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Abstract
Sparse coding represents input signals each as a sparse linear combination of a set of
basis or dictionary elements where sparsity encourages representing each input signal
with a few of the most indicative dictionary elements. In this thesis, we extend sparse
coding to allow dictionary elements to undergo deformations, resulting in a general
probabilistic model and accompanying inference algorithm for estimating sparse linear
combination weights, dictionary elements, and deformations.

We apply our proposed method on functional magnetic resonance imaging (fMRI)
data, where the locations of functional regions in the brain evoked by a specific cognitive
task may vary across individuals relative to anatomy. For a language fMRI study,
our method identifies activation regions that agree with known literature on language
processing. Furthermore, the deformations learned by our inference algorithm produce
more robust group-level effects than anatomical alignment alone.
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Chapter 1

Introduction

FINDING succinct representations for signals such as images and audio enable us to

glean high-level features in data. For example, an image may be represented as a

sum of a small number of edges or patches, and the presence of certain edges and patches

may be used as features for object recognition. As another example, given a household’s

electricity usage over time, representing this signal as a sum of contributions from

different electrical devices could allow us to pinpoint the culprits for a high electricity

bill. These scenarios exemplify sparse coding, which refers to representing an input

signal as a sparse linear combination of basis or dictionary elements, where sparsity

selects the most indicative dictionary elements that explain our data. The focus of this

thesis is on estimating these dictionary elements and, in particular, extending sparse

coding to allow dictionary elements to undergo potentially nonlinear deformations.

To illustrate what we seek to achieve with our proposed model, we provide the

following toy example. Suppose we observe the two signals shown below:

- 10 - 5 0 5 10

0.2

0.4

0.6

0.8

1.0

(a) Signal 1

- 10 - 5 0 5 10

0.2

0.4

0.6

0.8

1.0

(b) Signal 2

Figure 1.1: Toy example observed signals.
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We imagine these were generated by including a box and a Gaussian bump except

that they have different heights and the signal has been shifted left or right. If we

don’t actually know that the true shapes are a box and a Gaussian bump and we want

to estimate these shapes, then a naive approach is to make an estimate based on the

average of the observed signals:

- 10 - 5 0 5 10

0.2

0.4

0.6

0.8

1.0

Figure 1.2: Toy example average signal.

For example, we could estimate the two underlying shapes to be the two-box mixture

and the two-Gaussian-bump mixture shown above, which unfortunately don’t resemble

a single box and a single Gaussian bump. We could instead first align the observed

signals to obtain the following shifted signals:
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(a) Shifted Signal 1
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(b) Shifted Signal 2

Figure 1.3: Toy example observed signals that have undergone shifts.



13

Then the average of these shifted signals looks as follows:

- 10 - 5 0 5 10

0.2

0.4

0.6

0.8

1.0

Figure 1.4: Toy example average of the shifted signals.

From the average of the shifted signals, we can recover the box and the Gaussian

bump! Moreover, the peak values in the box and the Gaussian bump are, respectively,

higher than the peak values in the two-box mixture and the two-Gaussian-bump mixture

in Fig. 1.2, which can be viewed as a result of destructive interference in the case where

we don’t align the signals before averaging. Generalizing from this toy example, this

thesis looks at the problem of taking as input a set of images and producing as output

a dictionary (e.g., a box and a Gaussian bump in the above example) and an ensemble

of deformations (which could be much more complicated then shifts) to better align the

images.

The key motivating application driving this thesis is the fundamental problem in

neuroscience of understanding functional organization of the brain. Mapping out where

different functions, such as language processing and face recognition, evoke activations

in the brain provides insight into how we as a species perform day-to-day tasks and how

abnormalities in these functional locations relate to neurological disorders. But arriving

at any such population-level theory of functional organization of the brain demands that

we find correspondences between activation patterns evoked by a specific function across

different people’s brains. We cast this problem of finding correspondences between

functional activation regions across individuals as a sparse coding problem where we

want dictionary elements to correspond to group-level functional units in the brain,

which refer to brain regions consistently activated by a specific task across individuals.

