optimization is the following: A mobile app is enabled
for cyber-foraging. Upon request for execution of computation that has been
targeted for offload, the mobile app first checks if it is better from a performance
and latency perspective to execute the computation locally or remotely. Given
that the the network conditions between the mobile device and the surrogate
are not ideal, the computation is executed locally instead of offloaded to the
surrogate.

The Runtime Optimization tactics need to be combined with the Computa-
tion Offload tactic (Section 2.1.1) to enable the computation offload process.

2.2.1.1 Runtime Partitioning

The Runtime Partitioning tactic can be found in the computation offload sys-
tems shown in Table 1.1 for which When to Offload is Runtime Decision.
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Motivation. In general, offloading is beneficial when large amounts of com-
putation are needed with relatively small amounts of communication [KL10].
Runtime Partitioning enables mobile devices to make runtime decisions regard-
ing the benefits of offloading. Computation is offloaded only if remote execution
is better than local execution according to a defined optimization function (often
called a utility function). Local execution cost typically takes into consideration
the energy consumed by local execution as well as the local execution time. Re-
mote execution cost typically considers the energy consumed by communication
based on payload size and network conditions, the communication time based
payload size and network conditions, and remote execution time. If local execu-
tion cost is lower than remote execution cost then the computation is executed
locally; if not, it is executed remotely (i.e., offloaded).
Description. Figure 2.22 shows the main components of the Runtime Parti-
tioning tactic with numbers to indicate the sequence of operations. In addition
to the components required by the Computation Offload tactic, the Runtime
Partitioning tactic requires an Offload Decision Engine component that com-
pares predicted local execution cost against predicted remote execution cost.
The Offload Decision Engine uses App Metadata such as required compute cy-
cles, payload size based on input and output parameters, and required energy
for execution and communication. Even though the App Metadata is depicted
in Figure 2.22 as an external file, this data can also reside within the code as
annotations. Upon a request for execution of a computational element that is
marked for offload, the Cyber-Foraging Enabled Mobile App invokes the Offload
Decision Engine, passing it the necessary metadata for the Offloadable Element.
In addition, although optional, the Offload Decision Engine can also make use
of Environment Monitors to obtain runtime environment data such as network
conditions or load of the mobile device and surrogate if these are required by
the defined optimization function. It can also make use of Cost Models (e.g.,
an energy model for the mobile device) as input to the optimization function.
Based on the results of the optimization function, the Cyber-Foraging-Enabled
Mobile App invokes the local copy of the Offloadable Element or invokes the
Offload Client in order to invoke the remote copy of the Offloadable Element
running on the Surrogate.
Constraints.The Runtime Partitioning tactic assumes that there is equivalent
code for the offloaded computation on both the mobile device and the surrogate.
This aspect limits the direct reusability of legacy code because a version would
have to be written for the mobile device or surrogate depending on the original
platform of the legacy code. In addition, the optimization function should not be
a computation-intensive task because it would then cancel the benefits of cyber-
foraging. Finally, data collection of app metadata to be used as optimization
function parameters has to be gathered in advance using techniques such as
static profiling.
Example. An example of how to apply the Runtime Partitioning tactic is
the MACS system [KK12], as shown in Figure 2.23. In MACS, Cyber-Foraging
Enabled Mobile Apps contain offloadable elements defined as Services. Each ser-
vice has Service Metadata related to memory size, code size, and input/output
parameter size. When the mobile app is going to execute a service, the Perfor-
mance and Context Monitor is invoked to determine the feasibility of remote
execution as well as to compare the cost of local execution of the service against
the cost of remote execution. The Performance and Context Monitor uses aMo-
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Figure 2.22: Runtime Partitioning Tactic

bile Device Monitor implemented as calls to the Android API to obtain available
memory information, CPU load and remaining battery. It also uses a Network
Monitor to obtain connectivity and bandwidth information. In addition, based
on a pre-built Energy Model it calculates the energy cost of local vs remote
execution using the service metadata. If the decision is to offload, the Offload
Manager and Remote Execution Manager coordinate to set up the offloaded
service for remote execution.
Dependencies. The Runtime Partitioning tactic requires the Computation
Offload tactic (Section 2.1.1) as the infrastructure for computation offload.
Variation: User-Guided Runtime Partitioning. The tactic as described
assumes a static optimization function. However, in some systems what to op-
timize is determined based on user preferences or input. In the PowerSense
system [MCF+11] the user can select a Time Saver option to minimize pro-
cessing time or an Energy Saver option to minimize energy consumption. The
ThinkAir system [KAH+12] offers four optimization options (profiles) to users:
execution time; energy consumption; execution time and energy consumption;
execution time, energy consumption and cost of cloud services. These systems
have a user interface on the mobile device to set these preferences.

2.2.1.2 Runtime Profiling

The Runtime Profiling tactic can be found in nine systems: MAUI [Cue12], Real
Options Analysis[EML11], Single-Server Offloading [Ima12], ThinkAir [KAH+12],
AMCO [KT13], SmartVC [PXJZ13], Odessa [RSM+11], IC-Cloud [SPN+13],
and Mobile Data Stream Application Framework [YCY+13].

34



Figure 2.23: MACS as an Example of the Runtime Partitioning Tactic

Motivation. Systems that implement the Runtime Partitioning tactic (Section
2.2.1.1) require developer input or static profiling to obtain the values or mod-
els that are used in the calculation of the optimization function that determines
whether code should run locally or remotely. However, models tend to be inac-
curate because (1) applications are not deterministic; (2) smartphones scale the
CPU’s voltage dynamically to save energy (i.e., dynamic voltage scaling); (3)
energy models highly depend on hardware configuration, usage, and even the
battery model of a mobile device; and (4) network quality is highly variable and
often unpredictable [DZ11]. To account for this variability and take into consid-
eration current conditions, once the offload operation ends, or periodically, the
system updates the profiling data and models that are used by the optimization
functions.
Description. Figure 2.24 shows the main components of the Runtime Profiling
tactic. The difference between the Runtime Profiling tactic and the Runtime
Partitioning tactic (Section 2.2.1.1) is the data that is used in the offload decision
and what happens after the offloading process ends. The Cyber-Foraging En-
abled Mobile App invokes the Offload Decision Engine, passing it the necessary
metadata for the Offloadable Element. In addition to runtime data obtained
from Environment Monitors and Cost Models, the Offload Decision Engine uses
Historical Execution Data as input to the optimization function. Large dif-
ferences between estimated and historic cost data might trigger the Offload
Decision Engine to adjust the Cost Models. Based on the results of the op-
timization function, the Cyber-Foraging-Enabled Mobile App invokes the local
copy of the Offloadable Element or invokes the Offload Client in order to invoke
the remote copy of the Offloadable Element running on the Surrogate. After the
offload process is completed, the Offload Client saves current execution data
for the offloadable element such as timestamp, input parameters, energy con-
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sumption, network quality, and execution time in the Historical Execution Data
repository. In addition, although optional, the Environment Monitors may store
environment data periodically in the Historical Execution Data repository.

