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Appendix A. Pricing kernel, risk-neutral measure

Given the exogenously specified process for the pricing kernel, the risk-neutral measure
can be derived.1 The pricing kernel, πt, evolves according to

dπt
πt

= −r(νt)dt− ϕm(νt)dW
m
t . (1)

Define the density process for the risk-neutral measure by

ξt = Et

[
dQ

dP

]
. (2)

This density process and the pricing kernel are related by

ξt = Btπt , (3)

where

Bt = exp

{∫ t

0

r(νs)ds

}
(4)

is the time t price of a bond paying the riskless rate and B0 has been normalized to one.2

Applying Itô’s lemma gives
dξt = Btdπt + πtdBt . (5)

Plugging in the expression for dπt,

dξt = Bt[−r(νt)πtdt− ϕm(νt)πtdW
m
t ] + πtdBt . (6)

Replacing πt with ξt
Bt

and dividing through by ξt gives

dξt
ξt

= −r(νt)dt− ϕm(νt)dW
m
t +

1

Bt

dBt . (7)

Itô’s lemma implies
dBt = r(νt)dt . (8)

Thus, the density process, ξt, evolves according to

dξt
ξt

= −ϕm(νt)dW
m
t . (9)

1Because the horizon is infinite, the risk-neutral measure, Q, that is used for pricing contingent claims is
not an equivalent probability measure to the physical measure, P. Still, the risk-neutral measure Q has the
necessary properties for risk-neutral pricing. See ? for more details.

2See ?.
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Applying Girsanov’s Theorem, a new Brownian motion under the risk-neutral measure is
given by

dŴm
t = dWm

t + ϕm(νt)dt . (10)

The firm-specific Brownian motion, W f,n
t , that generates the idiosyncratic shocks to firm n’s

cash flows is independent of the Brownian motion Wm
t generating systematic shocks to the

economy. Thus, W f,n
t is still a Brownian motion under the risk-neutral measure for all firms

n. Under the risk-neutral measure, cash flows for firm n evolve according to

dXn
t

Xn
t

= µ̂n(νt)dt+ σnm(νt)dŴ
m
t + σnf dW

f,n
t , (11)

where µ̂n(νt) is the drift under the risk-neutral measure

µ̂n(νt) = µn(νt)− σnm(νt)ϕ
m(νt) . (12)

The total volatility of the cash flows of firm n is given by

σnX(νt) =
√

(σnm(νt))2 + (σnf )2 . (13)

The two Brownian motions driving the idiosyncratic and systematic shocks to firm n’s cash
flows under the risk-neutral measure can be aggregated into a single Brownian motion (under
the risk-neutral measure) for firm n, which is given by

dŴ n
t =

σnm(νt)

σnX(νt)
dŴm

t +
σnf

σnX(νt)
dW f,n

t . (14)

So the evolution of firm n’s cash flows under the risk-neutral measure can be expressed as

dXn
t

Xn
t

= µ̂n(νt)dt+ σnX(νt)dŴ
n
t . (15)

Appendix B. Solving for unlevered firm value

Here I show how to solve for the unlevered firm value.3 The pair of ordinary differential
equations characterizing the unlevered firm value has an associated characteristic function
given by

g1(β)g2(β) = λ1λ2 , (16)

where

g1(β) = λ1 + r − (µ1 −
1

2
σ2
1)β − 1

2
σ2
1β

2 (17)

3The exposition follows ?. See also ? and ?.
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and

g2(β) = λ2 + r − (µ2 −
1

2
σ2
2)β − 1

2
σ2
2β

2 . (18)

This characteristic function has four distinct roots: β1 < β2 < 0 < β3 < β4. The general
form of the solution is given by

A1(X) = φ1(X) +
4∑
i=1

Gix
βi , (19)

A2(X) = φ2(X) +
4∑
i=1

Hix
βi , (20)

and

Hi = l(βi)Gi =
g1(βi)

λ1
Gi =

λ2
g2(βi)

Gi . (21)

However, boundedness conditions on the unlevered firm value need to be imposed. These
are

lim
x→∞

Ai(x)

x
<∞ and lim

x→0
Ai(x) <∞ . (22)