The problem with just applying sparse coding without incorporating deformations

and hoping that the dictionary elements correspond to group-level functional units is

twofold. First, people’s brains vary anatomically, so images of different people’s brains
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don’t line up perfectly. However, even if we account for this anatomical variability by

first pre-aligning the brains to be in the same common anatomically-normalized space,

when given the same stimulus such as a sentence to read, different people’s brains will

exhibit activations in different locations in the normalized space! This problem of spa-

tial variability of functional activation patterns suggests that a possible solution is to

model functional units as dictionary elements that deform into the space of each indi-

vidual’s brain. This leads us naturally to deformation-invariant sparse coding, where

we estimate dictionary elements that may undergo deformations, so each dictionary ele-

ment is unique up to a deformation. Of course, these deformations can’t be too drastic,

deforming, say, a disk into any arbitrary shape.

The main contributions of this thesis are as follows:

• We formulate a probabilistic model for deformation-invariant sparse coding and

provide an accompanying inference algorithm that alternates between estimating

sparse linear combination weights, deformations, and dictionary elements. For

estimating each deformation, the inference algorithm can use a broad class of

existing image registration algorithms, i.e., algorithms for aligning two different

images. We interpret our inference algorithm as a way to align a group of images

while applying spatially-adaptive intensity equalization per image.

• We demonstrate deformation-invariant sparse coding on neuroimaging data from

a language study. Our method identifies activation regions that agree with known

literature on language processing and establishes correspondences among activa-

tion regions across individuals, producing more robust group-level effects than

anatomical alignment alone.

Outline. We provide background material in Chapter 2. Our probabilistic deformation-

invariant sparse coding model is presented in Chapter 3 and is used to find functional

units in the brain for language processing in Chapter 4. We conclude in Chapter 5.



Chapter 2

Background

We begin this chapter by describing how images and deformations are represented

throughout this thesis including notation used. We then provide background material

on sparse coding, estimating deformations for aligning images, and finding group-level

brain activations evoked by functional stimuli in functional magnetic resonance imag-

ing (fMRI).

� 2.1 Images, Deformations, Qualitative Spaces, and Masks

To represent images and deformations, we first define the space in which they exist.

Consider a finite, discrete set of points Ω ⊂ Rd that consists of coordinates in d-

dimensional space that are referred to as pixels for 2D images (d = 2) and volumetric

pixels or voxels for 3D images (d = 3). For simplicity, we refer to elements of Ω as

voxels when working with signals that are not 3D images.

We represent an image in two different ways: as a vector in R|Ω| and as a function

that maps Ω to R. Specifically, for an image I, we write I ∈ R|Ω| (vector representation)

and use indexing notation I(x) ∈ R to mean the intensity value of image I at voxel x ∈ Ω

(functional representation). These two representations are equivalent: by associating

each voxel x ∈ Ω with a unique index in {1, 2, . . . , |Ω|}, value I(x) becomes just the

value of vector I ∈ R|Ω| at the index associated with voxel x.

But what if we want to know the value of an image at a voxel that’s not in Ω?

To handle this, we extend notation by allowing indexing into an image I ∈ R|Ω| by a

voxel that may not be in Ω. Specifically, we allow indexing into a voxel in Ωc, which

is a continuous extension Ωc of Ω, where formally Ωc is a simply-connected open set

that contains Ω. This means that Ωc is a region comprising of a single connected

component, does not have any holes in it, and contains the convex hull of Ω. Then I(y)

for y ∈ Ωc \ Ω refers to an interpolated value of image I at voxel y /∈ Ω; e.g., nearest-

15



16 CHAPTER 2. BACKGROUND

neighbor interpolation would simply involve finding x ∈ Ω closest in Euclidean distance

to voxel y and outputting I(y)← I(x).