Figure 2.24: Runtime Profiling Tactic

Constraints. As in the Runtime Partitioning tactic (Section 2.2.1.1), the Run-
time Profiling tactic assumes that there is equivalent code for the offloaded
computation on both the mobile device and the surrogate. In addition, the cost
of profiling is not negligible and can impact overall application performance
[Cue12]. System designers need to consider the type and frequency of data to
capture at runtime.
Examples. The systems that implement the Runtime Profiling tactic update
the data that is used by the optimization function based on current execution
data and environmental conditions. What varies between systems is the type of
data that is captured and and the frequency of data capture.

• MAUI [Cue12]: As shown in Figure 2.25, the Solver+Profiler uses data
from the annotated method (inputs, outputs and CPU cycles), the Device
Energy Model, network data obtained via a Network Monitor, and Past
Program Execution and Network Data to compute an energy-efficient pro-
gram partition. Once an offloaded method terminates, the Client Proxy
updates the Past Program Execution and Network Data to better predict
whether future invocations of the method should be offloaded.

• Real Options Analysis[EML11]: The system maintains a list of accessible
servers and estimates the network delay to each of them using the default
routing. Once offload completes, the network traffic model is updated.
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• Single-Server Offloading [Ima12]: Remote execution time is calculated for
the first execution as communication time plus remote computation time.
The latter is sent back from the surrogate as part of the results. From the
second execution on, the model predicts local and remote execution time
and offloads only if remote execution time is less than local execution time.
The system updates the execution time parameters from actual computa-
tion results only if the difference between predicted and actual execution
times (local and remote) is greater than an established threshold.

• ThinkAir [KAH+12]: When a method is encountered for the first time,the
decision to offload is based only on environmental parameters such as net-
work quality. From that point on, the profilers start collecting execution
and energy consumption data for that method. If the method is invoked
again, the decision to offload is based on the method’s past execution times
and energy consumed.

• AMCO [KT13]: Based on a feedback-loop mechanism, energy consump-
tion data is updated after the execution of code portions marked as "energy
hotspots" and used in the calculation of future energy consumption which
drives offload decisions.

• SmartVC [PXJZ13]: The system records the execution time and power
consumption for each method as historical data to better inform future
offloading decisions.

• Odessa [RSM+11]: The system’s decision engine uses the recent history
of network measurements to determine if offloading or increasing the level
of parallelism will improve performance.

• IC-Cloud [SPN+13]: The system uses signal strength and historical infor-
mation of network states to obtain a coarse-grained estimation of network
access quality that influences the offload decision.

• Mobile Data Stream Application Framework [YCY+13]: The profiler on
the mobile device measures the device’s characteristics at startup and con-
tinuously monitors its CPU workload and wireless network bandwidth. If
any of the parameters varies by a value exceeding an established threshold,
a new partitioning is generated for the application.

Dependencies. The Runtime Profiling tactic requires the Runtime Partition-
ing tactic (Section 2.2.1.1) to enable the system to make a runtime decision on
whether or not to offload computation. It also requires the Computation Offload
tactic (Section 2.1.1) to establish the infrastructure for computation offload.

2.2.1.3 Resource-Adapted Computation

The Resource-Adapted Computation tactic can be found in the Cuckoo system
[KPKB12]. The system has elements that enable it to use different versions of
offloadable elements to match the resource characteristics of mobile devices and
surrogates, depending on whether code executes locally or remotely.
Motivation. In the Runtime Partitioning tactic (Section 2.2.1.1) a decision
is made at runtime to execute code locally or remotely depending on an opti-
mization function. In this tactic the local and remote code are identical. Even
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Figure 2.25: MAUI as an Example of the Runtime Profiling Tactic

though this makes development and versioning easier, computation ends up be-
ing limited to what can execute on the mobile device, which will always lag
behind static elements such as surrogates in terms of compute resources (power,
CPU, memory, storage) [Sat01]. Resource-Adapted Computation enables cyber-
foraging systems to fully take advantage of the computing power of surrogates
by adapting the computation to the resource on which it will be executing. In
an image processing scenario, the object recognition algorithm that runs on the
surrogate can be much more computation-intensive than the one that runs on
the mobile device and can therefore deliver a much more precise result.
Description. Figure 2.26 shows a simplified representation of the Runtime
Partitioning tactic (Section 2.2.1.1) with additional elements that describe the
Resource-Adapted Computation tactic. At runtime, the Offload Decision En-
gine calculates the optimization function for the Offloadable Element. If the
decision is to execute locally, the Cyber-Foraging Enabled Mobile App executes
the Offloadable Element (Mobile Version) that is adapted to the resource char-
acteristics of the mobile device. However, if the decision is to execute remotely,
the Offloadable Element (Surrogate Version) is executed to take advantage the
more powerful resources of the Surrogate.
Constraints. The Resource-Adapted Computation tactic requires developing,
profiling and maintaining different versions of offloadable elements.
Example. Cuckoo [KPKB12] is an example of a system that implements the
Resource-Adapted Computation tactic. The Cuckoo Framework generates an
implementation of the same interface for a local and a remote service. Initially,
the remote implementation will contain dummy method implementations, which
the developer has to replace with real method implementations that can be
executed at the remote location. The real methods can be identical to the
local service implementation, but may also be completely different, because the
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Figure 2.26: Resource-Adapted Computation

remote implementation can run a different algorithm, use a different library, or
take advantage of parallelization on the more powerful surrogate. Figure 2.27
shows the Cuckoo system at runtime with numbers to indicate the sequence of
operations. The Cuckoo Framework intercepts all service calls. It then uses the
Cuckoo Resource Manager to decide whether to execute the local or the remote
implementation of the service. In the current implementation it will execute
the remote implementation if a surrogate is available (details of how it locates
surrogates are in Section 2.1.4.1). If a surrogate (Cuckoo Server) is not available,
the Local Service Implementation is executed. If a surrogate is available, it uses
the Ibis Middleware to invoke the Remote Service Implementation.

Dependencies.The Resource-Adapted Computation tactic requires the Run-
time Partitioning tactic (Section 2.2.1.1) to enable the system to make a run-
time decision on whether or not to offload computation. It also requires the
Computation Offload tactic (Section 2.1.1) to establish the infrastructure for
computation offload.