These two conditions imply βi = 0, i = 1, ..., 4. Thus the unlevered firm value has the
form

Ai(X) = φi(X) (23)

Conjecture that the unlevered firm value is affine in X. That is,

Ai(X) = ciX + di (24)

Furthermore, di = 0, i = 1, 2, because Ai(0) = 0.
Thus, the conjecture becomes

Ai(X) = ciX . (25)

Plugging these expressions into the two ODEs characterizing the unlevered firm value
and with some rearranging gives a linear system of two equations in two unknowns:

µiciX − (λi + r)ciX +X + λicjX = 0, j 6= i . (26)

Solving these two equations for c1, c2 gives the unlevered firm value in state i as

Ai(X) =
(λ1 + λ2 + r − µj)X

λ2(r − µ1) + (r − µ2)(λ1 + r − µ1)
. (27)
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If µ1 = µ2, then the unlevered firm value is the same in both states and is given by

A(X) =
X

r − µ
. (28)

Appendix C. Eigenvalue problem

This Appendix describes the eigenvalue problem for the cash flow region in which neither
default nor restructuring is an immediate threat. Define the log cash flow process, xt =
log(Xt). By Itô’s lemma, under the risk-neutral measure, the log cash flow process evolves
according to

dxt =

[
µ̂(νt)−

1

2
σX(νt)

2

]
dt+ σX(νt)dŴt . (29)

Under the risk-neutral measure, the price process of any contingent claim on firm cash flows
is a martingale with the cash flows discounted by investors at the risk-free short rate, r(νt).
Thus, these contingent claims are martingales of the form

M f
t = exp

(
−
∫ t

0

r(νu) du

)
f(νt, xt) (30)

for some function f that depends on the payoffs of the given security.
Applying Itô’s lemma gives

dM f
t = exp

(
−
∫ t

0

r(νu) du

)[
(Λ−R)f +

1

2
Σfxx + Θfx

]
dt . (31)

R is the diagonal matrix of ri ’s. Σ is the diagonal matrix of σ2
iX ’s. Θ is the diagonal

matrix of the risk-neutral drifts of the log cash flow process. Λ is the generator matrix of
the Markov chain, νt.

Because M f
t is a martingale, it has zero drift, implying

(Λ−R)f +
1

2
Σfxx + Θfx = 0 . (32)

Seeking a separable f of the form

f(νt, xt) = g(νt)exp(−βxt) = g(νt)X
β
t , (33)

gives the following equation to be solved in β and g:

(Λ−R)g +
1

2
β2Σg − βΘg = 0. (34)
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Pre-multiplying the above equation by 2Σ−1 gives

2Σ−1(Λ−R)g + β2g − 2βΣ−1Θg = 0. (35)

This gives the following system of equations:

βg = h (36)

βh = 2Σ−1Θh− 2Σ−1(Λ−R)g . (37)

This can be written as a standard eigenvalue problem of the form

A

(
g
h

)
=

(
0 I

−2Σ−1(Λ−R) 2Σ−1Θ

)(
g
h

)
= β

(
g
h

)
. (38)

If (g, β) solve this eigenvalue problem, then

M f
t = exp

(
−
∫ t

0

r(νu) du− βxt
)
g(νt) (39)

is a martingale. The matrix A has exactly two eigenvalues with positive real parts and two
with negative real parts.

Appendix D. Solving for the w coefficients

For the case in which there are two aggregate states to the Markov chain, there are a
total of three relevant cash flow regions and each security has a total of 16 w coefficients
(eight for each initial state).