Next, we discuss deformations, which use interpolation. We define a deformation Φ

as a mapping from Ωc to Ωc. Note that if Φ only mapped from Ω to Ω, then Φ

would just be a permutation, which is insufficient for our purposes. We work with

deformations that are diffeomorphisms, which means that they are invertible and both

the deformations and their inverses have continuous derivatives of all orders. We let

|JΦ(x)| denote the Jacobian determinant of Φ evaluated at voxel x. Crucially, |JΦ(x)|
can be interpreted as the volume change ratio for voxel x due to deformation Φ, i.e.,

|JΦ(x)| partial voxels from the input space of Φ warps to voxel x in the output space

of Φ. To see this, consider a compactly supported, continuous function f : Ωc → R.

From calculus, we have ∫
Ωc

f(Φ−1(x))dx =

∫
Ωc

f(x)|JΦ(x)|dx. (2.1)

Observe that voxel x has weight |JΦ(x)| in image f while it has weight 1 in image

f ◦ Φ−1. Thus, due to applying Φ to f ◦ Φ−1 to obtain f , the “volume” at voxel x

changes from 1 to |JΦ(x)|. This intuition of volume change will be apparent when we

discuss averaging deformed images later in this chapter. Also, as eq. (2.1) suggests,

for Φ to be invertible, we must have |JΦ(x)| > 0 for all x ∈ Ωc.

We can interpret deformation Φ as a change of coordinates that may potentially be

nonlinear; Φ deforms an input space to an output space and while both input and output

spaces are Ωc, they may have very qualitative meanings! For example, for Ωc = R+ (the

positive real line) and Φ(x) = log(x + 1), if the input space is in units of millimeters,

then the output space, while also being R+, is in units of log millimeters. Thus, each

image is associated with a qualitative space (e.g., millimeter space, log-millimeter space,

the anatomical space of Alice’s brain, the anatomical space of Bob’s brain).

With an image I and deformation Φ, we can define deformed image I ◦ Φ ∈ R|Ω|

using our functional representation for images:

(I ◦ Φ)(x) = I(Φ(x)) for x ∈ Ω,

where Φ(x) could be in Ωc \ Ω, requiring interpolation. Importantly, image I ◦ Φ has

the interpretation of image I being deformed by Φ such that I ◦Φ now has coordinates

defined by the input space of Φ.
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Henceforth, when dealing with images, we often omit writing out the voxel space Ω

and liberally switch between using vector and functional representations for images. We

typically use variable x to denote a voxel. In this work, we consider diffeomorphisms

and note that by setting Ωc = Rd, then translations, rotations, and invertible affine

transformations are all examples of diffeomorphisms mapping Ωc to Ωc.

� 2.2 Sparse Coding

As mentioned previously, sparse coding refers to representing an input signal as a sparse

linear combination of dictionary elements. For example, sparse coding applied to natural

images can learn dictionary elements resembling spatial receptive fields of neurons in

the visual cortex [27, 28]. Applied to images, video, and audio, sparse coding can

learn dictionary elements that represent localized bases [12, 23, 25, 27, 28, 40]. In this

section, we review sparse coding, its associated optimization problem, its probabilistic

interpretation, and its relation to factor analysis.

In sparse coding, we model observations I1, I2 . . . , IN ∈ RP to be generated from

dictionary elements D1, D2, . . . , DK ∈ RP as follows:

In =

K∑
k=1

wnkDk + εn for n = 1, 2, . . . , N, (2.2)

where weights wn ∈ RK are sparse (i.e., mostly zero), and noise εn ∈ Rd is associated

with observation n. For notational convenience, we write eq. (2.2) in matrix form:

I = Dw + ε, (2.3)

where we stack column vectors to form matrices I = [I1|I2| · · · |IN ] ∈ RP×N , D =

[D1|D2| · · · |DK ] ∈ RP×K , w = [w1|w2| · · · |wN ] ∈ RK×N , and ε = [ε1|ε2| · · · |εN ] ∈
RP×N . We aim to find dictionary D and sparse weights w that minimize data-fitting

error ‖I −Dw‖2F =
∑N

n=1 ‖In −Dwn‖
2
2, where ‖ · ‖F and ‖ · ‖2 refer to the Frobenius

and Euclidean norms, respectively.