Variation: Resource-Adapted Input. A variation of this tactic is for the
Offloadable Element (Mobile Version) and the Offloadable Element (Surrogate
Version) to be identical, but what varies is the input parameters. The enabler
is that different input parameters will lead to different resource consumption.
PowerSense [MCF+11] is an image processing system for dengue detection that
implements this variation of the tactic. PowerSense uses the same algorithm
(implementation) locally and remotely for image processing, but uses images of
lower resolution if processed locally and higher resolution images if processed
remotely because processing these higher quality images requires greater com-
puting power.

39



Figure 2.27: Cuckoo as an Example of the Resource-Adapted Computation
Tactic

2.2.2 Fault Tolerance
A scenario for Fault Tolerance is the following: A mobile app is enabled for
cyber-foraging and is leveraging a surrogate for computation offload. During
the execution of the remote computation the mobile device loses connectivity
to the surrogate. The mobile device detects the situation and executes the local
copy of the computation instead with minimal effect on user experience.

The Fault Tolerance tactics need to be combined with a Surrogate Provi-
sioning tactic (Section 2.1.3) to prepare the surrogate for computation offload or
data staging, and a Computation Offload tactic (Section 2.1.1) or Data Staging
tactic (Section 2.1.2) to enable the computation offload or data staging process.

2.2.2.1 Local Fallback

The Local Fallback tactic can be found in the MAUI [Cue12] and ThinkAir
[KAH+12] systems. These systems have elements that enable them to use the
local copy of the offloadable computation in case the connectivity to the surro-
gate is lost.
Motivation. Due to movement of a mobile device to an area with no connec-
tivity to the surrogate, problems with network quality, or service disruption, the
mobile device may lose connectivity to the surrogate during the computation
offload or data staging process. The Local Fallback tactic enables the cyber-
foraging enabled mobile app to detect loss of connectivity and revert to local
execution of the offloaded element.
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Description. Figure 2.28 is an extension of the Computation Offload tactic
(Section 2.1.1) marked with numbers that indicate the sequence of operations
that trigger the local fallback. The Cyber-Foraging Enabled Mobile App starts
the computation offload process by contacting the Offload Client which in turn
contacts the Offload Server that sets up the Offloaded Code on the Surrogate.
Upon completion of the setup process the Cyber-Foraging Enabled Mobile App
starts execution of the Offloaded Code on the Surrogate. During execution the
Cyber-Foraging Enabled Mobile App detects a timeout in the communication
with the Surrogate (or a network monitor detects loss of connectivity). At this
point the Cyber-Foraging Enabled Mobile App executes the local version of the
offloaded code.

Figure 2.28: Local Fallback

Constraints. The Local Fallback tactic assumes that there is equivalent code
for the offloaded computation on both the mobile device and the surrogate.
Because disconnection may happen at any point in the offload process, this tactic
is best fit for stateless request-response operations that can be restarted on the
mobile device if the operation fails. For stateful operations, program state has to
be synchronized between the local and remote versions of the computation. In
cases of data staging, results would need to be cached locally until connectivity
is available and would have to use local data that can potentially be out-of-date.
For systems that implement the Just-In-Time Containers tactic (Section 2.2.3.1)
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with the Local Fall back tactic, these systems would require a component or a
periodic clean-up process that destroys containers that are not being used in
order to reduce the load on the surrogate.
Examples. The following two examples illustrate the Local Fallback tactic:

• MAUI [Cue12]: MAUI detects failures using a simple timeout feature that
returns control back to the mobile device. If a disconnect occurs, MAUI
resumes running the method on the local smartphone, After every offload
operation, MAUI returns program state as part of the results, which is
applied to the local computation so that state is synchronized between
the local and remote computation. Figure 2.29 is based on Figure 2.25
to reflect what occurs in the MAUI system after the remote execution
decision has been made. The App starts the offload process by invoking
the Client Proxy which invokes the Server Proxy that invokes the remote
method. When the Client Proxy detects a timeout, it invokes the local
method.

• ThinkAir [KAH+12]: If the connection fails for any reason during remote
execution, the framework falls back to local execution, discarding any data
collected by the profiler. There is no need to synchronize state because
an offload request includes the computation itself along with its state and
parameters.

Figure 2.29: MAUI as an Example of the Local Fallback Tactic

Dependencies. The Local Fallback tactic requires a Surrogate Provisioning
tactic (Section 2.1.3) to prepare the surrogate for computation offload or data
staging, and a Computation Offload tactic (Section 2.1.1) or Data Staging tactic
(Section 2.1.2) to enable the actual computation offload or data staging process.
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2.2.2.2 Opportunistic Mobile-Surrogate Data Synchronization

The Opportunistic Mobile-Surrogate Data Synchronization tactic for fault tol-
erance is not present in any of the cyber-foraging systems in the primary studies.
However, elements present in the Collaborative Applications [CH11] and Virtual
Phone [HSL11] systems could be used in a system that implements the tactic.
Motivation. Data-reliant cyber-foraging systems, as their name indicates, rely
on stored data to fulfill their operations. As in the Local Fallback tactic (Sec-
tion 2.2.2.1), the mobile device may lose connectivity to the surrogate during
the computation offload or data staging process. The Opportunistic Mobile-
Surrogate Data Synchronization tactic keeps data synchronized during periods
of connection such that the system can continue operating in periods of discon-
nection.
Description. Figure 2.30 shows the main elements of the tactic. The data
synchronization process can be triggered by the Cyber-Foraging Enabled Mo-
bile App right before computation offload by synchronously invoking the Data
Synchronization Client that ensures that App Data is synchronized. It can
also be started by the Data Synchronization Client asynchronously according
to pre-defined Data Synchronization Policies that determine an optimal time
for synchronization such as periodic synchronization, optimal bandwidth, or
detection of re-connection.

