
A Latent Source Model for Online Collaborative Filtering
Guy Bresler George H. Chen Devavrat Shah

Online recommendation systems

• Recommend items to users over time

• Want to simultaneously recommend good items & learn user preferences

• Collaborative filtering widely used in practice

 little theory justifying why it works in online setting!

Collaborative Filtering Results

Model and Problem Setup

This work was supported in part by NSF grant CNS-1161964 and by Army Research Office MURI Award W911NF-11-1-0036. GHC was supported by an NDSEG fellowship.

Theorem: Under latent source model and low noise and cosine separation

conditions, with number of users 𝑛 = Θ(𝑘𝑚), after an initial learning time

𝑇learn = Θ
log 𝑘𝑚 Δ

Δ4 1 − 𝛾 2

1 1−𝛼

,

at each time step henceforth, COLLABORATIVE-GREEDY with appropriately

chosen parameters recommends likable items for each user w.h.p.

provided that the system hasn’t exhausted the likable items for that user.

Fraction of likable items recommended:
𝑟+

𝑇

𝑇𝑛
= Ω 1 −

𝑇learn

𝑇

for 𝑇learn ≤ 𝑇 ≤ 𝜆𝑚 where 𝜆 = minimum fraction of likable items in a cluster

Our contributions

• Frame online recommendation as a learning problem

• Provide sufficient conditions for when a cosine-similarity collaborative

filtering method achieves essentially optimal performance

 uses two exploration types: learn about items, learn about users

Motivation

User ratings do actually cluster!

Key features

• Collaborative filtering is exploitation  how to trade off with exploration?

• Can’t recommend already consumed item to a use

• Structure in users makes collaboration useful

Simple online recommendation system (𝑛 users, 𝑚 items)

Latent source structure ⋯

0.2 0.8 0.7 0.9 0.9 0.3

0.9 0.2 0.3 0.1 0.0 0.9

⋯

⋯

⋮ ⋮ ⋮
𝑘

clusters

𝑚 items

𝝁𝟏

𝝁𝒌

Goal: Maximize expected

number of likable items

recommended over time

• Each user belongs to one

of 𝑘 clusters (equally likely)

• Item is likable for user if the

user’s cluster likes the item

with probability > 1/2
Probability of liking each item, per cluster

User1

User 2

User 𝑛

Time 1

?

?

?

Time 2 Time 𝑡 ⋯

−1 −1

−1 +1

−1 +1

⋯

⋯

⋯

⋮

𝑟+
𝑇 ≜ 𝔼

𝑛

𝑢=1

𝕝
item recommended

to user 𝑢 at time 𝑡
is likable

𝑇

𝑡=1

How does this grow with 𝑇?

Exploitation: cosine-similarity nearest-neighbor recommendation

1. For user 𝑢, assign score 𝑝 𝑢𝑗
𝑡

 for item 𝑗 based on users’ ratings up to time 𝑡:

𝑝 𝑢𝑗
𝑡

=
neighbors of user 𝑢 who like item 𝑗

neighbors of user 𝑢 who have rated item 𝑗

Two users are neighbors ⇔ cosine similarity between their ratings ≥ 𝜃

2. Recommend unconsumed item with highest score

Remarks:

• User’s item score estimates user’s cluster’s probability of liking the item

• Estimate only good when enough neighbors have rated the item

 recommendation based on item score is exploitation

 need exploration!

Exploration

• Find good items:

randomly explore items a user hasn’t consumed

• Find similar users:

ask all users to jointly explore common set of items

𝑝 𝑢𝑗
𝑡

 𝜇𝑔𝑗 where 𝑔 = user 𝑢’s cluster

Algorithm (COLLABORATIVE-GREEDY)

Parameters: 𝜃 ∈ 0,1 , 𝛼 > 0 sufficiently small

Select a random ordering 𝜎 of the items [𝑚]

Define

𝜀𝑅 𝑛 =
1

𝑛𝛼
, 𝜀𝐽 𝑡 =

1

𝑡𝛼

At time 𝑡:

• W.p. 𝜀𝑅 𝑛 : for each user, recommend random unconsumed item

(random exploration)

• W.p. 𝜀𝐽 𝑡 : for each user, recommend next unconsumed item in ordering 𝜎

(joint exploration)

• Else: for each user, recommend unconsumed item that maximizes 𝑝 𝑢𝑗
𝑡

(exploitation)

Theoretical analysis

Conditions on cluster probability strings 𝝁𝟏, … , 𝝁𝒌:

• Low noise. For every cluster 𝑔 and item 𝑖

𝜇𝑔𝑖 −
1

2
≥ Δ

E[cosine similarity] between users’

ratings from clusters 𝑔 and ℎ

• Cosine separation. For any two different clusters 𝑔 and ℎ

1

𝑚
2𝝁𝒈 − 𝟏, 2𝝁𝒉 − 𝟏 ≤ 4𝛾Δ2

Item liked w.p. close to 1/2

too ambiguous!

Enables cosine-similarity to

distinguish between

clusters after enough time

Simulation results

• For dense (200 user by 500 item) subset of movielens10m & Netflix datasets,

reveal entries over time to simulate online recommendation system

(ratings quantized to +1,0, −1)

• Look at cumulative sum of ratings averaged across users