However, as written, finding dictionary D and sparse weights w is an ill-posed

problem because scaling weight wnk by some constant c > 0 for all n while scaling

dictionary element Dk by 1/c results in the same observation I. Thus, we require

a constraint on either the weights or the dictionary elements. Often a constraint is

placed on the latter by requiring ‖Dk‖2 ≤ 1 for each k. A less worrisome issue is that
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permuting the dictionary elements and their associated weights also yields the same

observed signal; this is addressed by just recognizing that the ordering of estimated

dictionary elements is not unique.

Actually finding dictionary elements and sparse weights requires that we prescribe

a relevant optimization problem. We begin with one such optimization problem:

min
w,D

{
‖I −Dw‖2F + λ

N∑
n=1

‖wn‖1

}
subject to: ‖Dk‖2 ≤ 1 for k = 1, . . . ,K, (2.4)

where ‖ · ‖1 denotes the `1 norm, which encourages sparsity [35], and constant λ ≥ 0

trades off minimizing data-fitting error versus sparsity of the weights. Increasing λ

favors sparser weights at the expense of possibly increased data-fitting error. Note that

we could swap the `1 norm with a different regularizer provided that it encourages

sparsity.

Optimization problem (2.4) is block convex but not jointly convex in weights w

and dictionary D, so a common strategy for numerical optimization is the following

alternating minimization scheme:

1. Hold dictionary D constant and minimize over weights w. We can minimize over

each wn separately by solving the following convex optimization problem, referred

to as the Lasso [35]:

min
wn∈RK

‖In −Dwn‖22 + λ‖wn‖1 for n = 1, . . . , N. (2.5)

2. Hold weights w constant and minimize over dictionary D, which involves solving

the following convex optimization problem:

min
D∈RP×K

‖I −Dw‖2F subject to: ‖Dk‖2 ≤ 1 for k = 1, . . . ,K. (2.6)

While both steps are convex and can be solved by general purpose convex program

solvers, exploiting structure in the sparse coding problem enables more efficient opti-

mization algorithms, such as that of Lee et al. [22].

Optimization problem (2.4) has a probabilistic interpretation. Letting each εn

consist of i.i.d. N (0, σ2) entries and giving each scalar weight wnk a Laplace prior
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 In 

N 

       wnk 

K 

 ̧

¾ 
2 D  

Figure 2.1: A probabilistic graphical model for sparse coding.

p(wnk;λ) ∝ exp(−λ|wnk|), eq. (2.2) implies a probability distribution

p(I,w;D, λ, σ2) =
N∏
n=1

p(wn;λ)p(In|wn;D, σ2)

∝
N∏
n=1

e−λ‖wn‖1N (In;Dwn, σ
2IP×P )

∝ exp

{
−λ

N∑
n=1

‖wn‖1 −
1

2σ2
‖I −Dw‖2F

}
, (2.7)

where IP×P is the P -by-P identity matrix, not to be confused with observed images I.

A graphical model representation is given in Fig. 2.1. Dictionary D and variance σ2

are treated as parameters, where we constrain ‖Dk‖2 ≤ 1 for each k. However, these

variables can also be treated as random with prior distributions. As a preview, our

formulation of deformation-invariant sparse coding treats the dictionary D as a random

variable and variance σ2 as a constant.

With I observed, maximizing p(w|I;D, λ, σ2) over (w,D) is equivalent to mini-

mizing negative log p(I,w;D, λ, σ2) over (w,D), given by the following optimization

problem:

min
w,D

{
1

2σ2
‖I −Dw‖2F + λ

N∑
n=1

‖wn‖1

}
subject to: ‖Dk‖2 ≤ 1 for k = 1, . . . ,K.

(2.8)

This is equivalent to optimization problem (2.4) with λ in (2.4) replaced by 2λσ2.