Figure 2.30: Opportunistic Mobile-Surrogate Data Synchronization
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Constraints. Systems that implement this tactic need to be aware of the
energy consumption on the mobile device for keeping data synchronized. Also,
while disconnected, it is possible that data may not be up-to-date, which may
lead to incorrect results for applications that operate on time-sensitive data.
Finally, like in any distributed data system, conflict resolution between systems
that update data simultaneously is challenging.
Examples. As mentioned earlier, there are no systems in the primary studies
that implement the Opportunistic Mobile-Surrogate Data Synchronization tac-
tic for fault tolerance as described, but the principle of using distributed storage
is the same: to opportunistically keep data/state synchronized without placing
the responsibility on the actual applications. The Collaborative Applications
[CH11] and Virtual Phone [HSL11] are computation offload systems that use
FUSE8 for state synchronization between the mobile device and the surrogate
to guarantee fidelity of results, meaning that the local and remote computation
produce identical results because they are operating on the same state.
Dependencies. The Opportunistic Mobile-Surrogate Data Synchronization
tactic requires a Surrogate Provisioning tactic (Section 2.1.3) to prepare the
surrogate for computation offload or data staging, and a Computation Offload
tactic (Section 2.1.1) or Data Staging tactic (Section 2.1.2) to enable the com-
putation offload or data staging process.
Variation: Opportunistic Surrogate-Cloud Data Synchronization. The
principles of the Opportunistic Mobile-Surrogate Data Synchronization tactic
can also be applied to handle disconnection between the surrogate and the cloud,
especially for data staging systems. Opportunistic Surrogate-Cloud Data Syn-
chronization enables a system to continue operating in the event of disconnection
between the surrogate and the cloud and to synchronize data when reconnec-
tion occurs. To support this tactic, the Data Synchronization Client runs on the
Surrogate and the Data Synchronization Server runs in the cloud. The Trusted
and Unmanaged Data Staging Surrogates [FSTS03] is a data staging system
that implements this tactic. It uses a distributed filesystem based on Coda9

between the surrogate and the cloud that supports disconnected operations to
maintain data opportunistically synchronized such that it is available on the
surrogate when needed. In Figure 2.6 the Staging Server includes a Coda Client
and the File Server includes a Coda Server.

2.2.2.3 Cached Results

The Cached Results tactic can be found in the Mobile Agents [AB13], 3DMA
[FMD05], Grid-Enhanced Mobile Devices [Gua08], CPA [OG13], and Sonora
[YQC+12] systems. These systems contain elements that enable them to cache
results on the surrogate that can be delivered to, or retrieved by a mobile device
after a disconnection.
Motivation. Offload requests from mobile devices are not always as simple as
request-response interactions. Some requests may take a long time to execute
or may rely on data that has been gathered and maintained over time. In
the case of disconnection between a mobile device and a surrogate during an

8FUSE stands for Filesystem in Userspace; a mechanism that enables a user to create a
filesystem without editing kernel code

9Coda is a an advanced networked filesystem that supports disconnected operations. More
information is available at http://www.coda.cs.cmu.edu/
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offload operation, restarting the offload request or losing data is not desired.
The Cached Results tactic enables a system to cache results and state on a
surrogate until the mobile device is able to reconnect.
Description. Figure 2.31 shows the main elements of the Cached Results tac-
tic with numbers that indicate the sequence of operations. Steps 1 through 4
describe the basic computation offload process. Starting at Step 5, the Offloaded
Code on the Surrogate executes the offloaded operation and tries to send the re-
sults back to the Cyber-Foraging Enabled Mobile App. However, it detects that
the mobile device is disconnected and therefore saves the results in the Results
Cache along with information that associates the results with a particular mobile
client/user. When the Mobile Client reconnects to the Offloaded Code on the
Surrogate, the Offloaded Code retrieves the results from the Results Cache and
sends them back to the Cyber-Foraging Enabled Mobile App. Detecting discon-
nection could be implemented using assured delivery mechanisms that require
receipt acknowledgment, or an external component that detects when a mobile
device has been disconnected. In systems that always go through the Offload
Client and the Offload Server for interaction, the disconnection detection mech-
anism and the interaction with the Results Cache would be the responsibility of
the Offload Server. As another option, using message-oriented middleware for
communications would enable the results to be delivered automatically to the
Mobile Client upon reconnection without requiring a Results Cache.
Constraints. The tactic as described is best fit for asynchronous interactions
between mobile devices and surrogates or applications that are not time-sensitive
or require immediate results. In addition, the tactic requires a mechanism for
detecting disconnection from mobile devices.
Examples. The following systems implement the Cached Results tactic:

• Grid-Enhanced Mobile Devices [Gua08]: An example of how this system
implements the tactic is shown in Figure 2.32 with numbers to indicate
sequence of operations. The User Interface starts the offload process by
invoking the Connection Manager with the task to be offloaded. The
Connection Manager contacts the Grid Gateway Adapter on the Surrogate
which locates a Grid Service that can execute the task. Periodically, the
Connection Manager sends a keep-alive message to the Grid Gateway
Adapter. If the mobile device fails to send a keep-alive message after a
certain period the Grid Gateway Adapter assumes that the mobile device
has disconnected, whether voluntarily or involuntarily, and informs the
Device Monitor to mark the device status as disconnected. When the
results from the Grid Service come back, the Grid Gateway Adapter first
checks the device status. If it is disconnected, it saves the results in
the Cache. When the mobile device is re-connected, the Grid Gateway
Adapter gets the results from the Cache and sends them back to the
mobile device.

• Mobile Agents [AB13]: Offloadable elements in the form of autonomous
mobile agents are migrated from a mobile device to a surrogate for asyn-
chronous execution. The mobile agent platform (JADE) handles the mi-
gration back to the client once execution is completed and the mobile
device is available.

• 3DMA [FMD05]: The middleware used in the 3DMA system uses the
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Figure 2.31: Cached Results

concept of spaces to enable asynchronous communication and message
buffering. Offload requests from mobile devices are placed in a space, are
processed on the surrogate, and results are placed in the same space. When
a device becomes disconnected, it waits until a connection is restored, and
then reads all available messages (results) from the space.

• CPA [OG13]: Offload requests are sent to the Cloud Personal Assistant
component on the surrogate. The request is added as a user task, the task
executes, and the status and result data are added as task information. If
the mobile device is disconnected, the user can later log in to the system
to check task status and results.

• Sonora [YQC+12]: Sonora uses a construct called a sync stream that
buffers data during disconnections and resumes normal operation upon
reconnection. Connectivity interruptions can either be handled transpar-
ently or a mobile app may decide to be notified when disconnections occur.

Dependencies. The Cached Results tactic requires a Surrogate Provisioning
tactic (Section 2.1.3) to prepare the surrogate for computation offload or data
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Figure 2.32: Grid-Enhanced Mobile Devices as an Example of the Cached Re-
sults Tactic

staging, and a Computation Offload tactic (Section 2.1.1) or Data Staging tactic
(Section 2.1.2) to enable the computation offload or data staging process.
Variation: Client-Side Data Caching. The tactic as described caches re-
sults on the surrogate and sends them to mobile clients upon request or re-
connection. A variation of this tactic that is useful for data staging systems
that implement the In-Bound-Pre-Processing (Section 2.1.2.2) is to cache col-
lected data on the mobile device and send it to the surrogate upon reconnection.
The Feel the World system [PEPD13] is an example of this variation that collects
sensor data that can be aggregated and/or transformed locally on the mobile
client and uploaded to the surrogate in real-time if the connection is available,
or at a later moment if it is unavailable.