The cash flow regions are
Region 1: X ∈ [X1

D, X
2
D)

Region 2: X ∈ [X2
D, X

u(1)
U )

Region 3: X ∈ [X
u(1)
U , X

u(2)
U )

For X < X1
D the firm is always in default regardless of the state, and for X > X

u(2)
U the firm

has already restructured upward for any state.
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D.1. Debt

For a given initial state, ν0, the eight boundary conditions for debt are

lim
X↑X2

D

D(X, 1, ν0) = lim
X↓X2

D

D(X, 1, ν0) (40)

lim
X↑X2

D

DX(X, 1, ν0) = lim
X↓X2

D

DX(X, 1, ν0) (41)

lim
X↑Xu(1)

U

D(X, u(2), ν0) = lim
X↓Xu(1)

U

D(X, u(2), ν0) (42)

lim
X↑Xu(1)

U

DX(X, u(2), ν0) = lim
X↓Xu(1)

U

DX(X, u(2), ν0) (43)

D(X1
D, 1, ν0) = (1− α(1))V U(X1

D, 1) (44)

D(X2
D, 2, ν0) = (1− α(2))V U(X2

D, 2) (45)

D(X
u(1)
U , u(1), ν0) = D(X0, ν0) (46)

D(X
u(2)
U , u(2), ν0) = D(X0, ν0) (47)

Eqs. (40) and (42) are the value-matching conditions across cash flow regions, and Eqs. (41)
and (43) are the smooth-pasting conditions across regions. Eqs. (46) and (47) are the value-
matching boundary conditions for default, and Eqs. (46) and (47) are the value-matching
boundary conditions for upward-restructuring.

The initial (par value) of debt at time 0 is given by

D(X0, ν0; ν0) = wD2,1(ν0)g2,1(ν0)exp{β2,1x0}+ wD2,2(ν0)g2,2(ν0)exp{β2,2x0}+

wD2,3(ν0)g2,3(ν0)exp{β2,3x0}+ wD2,4(ν0)g2,4(ν0)exp{β2,4x0}+ (1− τi)C(ν0)b(ν0)

D(X0, ν0; ν0) =
4∑
j=1

wD2,j(ν0)g2,j(ν0)exp{β2,jx0}+ (1− τi)C(ν0)b(ν0) (48)

g2,j(ν0) is a scalar; that is, it is the ν0 element of the g2,j eigenvector, where g2,j is the jth
eigenvector for the eigenvalue problem for the second cash flow region. Thus, a system of
eight equations results to solve for the eight unknown wD coefficients.

G(X)LHSW
D + ξ(X)LHS + ζLHS = G(X)RHSW

D + ξ(X)RHS + ζRHS (49)

[G(X)LHS −G(X)RHS]WD = ξ(X)RHS + ζRHS − ξ(X)LHS − ζLHS (50)

Thus,

WD = [G(X)LHS −G(X)RHS]−1 (ξ(X)RHS + ζRHS − ξ(X)LHS − ζLHS) . (51)
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D.2. Equity

For a given initial state, ν0, the 8 boundary conditions for equity are

lim
X↑X2

D

E(X, 1, ν0) = lim
X↓X2

D

E(X, 1, ν0) (52)

lim
X↑X2

D

EX(X, 1, ν0) = lim
X↓X2

D

EX(X, 1, ν0) (53)

lim
X↑Xu(1)

U

E(X, u(2), ν0) = lim
X↓Xu(1)

U

E(X, u(2), ν0) (54)

lim
X↑Xu(1)

U

EX(X, u(2), ν0) = lim
X↓Xu(1)

U

EX(X, u(2), ν0) (55)

E(X1
D, 1, ν0) = 0 (56)

E(X2
D, 2, ν0) = 0 (57)

E(X
u(1)
U , u(1), ν0) =

X
u(1)
U

X0
[(1− q)D(X0, u(1);u(1)) + E(X0, u(1);u(1))]−D(X0, ν0; ν0) (58)

E(X
u(2)
U , u(2), ν0) =

X
u(2)
U

X0
[(1− q)D(X0, u(2);u(2)) + E(X0, u(2);u(2))]−D(X0, ν0; ν0) (59)

These conditions hold for an arbitrary coupon rate, C(ν0). For a given initial state, ν0, the
optimal default thresholds (for an arbitrary coupon) satisfy the smooth-pasting conditions
for equity such that

∂

∂X
E(X, 1; ν0)

∣∣∣∣
X↓X1

D(ν0)

= 0 (60)

∂

∂X
E(X, 2; ν0)

∣∣∣∣
X↓X2

D(ν0)

= 0 . (61)
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