20 CHAPTER 2. BACKGROUND

We end this section by relating sparse coding to factor analysis. In particular, if

the weights were given i.i.d. N (0, 1) priors instead, then we get a factor analysis model,

where D is referred to as the loading matrix and w consists of the factors, which

are no longer encouraged to be sparse due to the Gaussian prior. A key feature is

that with D fixed, estimating the factors for a signal just involves applying a linear

transformation to the signal. Also, the number of factors K per signal is selected

to be less than P , the dimensionality of each of In, and so factor analysis can be

thought of as a linear method for dimensionality reduction whereby we represent In ∈
RP using a lower-dimensional representation wn ∈ RK residing in a subspace of RP .

In contrast, while sparse coding is based on a linear generative model, once we fix

the dictionary, estimating weights for an observed signal involves solving the Lasso

rather than just applying a linear transformation. Furthermore, sparse coding does

not necessarily perform dimensionality reduction since in many applications of sparse

coding we have K > P . Thus, we can view sparse coding as nonlinearly mapping

In ∈ RP to wn ∈ RK , achieving dimensionality reduction only if K < P .

� 2.3 Estimating a Deformation that Aligns Two Images

When extending sparse coding to handle deformations, we need to specify what class of

deformations we want to consider, e.g., translations, invertible affine transformations,

diffeomorphisms. Many such classes already have existing image registration algorithms

for estimating a deformation that aligns or registers two images. For example, we can

estimate a diffeomorphism that aligns two images using the diffeomorphic Demons al-

gorithm [36]. In this section we briefly describe how image registration is formulated as

an optimization problem and outline Demons registration and its diffeomorphic vari-

ant, the latter of which is used when applying deformation-invariant sparse coding to

neuroimaging data in Chapter 4.

� 2.3.1 Pairwise Image Registration as an Optimization Problem

In general, registering a pair of images I and J can be formulated as finding a defor-

mation Φ that minimizes energy

Epair(Φ; I, J) =
1

σ2
i

Sim(I ◦ Φ, J) +
1

σ2
T

Reg(Φ), (2.9)
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where Sim(·, ·) measures how similar two images are, Reg(·) measures how complicated

a deformation is, and constants σ2
i , σ

2
T > 0 trade off how much we favor minimizing

the similarity term over minimizing deformation complexity. Image I is said to be the

“moving” image since we are applying the deformation Φ to I in the similarity term

whereas image J is the “fixed” image. As an example, for estimating a translation,

we could have Sim(I ◦ Φ, J) = ‖I ◦ Φ − J‖22 and Reg(Φ) = 0 if Φ is a translation and

Reg(Φ) =∞ otherwise.

� 2.3.2 Diffeomorphic Demons Registration

For aligning images of, say, two different people’s brains, a simple deformation like a

translation is unlikely to produce a good alignment. Instead, we could use a deformation

with a “dense” description, specifying where each voxel gets mapped to. Intuitively,

we would like to obtain a deformation that is smooth, where adjacent voxels in the

moving image aren’t mapped to wildly different voxels in the fixed image. Moreover,

we would like the deformation to be invertible since if we can warp image I to be close

to image J , then we should be able to apply the inverse warp to J to get an image close

to I. This motivates seeking a deformation that is a diffeomorphism, which is both

smooth and invertible. We now review log-domain diffeomorphic Demons [37], which

is an algorithm that estimates a diffeomorphism for aligning two images.

The key idea is that we can parameterize a diffeomorphism Φ by a velocity field VΦ,

where Φ = exp(VΦ) and the exponential map for vector fields is defined in [2] and can

be efficiently computed via Alg. 2 of [36]. Importantly, the inverse of Φ is given by

Φ−1 = exp(−VΦ). So if we work in the log domain defined by the space of velocity

fields and exponentiate to recover deformations, then we can rest assured that such

resulting deformations are invertible.