2.2.2.4 Alternate Communications

The Alternate Communications tactic is present in the Edge Proxy system
[ATAdL06]. This system has elements that enable the surrogate to use an
alternate communications mechanism when the mobile device becomes discon-
nected.
Motivation. Cyber-foraging systems typically leverage single-hop, higher band-
width communications mechanisms such as WiFi or short-range radio instead of
broadband wireless (e.g., 3G/4G) because of the potential for energy savings and
faster response time [BBV09]. However, these mechanisms require the mobile
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device to be in proximity of the surrogate. The Alternate Communications tac-
tic enables the system to switch to an alternate, potentially less energy-efficient
communications mechanism, to continue serving the mobile user in spite of dis-
connection (even if in a degraded mode due less amount of information or less
timely responses).
Description. Figure 2.33 shows the main elements of the Alternate Commu-
nications tactic with numbers to indicate the sequence of operations. Steps 1
to 11 correspond to the basic offload process using the Default Communications
Manager. In this tactic the interaction between the Cyber-Foraging Enabled
Mobile App and the Offloaded Code happens through the Offload Client and
the Offload Server. When the Offload Server is ready to send the results back
to the mobile device it detects that it is disconnected. Therefore, the results are
delivered to the mobile device using the Alternate Communications Manager.

Figure 2.33: Alternate Communications

Constraints. The Alternate Communications tactic as decribed assumes that
the mobile device is enabled to use the alternate communication mechanism.
In addition, depending on the type of interaction between the surrogate and
the mobile device (i.e., responding to a single offload request or sending data
periodically to the mobile device), the surrogate would require a mechanism to
determine when connectivity has been restored so it can go back to the default
communications mechanism.
Example. Edge Proxy [ATAdL06] is a data staging system that implements the
Alternate Communications tactic. The system enables a user to be notified when
web pages of interest change (Section 2.1.2.2 contains system details). Steps 1 to
4 in Figure 2.34 show the registration process using the WiFi Manager. When
the Edge Proxy is ready to send web page changes to the Mobile Device and
detects that it is disconnected, it leverages the existing Short Message Service
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(SMS) infrastructure that most wireless carriers provide. It creates a single SMS
message with two parts and sends it using the SMS Manager. The first part
contains control information which includes the number of updates and the size
of the download. The second part is an update summary that includes a list
of the pages that have changed, and if particular values were being monitored,
the changes that occurred. The Mobile Proxy intercepts the SMS message,
extracts the control information, and passes the update summary back to the
SMS Manager for delivery to the user via an SMS Client. The Mobile Proxy
uses the control information to make a decision on how to acquire the updates.
Because the user receives an update summary, it may be the case that the
information of interest is already there and therefore there is no immediate
need to reconnect.

Figure 2.34: Edge Proxy as an Example of the Alternate Communications Tactic

Dependencies. The Alternate Communications tactic requires a Surrogate
Provisioning tactic (Section 2.1.3) to prepare the surrogate for computation
offload or data staging, and a Computation Offload tactic (Section 2.1.1) or
Data Staging tactic (Section 2.1.2) to enable the computation offload or data
staging process.
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2.2.2.5 Eager Migration

The Eager Migration tactic is present in the Offloading Toolkit and Service
system [YOC08]. This system has elements that enable the surrogate to migrate
the offloaded computation to a another connected surrogate when it detects that
it might not be able to continue serving the mobile device that generated the
offload request.
Motivation. Due to mobile device mobility or decrease in the quality of the
communications channel between the mobile device and the surrogate, the mo-
bile device might lose connectivity to the surrogate. The Local Fallback (Sec-
tion 2.2.2.1), Cached Results (Section 2.2.2.3), and Alternate Communications
(Section 2.2.2.4) tactics for fault tolerance are reactive; that is, they perform
a corrective action after the disconnection is detected. The Eager Migration
tactic takes a more proactive approach and migrates the offloaded computation
to a connected surrogate before it becomes disconnected from the mobile de-
vice so that it can continue supporting the computation offload or data staging
operations.
Description. Figure 2.35 shows the main elements of the Eager Migration
tactic with numbers to indicate the sequence of operations. Steps 1 to 4 are
part of the basic offload process from the Mobile Client to the Source Surrogate.
Periodically, the Offload Client sends connection information to the Offload
Server that it uses to determine if there is a potential for disconnection. This
information could be location, signal strength, or available bandwidth. An al-
ternative is for the Offload Server to obtain this information periodically using
a network monitor. Once the Offload Server determines that there is a poten-
tial for disconnection, it starts the migration process by contacting the Offload
Server of the Target Surrogate to migrate the offloaded code. It may be the case
that there is more the one Target Surrogate available, in which case the Offload
Server would have to select one based on a defined optimization function such
as connection bandwidth, load, or available resources on the target. Depending
on the granularity of the offloaded code and whether state needs to be trans-
fered or not, the migration process can range from changing the endpoint for
communication, to migrating just the offloaded code, to migrating the full con-
tainer. Once the migration is complete, the Offload Server informs the Offload
Client to connect to the Target Surrogate. Optionally, the Offload Server may
need to clean up the offload process by for example stopping running instances,
deleting state files, or terminating VMs. The Target Surrogate takes over the
execution entirely. The interaction between the Cyber-Foraging Mobile App and
the Source Surrogate finishes. The results from invoking the Offloaded Code will
come from the Target Surrogate and any new interactions will be with the Target
Surrogate.
Constraints. The tactic as described requires the source and target surrogates
to be connected. The impact on the user experience will highly depend on the
bandwidth between surrogates. In addition, the system has to be able to obtain
any parameters for the algorithm that determines potential disconnection such
as the distance and communications quality between the mobile device and both
the source and target surrogate.
Example. The Offloading Toolkit and Service [YOC08] system implements
the Eager Migration technique as shown in Figure 2.36. If the communication
between the Source Surrogate and the Mobile Handheld deteriorates based on
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Figure 2.35: Eager Migration

reaching an established threshold for connection quality, the execution of the
offloaded Classes is terminated on the Source Surrogate and migrated from the
Source Surrogate to a Connected Target Surrogate. The migration consists of
serializing and sending the Classes from the JVM on the Source Surrogate to
the JVM on the Connected Target Surrogate where they are deserialized and
loaded.
Dependencies. The Eager Migration tactic requires a Surrogate Provisioning
tactic (Section 2.1.3) to prepare the surrogate for computation offload or data
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Figure 2.36: Offloading Toolkit and Service as an Example of the Eager Migra-
tion Tactic

