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Sparse Projections of Medical Images onto Manifolds 
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Motivation Results 
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Manifold learning in medical imaging 

 e.g., segmentation, registration, computational anatomy, 

classification, detection, respiratory gating 
 

Some applications demand fast projection to manifold 

Sparse Kernel Ridge Regression 
ℍ: reproducing kernel Hilbert space of functions ℝ𝑑 → ℝ𝑝 

𝕂 𝑥, 𝑥′ : kernel for ℍ specifying how similar 𝑥, 𝑥′ ∈ ℝ𝑑 are 

Main idea 
• Use any manifold learning algorithm to embed input points 

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℝ𝑑 to 𝑦1, 𝑦2, … , 𝑦𝑛 ∈ ℝ𝑝 (𝑑 ≫ 𝑝) 

• Compute “good” projection 𝑓 that maps ℝ𝑑 to ℝ𝑝 and depends 

on only a few of 𝑥1, 𝑥2, … , 𝑥𝑛 (support vectors) 

• Computational cost proportional to # support vectors! 

• Trade off projection accuracy with computational cost 

𝑓 = arg min
𝑓∈ℍ

 𝑦𝑖 − 𝑓 𝑥𝑖 2
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Kernel ridge regression 

Solution: 𝑓 ⋅ =  𝕂 ⋅, 𝑥𝑖 𝛼 𝑖

𝑛
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Sparse kernel ridge regression 

Synthetic data 
• 1000-pt Swiss roll  2D (Hessian eigenmaps) 

• Kernel: 𝕂 𝑥, 𝑥′ = exp − 𝑥 − 𝑥′
2
2/𝜎2  

Respiratory gating for ultrasound 
• 640x480 images  1D (Laplacian eigenmaps) 

• 1D manifold enables tracking patient breathing cycle 

• Train on first 200 frames of sequence, embed rest using sparse 

projection, correlate with embedding of full seq. 

(repeat with 5 seq’s of lengths 354, 335, 298, 371, 298) 

MRI classification to monitor tissue heating 
• 64x64 axial images  2D (Laplacian eigenmaps) 

• Nearest-neighbor classifier in 2D manifold labels each 

image as belonging to a body part (head, neck, lung, etc.) 
 real-time estimation of patient position in scanner 

# support vectors seems to scale with “complexity” of embedding, 
not number of training data points (𝝀=0.1, 𝝈=4, 𝜺=0.003) 

Trade off classification rate & computational complexity 

Depends on all input points! 

Smoothness Data fit 

Manifold learning: 
computes 

embedding 

High dimensional ℝ𝑑 Low dimensional ℝ𝑝 

Projection 

(out-of-sample extension): 
map arbitrary point in 

ℝ𝑑 to manifold in ℝ𝑝 

This paper: sparse projection 
High dimensional ℝ𝑑 

Support vectors 

(subset of input points) 

New point 𝑥 

Compare 𝑥 ∈ ℝ𝑑 only 

to support vectors 

Low dimensional ℝ𝑝 

𝒇 

𝐾𝑖𝑗 = 𝕂(𝑥𝑖 , 𝑥𝑗) 𝛼 = 𝐾 + 𝜆𝐼𝑛×𝑛
−1𝑌, 

Compute 𝑓 ⋅ =  𝕂 ⋅, 𝑥𝑖 𝛼 𝑖

𝑛

𝑖=1

 

𝛼 = arg min
𝛼∈ℝ𝑛×𝑝

 𝛼𝑖 2

𝑛

𝑖=1

     s. t.     𝐾𝛼 − 𝐾𝛼 𝐹
2 ≤ 𝑛𝜀2 

mixed ℓ1/ℓ2 norm encourages many 𝛼 𝑖’s to be 0 

• Many 𝛼 𝑖’s are zero 

•
1

𝑛
 𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖) 2

2𝑛
𝑖=1 ≤ 𝜀2 

guarantee 𝜀 approx. to KRR 
(higher 𝜀  fewer support vectors) 

Formulate as convex program: 

Depends only on support vectors 
(𝒙𝒊 for which 𝜶 𝒊 ≠ 𝟎) 

where 

 solve with FISTA 

Trade off correlation coefficient & computational complexity 

Projected support vectors 
(𝝀=0.1, 𝝈=4, 𝜺=0.003) 

Higher 𝝀 or 𝝈 result in 

fewer support vectors 

Don’t correspond to uniformly 

sampled points in input space! 

KRR vs. our method 
(𝝀=0.1, 𝝈=4, 𝜺=0.003) 
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Classification rate 𝜀 𝜀 

# pts in Swiss roll 1000 2000 3000 4000 

# support vectors 161 174 163 170 
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𝜀 

# support vectors similar between embedding of first 200 frames and 
embedding of full seq. (𝝀=0.1, 𝜺=0.001) 

Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 

# support 

vectors 

First 200 frames 79 99 51 53 41 

Full seq. 73 100 61 45 50 

Projection of all points of 

Swiss roll 
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𝜀 𝜀 

Standard approaches 

compare to all input points! 

Input points 𝑥1, 𝑥2, … , 𝑥𝑛 Embedding 𝑦1, 𝑦2, … , 𝑦𝑛 