Parameterizing diffeomorphisms by velocity fields, log-domain diffeomorphic Demons

registration estimates diffeomorphism Φ for aligning moving image I to fixed image J

by minimizing energy

Epair(Φ; I, J) = min
Γ=exp(VΓ)

{
1

2σ2
i

‖I ◦ Φ− J‖22 +
1

σ2
c

‖ log(Γ−1 ◦ Φ)‖2V +
1

σ2
T

Reg(log(Γ))

}
subject to: Φ = exp(VΦ), (2.10)

where Γ is an auxiliary deformation, norm ‖ · ‖V for a vector field is defined such that

‖u‖2V ,
∑

x ‖u(x)‖22 (u(x) is a velocity vector at voxel x), constants σ2
i , σ

2
c , σ

2
T > 0
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trade off the importance of the three terms, and Reg(·) is a fluid-like or diffusion-

like deformation regularization from [6] that encourages deformation Φ to be smooth

albeit indirectly through auxiliary deformation Γ. Essentially Reg(·) is chosen so that

if we fix Φ and minimize over Γ, then the resulting optimization problem just involves

computing a convolution. In fact, this is possible [5] provided that Reg(·) is isotropic

and consists of a sum of squared partial derivatives (e.g., Reg(V) = ‖∇V‖2V ); such a

regularization function is referred to as an isotropic differential quadratic form (IDQF).

Thus, in practice, often Reg(·) is not specified explicitly and instead Gaussian blurring

is used to update auxiliary deformation Γ. Framed in terms of the general pairwise

image registration energy (2.9), log-domain diffeomorphic Demons has Sim(I ◦Φ, J) =
1
2‖I ◦ Φ− J‖22 and replaces 1

σ2
T

Reg(·) in eq. (2.9) with function

LogDiffDemonsReg(Φ) = min
Γ=exp(VΓ)

{
1

2σ2
c

‖ log(Γ−1 ◦ Φ)‖2V +
1

σ2
T

Reg(log(Γ))

}
, (2.11)

which still only depends on Φ as σ2
c and σ2

T are treated as constants.

We sketch the strategy typically used to numerically minimize energy (2.10). For

simplicity, we consider the case where Reg(·) is a diffusion-like regularization, which

just means that Reg(·) is an IDQF as defined in [5].1 A key idea is that we switch

between eq. (2.10) and an alternative form of eq. (2.10) resulting from the following

change of variables: Denoting Φ = Γ◦exp(u) = exp(VΓ)◦exp(u), we can rewrite energy

(2.10) as

Epair(Φ; I, J) = min
VΓ

{
1

2σ2
i

‖I ◦ exp(VΓ) ◦ exp(u)− J‖22 +
1

σ2
c

‖u‖2V +
1

σ2
T

Reg(VΓ)

}
,

subject to: Φ = exp(VΓ) ◦ exp(u). (2.12)

Let Φ̂ = exp(V̂Φ) denote the current estimate of Φ = exp(VΦ) and Γ̂ = exp(V̂Γ) denote

the current estimate of Γ = exp(VΓ) in the inner optimization problem. After specifying

some initial guess for V̂Γ, we minimize (2.10) by iterating between the following two

steps:

• With Γ̂ fixed, minimize energy in form (2.12), which amounts to solving:

û← argmin
u

{
1

σ2
i

‖I ◦ exp(V̂Γ) ◦ exp(u)− J‖22 +
1

σ2
c

‖u‖2V
}
. (2.13)

1A fluid-like regularization function, in addition to being an IDQF, depends on incremental changes,
i.e., Reg(V) = f(V(i) − V(i−1)) where i is the iteration number and f(·) is an IDQF.
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By modifying the noise variance to be voxel-dependent with estimate σ2
i (x) =

|I ◦ Φ̂(x)− J(x)|2 (and thus no longer a known constant) and applying a Taylor

approximation, we obtain a closed-form solution [36]:

û(x)← −

 J(x)− Î(x)

‖ − ∇Î(x)T ‖22 +
σ2
i (x)

σ2
c

∇Î(x)T , where Î , I ◦ Γ̂. (2.14)

Then update V̂Φ ← log(exp(V̂Γ) ◦ exp(û)) using the Baker-Campbell-Hausdorff

approximation:

V̂Φ ← V̂Γ + û+
1

2
[V̂Γ, û], (2.15)

where Lie bracket image [·, ·] is defined as

[V̂Γ, û](x) , |JV̂Γ
(x)|û(x)− |Jû(x)|V̂Γ(x) for voxel x. (2.16)

Finally update Φ̂← exp(V̂Φ).