staging, and a Computation Offload tactic (Section 2.1.1) or Data Staging tactic
(Section 2.1.2) to enable the computation offload or data staging process.
Variation: Lazy Migration. In Eager Migration the offloaded computation
fully moves from a the Source Surrogate to a Target Surrogate and the Mobile
Client continues its interaction with the Target Surrogate. In Lazy Migration,
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the execution of the offloaded computation remains on the Source Surrogate but
the interaction with theMobile Client is handed off to the Target Surrogate. This
means that all interaction between the Mobile Client and the Source Surrogate
goes through the Target Surrogate that acts as an intermediary. This tactic is
not present in any of the systems but was considered as an alternative for the
Offloading Toolkit and Service [YOC08] system. It was not selected because of
the high bandwidth between surrogates that enabled the system to perform a
fast full migration.

2.2.3 Scalability/Elasticity
A scenario for Scalability/Elasticity is the following: A mobile app is enabled for
cyber-foraging and is leveraging a surrogate for computation offload that is also
being leveraged by other mobile apps on other mobile devices. The surrogate
is able to optimize computing resources either locally or by leveraging other
connected surrogates so that multiple mobile devices can be supported with the
goal of minimal effect on user experience due to surrogate load.

The Scalability/Elasticity tactics need to be combined with a Surrogate Pro-
visioning tactic (Section 2.1.3) to prepare the surrogate for computation offload
or data staging and a Computation Offload tactic (Section 2.1.1) or Data Stag-
ing tactic (Section 2.1.2) to enable the computation offload or data staging
process.

2.2.3.1 Just-in-Time Containers

The Just-In-Time Containers tactic is present in the Grid-Enhanced Mobile
Devices [Gua08] and VM-Based Cloudlets [SBCD09] systems.
Motivation. In an operational cyber-foraging scenario a single surrogate may
support multiple mobile users. To decrease the load on a surrogate, and there-
fore support a greater number of offload requests, the Just-in-Time Containers
tactic creates a container and/or an instance of the offloaded code upon receipt
of an offload request and then destroys the instance of the offloaded code when
the offload request is completed.
Description. Figure 2.37 contains the main elements of the Just-In-Time Con-
tainers tactic with numbers to indicate the sequence of operations. The Cyber-
Foraging Enabled Mobile App starts the offload process by invoking the Offload
Client. When the Offload Server on the Surrogate receives the offload request, it
creates and starts an instance of the Offloaded Code inside the Container. The
Cyber-Foraging Enabled Mobile App interacts with the Offloaded Code until it
finishes the offload request or closes. At this time the Cyber-Foraging Enabled
Mobile App ends the offload process by invoking the Offload Client. When the
Offload Server receives the request to end the offload process it destroys the in-
stance of the Offloaded Code, thereby releasing the resources that were allocated
to it.
Constraints. The tactic as described has a greater startup time than a tactic
in which the offloaded code is already running because it has to set up the
container, which is the execution environment for the offloaded code.
Examples. In the Grid-Enhanced Mobile Devices [Gua08] system a Deputy
Object is created for each offload request (task) from a mobile device in the
Grid Gateway. When the task is completed and the mobile device terminates
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Figure 2.37: Just-In-Time Containers

the connection to the Grid Gateway, resources on the surrogate are released and
the Deputy Object is destroyed. The Grid Gateway has a gateway capacity that
measures its load. Offload requests are granted by the Grid Gateway only if load
values are below the gateway capacity. If not, offload requests have to wait until
resources are released. In the VM-Based Cloudlets [SBCD09] system shown in
Figure 2.38 offloaded computation is prepared for execution on a Cloudlet using
a technique called VM Synthesis (details are provided in Section 2.1.3.2). The
KCM Client starts the offload process. The KCM Server creates and installs the
synthesized VM inside the VM Manager and informs the KCM Client that the
VM is ready for execution. The KCM Client starts a VNC Client that is used
to interact with the Launch VM. When the VNC Client closes, the KCM Client
ends the offload process by invoking the KCM Server, which terminates the
Launch VM. The term used by the authors to describe the approach is transient
customization of cloudlet infrastructure using hardware VM technology.
Dependencies. The Just-In Time Containers tactic requires a Surrogate Pro-
visioning tactic (Section 2.1.3) to prepare the surrogate for computation offload
or data staging, and a Computation Offload tactic (Section 2.1.1) or Data Stag-
ing tactic (Section 2.1.2) to enable the computation offload or data staging
process.

2.2.3.2 Right-Sized Containers

The Right-Sized Containers tactic is present in theThinkAir system [KAH+12].
This system has elements that create execution containers that are of thhe
appropriate size for the offloaded computation in order to optimize resource
usage on the surrogate.
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Figure 2.38: VM-Based Cloudlets as an Example of the Just-In-Time Containers
Tactic

Motivation. In an operational cyber-foraging scenario a single surrogate may
support multiple mobile users. However, not all mobile users are offloading the
same computation. Some users may be executing a small task that does not
require a large quantity of surrogate resources while others may be executing
very computation-intensive tasks that require much more resources. To opti-
mize resources on a surrogate, and therefore support a greater number of offload
requests, the Right-Sized Containers tactic creates a container for the offloaded
code that is of the smallest size possible in order to run the offloaded compu-
tation, based on computation requirements metadata related to the offloaded
code.
Description. Figure 2.39 shows the main elements of the Right-Sized Contain-
ers tactic. The Cyber-Foraging Enabled Mobile App starts the offload process
by invoking the Offload Client with Offloaded Code Metadata that indicates the
computing requirements for the Offloaded Code. In the case of pre-provisioned
surrogates (Section 2.1.3.1) the Offloaded Code Metadata could reside on the
Surrogate. Based on the metadata received from the Offload Client, the Offload
Server obtains a container from the Container Repository that best matches
the metadata, meaning that the resources that are required from the Surrogate
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are sufficient to execute the Offloaded Code. The Offload Server then starts the
container and sets up the Offloaded Code so that it is ready for execution from
the Cyber-Foraging Enabled Mobile App.

Figure 2.39: Right-Sized Containers

Constraints. The tactic as described requires a surrogate to maintain different
container configurations. In addition, similar to the Just-In-Time Containers
tactic (Section 2.2.3.1), it has a greater startup time than a tactic in which the
offloaded code is already running because it has to set up the right container as
the execution environment for the offloaded code.
Example. The ThinkAir system [KAH+12] implements the Right-Sized Con-
tainers tactic, as shown in Figure 2.40. When a surrogate (Application Server)
receives an offload request, the ThinkAir Framework on the Application Server
determines the configuration of the VM (or VMs) to allocate for the task based
on App Requirements in the offload request that indicate the need for extra com-
puting power (the system has six VM configuration which differ in terms of CPU
and memory). The ThinkAir Framework starts the selected VM configuration
and sets up the offloaded code (Code and Data) in the VM.
Dependencies. The Right-Sized Containers tactic requires a Surrogate Provi-
sioning tactic (Section 2.1.3) to prepare the surrogate for computation offload or
data staging, and a Computation Offload tactic (Section 2.1.1) or Data Staging
tactic (Section 2.1.2) to enable the computation offload or data staging process.
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Figure 2.40: ThinkAir as an Example of the Right-Sized Containers Tactic

Variation: Dynamically-Sized Containers. The ThinkAir system [KAH+12]
also implements this tactic. If an error occurs at runtime that would indicate
that the VM does not have the necessary computing power for the task, such
as an OutOfMemoryError error, the Client Handler starts a more powerful VM
and moves the offload request to the newly started VM.

2.2.3.3 Surrogate Load Balancing

The Surrogate Load Balancing tactic is present in the The Cloud Operating
System to Support Multi-Server Offloading [Ima12]. The system has elements
that enable it to leverage connected surrogates for load balancing.
Motivation. In an operational cyber-foraging scenario the relationship between
mobile devices and surrogates may be many-to-many, meaning that multiple
mobile devices may be leveraging multiple surrogates for computation offload
and data staging. The Surrogate Load Balancing tactic enables surrogates to
send offloaded computation or data to other less-loaded, connected surrogates
in order to provide a better user experience to all mobile devices.
Description. The Surrogate Load Balancing tactic uses the same computation
migration techniques as the Eager Migration tactic (Section 2.2.2.5) but for a
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different purpose (scalability/elasticity instead of fault tolerance). Figure 2.41
shows the main elements of the tactic with numbers that indicate the sequence
of operations. Steps 1 to 4 are part of the basic offload process from the Mobile
Client to the Source Surrogate. During the execution of the Offloaded Code,
the Load Monitor informs the Offload Server that the Surrogate has reached
its load threshold. The Offload Server then migrates one or more instances of
Offloaded Code to a Target Surrogate. It may be the case that there is more
than one connected Target Surrogate available, in which case the Offload Server
would have to select one based on a defined optimization function which should
balance the load among all connected surrogates, but may also include connec-
tion bandwidth or available resources on the Target Surrogate. Depending on
the granularity of the offloaded code and whether state needs to be transfered
or not, the migration process can range from changing the endpoint for com-
munication, to migrating just the offloaded code (application-level migration),
to migrating the full container (container-level migration). Once the migration
is complete, the Offload Server informs the Offload Client to connect to the
Target Surrogate. The Offload Server terminates the instance of the Offloaded
Code by stopping running instances, deleting state files, or terminating VMs in
order to reduce the load on the Source Surrogate. The Target Surrogate takes
over the execution entirely. The interaction between the Cyber-Foraging Mobile
App and the Source Surrogate finishes. The results from invoking the Offloaded
Code will come from the Target Surrogate and any new interactions will be with
the Target Surrogate.
Constraints. The tactic as described requires the source and target surrogates
to be connected. The impact on the user experience will highly depend on
the on the bandwidth between surrogates. The source surrogate requires a
mechanism to access the load level of all connected surrogates in order to migrate
computation to the less-loaded one and keep the load on all the surrogates
balanced.
Example. The Cloud Operating System to Support Multi-Server Offloading
(COS) system [Ima12] implements this tactic. Surrogates in COS are not con-
nected to the enterprise but to other surrogates to load balance. As shown in
Figure 2.42, application modules are implemented as SALSA Actors that are
self-contained and therefore can easily migrate between a Source Node and a
Target Node (application-level migration). The Target Node is selected based
on resource availability, communication cost with other actors, and the cost for
migration. Because migrating actors is similar to performing a split (removing
an actor from a VM on a node) and a merge (adding an actor to a VM on a
node), COS refers to this aspect of the system as VM malleability. The sys-
tem also has a COS Manager that is connected to all Node Managers and is
contacted during the Identify Target Surrogate operation (Step 6 in the figure).
The COS Manager can run on any COS node or in a separate node. When the
Source Node reaches a load threshold, the Node Manager informs the COS Man-
ager, which determines the optimal Target Node and then prepares the Target
Node for migration.
Dependencies. Even though the Surrogate Load Balancing tactic does not
require any other tactic in order to be implemented, it only makes sense if
combined with a Surrogate Provisioning tactic (Section 2.1.3) to prepare the
surrogate for computation offload or data staging, and a Computation Offload
tactic (Section 2.1.1) or Data Staging tactic (Section 2.1.2) to enable the com-
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Figure 2.41: Surrogate Load Balancing

putation offload or data staging process. The Surrogate Load Balancing tactic
then provides scalability to a computation offload or data staging system.

2.2.4 Security
One of the main findings from the primary studies is that there is very little
discussion of system-level concerns that have to be addressed when moving
from experimental prototypes to operational systems. One of these system-level
concerns is security.

A scenario for Security is the following: A mobile app is enabled for cyber-
foraging and is in the process of discovering a surrogate for computation offload.
User and surrogate credentials are exchanged and validated before the offload
process so that the mobile app and surrogate can interact according to agreed
security policies.

Even though a Security tactic does not require any other tactic in order to be
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Figure 2.42: Cloud Operating System to Support Multi-Server Offloading as an
Example of the Surrogate Load Balancing Tactic

implemented, in the context of cyber-foraging it only makes sense if combined
with a Surrogate Provisioning tactic (Section 2.1.3) to enable the surrogate for
computation offload or data staging, and a Computation Offload tactic (Section
2.1.1) or Data Staging tactic (Section 2.1.2) to enable the computation offload
or data staging process. The Security tactic then provides assurance to both
the mobile device and the surrogate that they will not be compromised or used
to compromise other systems.

2.2.4.1 Trusted Surrogates

Motivation. When a mobile device discovers a surrogate it expects a trustwor-
thy surrogate execution environment, meaning that once an offload operation
starts, code and data are not maliciously modified or stolen and that it provides
trustful services. In the same way, a surrogate expects that a mobile device is
a valid client and that it will not offload malicious code or use it as a vehicle to
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other code and data offloaded by other mobile devices. The Trusted Surrogate
tactic adds this trust element to the interaction between a mobile device and a
surrogate.
Description. As mentioned earlier, there is not much discussion about secu-
rity or trust in the primary studies. An approach that is shown in some of
the primary studies is to own the surrogate. Roam [CSW+04] assumes that a
user would only offload applications among his/her personal devices such as cell
phones, PDAs, and home PCs. Collaborative Applications [CH11] and SPADE
[SVF08] offload only to personal trusted servers such as a home server. The
Grid-Enhanced Mobile Devices system [Gua08] assumes a pre-existing trust re-
lation between mobile devices, the Grid Gateway that serves as an intermediary
between the mobile device and the surrogates, and the surrogates (Grid Ser-
vice Providers). In the proposed implementation, the mobile user uses his own
desktop as the Grid Gateway and all Grid Service Providers are owned by the
user’s organization.

Another hardware-based approach that is suggested for establishing trust,
but not implemented in any of the primary studies, is to use an on-board secure
hardware component such as Trusted Platform Module (TPM). TPM is a de-
vice/chip that has a unique and secret RSA key that is burned into it when it
is produced.10 Collaborative Applications [CH11], Virtual Phone [HSL11] and
VM-Based Cloudlets [SBCD09] suggest the use of TPM for providing stronger
levels of trust.

In the Collective Surrogates system [Goy11] only the trusted Collective Man-
ager that serves as the broker between mobile devices and surrogates has direct
access to the VM running on a surrogate (Participating Node). This system ex-
ploits the isolation provided by VM technology for safely running arbitrary code
provided by mobile devices. However, the system assumes a trust relationship
between mobile device and the Collective Manager.

While a password- or hardware-based approach are useful for some scenarios,
it is not appropriate in more dynamic scenarios in which mobile devices discover
nearby surrogates that are not owned by the owner of the mobile device (Sec-
tion 2.1.4.3). These scenarios require more dynamic ways of establishing trust
between mobile devices and surrogates, such as a third-party, online trusted
authority that validates credentials or a certificate authority that provides cer-
tificates and keys for authentication, to determine if data or code has been
tampered with, or even encryption (as an example, the Virtual Phone system
[HSL11] has a fully-encrypted filesystem on the surrogate to ensure that data
is not accessible by surrogate owners or other virtual machines running on the
surrogate).
Constraints. Each of the approaches listed above has constraints related to
how the trust relationship is established. Password-based approaches such as
those employed by systems in which surrogates are owned by the mobile device
user require users to be registered on the surrogate. Hardware-based approaches
such as TPM require surrogates to have TPM chips on them. Systems that rely
on third parties have to be connected to online authorities or require certificates
and keys to be obtained from a central certificate authority.
Example. The only system that implements a trust solution that uses a third-

10The ISO/IEC 11889 specification for TPM is available at http://standards.iso.org/
ittf/PubliclyAvailableStandards/index.html
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party trusted authority is the Trusted and Unmanaged Data Staging Surrogates
system [FSTS03]. This system was used as an example for the Pre-Fetching
tactic in Figure 2.6. A subset of this figure with additional detail related to
the trust components is presented in Figure 2.43 with numbers to indicate the
sequence of operations. The user’s idle Desktop serves as the trusted third
party that sits in between the Server and the Surrogate. When the File Client
requests a file, the Client Proxy communicates with the Data Pump that runs
on the Desktop to obtain the key and hash for the requested data file. The Data
Pump retrieves the data file from the File Server and encrypts it before sending
it to the Surrogate for staging it in the Cache. It then sends the Client Proxy
the key and hash for the file so it can be compared it to the hash of the file that
is retrieved from the Surrogate to determine if the file has been tampered with.

Figure 2.43: Trusted and Unmanaged Data Staging Surrogates as an Example
of the Trusted Surrogates Tactic

Dependencies. Even though the Trusted Surrogate tactic does not require
any other tactic in order to be implemented, it only makes sense if combined
with a Surrogate Provisioning tactic (Section 2.1.3) to prepare the surrogate for
computation offload or data staging, and a Computation Offload tactic (Section
2.1.1) or Data Staging tactic (Section 2.1.2) to enable the computation offload
or data staging process. The Trusted Surrogate tactic then provides a trusted
environment for computation offload or data staging.
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Chapter 3

Related Work

There are several studies that survey the field of mobile cloud computing and
identify cyber foraging as a research area and challenge, but are not system-
atic literature reviews and do not have an architecture focus. Abolfazli et al
[ASA+14] present a survey of cloud-based mobile augmentation (CMA) ap-
proaches, one of which is cyber-foraging. One of the challenges stated by this
work is the lack of a reference architecture for CMA. Dinh at al [DLNW11]
present a survey on mobile cloud computing (MCC). Computation offload is
discussed as a technique for extending battery lifetime of mobile devices and
listed as one of the challenges for MCC. Fernando et al [FLR12] present a more
complete survey on mobile cloud computing. Some of the research that ad-
dresses efficient computation offload and distribution to the cloud and how it
differs from traditional distributed systems is discussed in this paper. Kumar
et al [KLLB13] present a survey on computation offloading but focus primarily
on the algorithms used to partition and offload programs in order to improve
performance or save energy. Finally, Yu et al [YMCL12] present a survey on
seamless application mobility, which is the continuous or uninterrupted com-
puting experience as a user moves across devices. Code offloading is mentioned
as a future direction for seamless application mobility.

The work that is most similar to ours is by Flinn et al [Fli12] that presents
a discussion of representative cyber-foraging systems and their characteristics.
However, it is limited to a small number of systems and does not follow a
systematic process. To the best of our knowledge, ours is the first systematic
literature review related to architectures for cyber-foraging.

As far as architectural tactics for cyber-foraging, to the best of our knowledge
this is the first attempt to codify design decisions in software architectures for
cyber-foraging systems into a set of tactics.
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Chapter 4

Conclusions and Next Steps

We presented a set of architectural tactics for cyber-foraging that were obtained
from the results of a systematic literature review in architectures for cyber-
foraging systems. Common design decisions present in the cyber-foraging sys-
tems were codified into architectural tactics for cyber-foraging and then grouped
into functional and non-functional tactics. Non-functional tactics provide the
basic cyber-foraging operations and non-functional tactics are combined with
the functional tactics to support required system qualities.

The next steps in our research are to create case studies that validate these
tactics in real systems to demonstrate that they satisfy the functional and non-
functional quality attribute responses that they are intended to promote. The
case studies will be analyzed to identify tactics that are common across case
studies and codify them into architectural patterns, based on the definition
that an architectural pattern is a widely recognized and reused solution to a
recurring design problem in the field of software architectures [BMR+96].
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