• With Φ̂ = exp(V̂Φ) fixed, minimize energy in form (2.10), which amounts to solving:

V̂Γ ← argmin
VΓ

{
1

σ2
c

‖ log(Γ−1 ◦ Φ̂)‖2V +
1

σ2
T

Reg(log(Γ))

}
= argmin

VΓ

{
1

σ2
c

‖ log(exp(−VΓ) ◦ exp(V̂Φ))‖2V +
1

σ2
T

Reg(VΓ)

}
≈ argmin

VΓ

{
1

σ2
c

‖V̂Φ − VΓ‖2V +
1

σ2
T

Reg(VΓ)

}
. (2.17)

As discussed in Section 3 of [5], the solution to the above optimization problem

is V̂Γ ← Kdiff ∗ V̂Φ, where “∗” denotes convolution and Kdiff is some convolution

kernel.

Importantly, introducing auxiliary deformation Γ enables the above alternating mini-

mization with two relatively fast steps. As shown in [6], to handle fluid-like regular-

ization, the only change is that in the first step, after solving optimization (2.13), we

immediately set û← Kfluid∗û for some convolution kernel Kfluid. Typically, convolution

kernels Kdiff and Kfluid are chosen to be Gaussian.
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� 2.4 Estimating Deformations that Align a Group of Images

We now present two approaches to aligning a group of images, referred to as groupwise

registration. One approach is parallelizable across images whereas the other is not. Our

inference algorithm for deformation-invariant sparse coding uses the latter as part of

initialization and, beyond initialization, can be viewed as an extension to the former.

Both approaches seek invertible, differentiable deformations Φ = {Φ1,Φ2, . . . ,ΦN}
that align images I = {I1, I2, . . . , IN} to obtain average image J , which is “close” to

deformed images I1 ◦ Φ1, I2 ◦ Φ2, . . . , IN ◦ ΦN . Specifically, they find deformations Φ

and average image J by numerically minimizing energy

Egroup(Φ, J ; I) =
N∑
n=1

Epair(Φn; In, J) (2.18)

subject to an “average deformation” being identity, which we formalize shortly. In

general, without constraining the ensemble of deformations, the problem is ill-posed

since modified deformations Φ1 ◦ Γ,Φ2 ◦ Γ, . . . ,ΦN ◦ Γ for an invertible deformation Γ

could result in the same total energy (e.g., let Epair(Φ; I, J) = ‖I ◦ Φ− J‖22 + ‖∇Φ‖2V ,

restrict Φ to be a diffeomorphism, and take Γ to be any translation). The idea is

that the qualitative space of average image J could be perturbed without changing the

overall energy! Thus, an average deformation constraint anchors the qualitative space

of average image J .

We use the following average deformation constraint on diffeomorphisms Φ1 =

exp(V1), . . . ,ΦN = exp(VN ):

1

N

N∑
n=1

Vn(x) = 0 for each voxel x. (2.19)

If the deformations are sufficiently small, then this constraint approximately corre-

sponds to requiring Φ1◦Φ2◦· · ·◦ΦN to be identity since Φ1◦Φ2◦· · ·◦ΦN ≈ exp(
∑N

n=1 Vn).

To modify deformations Φ̃1 = exp(Ṽ1), . . . , Φ̃N = exp(ṼN ) to obtain deformations

Φ̂1 = exp(V̂1), . . . , Φ̂N = exp(V̂N ) that satisfy the above constraint, we compute:

V̂n(x)← Ṽn(x)− 1

N

N∑
m=1

Ṽn(x) for each voxel x. (2.20)

Before plunging into the parallel and serial approaches to groupwise registration, we
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discuss how to compute average image J if we fix the deformations Φ. This computation

depends on the form of the pairwise registration energy Epair. We consider two forms

of pairwise energy both based on squared `2 cost:

• Average space cost. The similarity is evaluated in the qualitative space of av-

erage image J :

Epair(Φn; In, J) = ‖In ◦ Φn − J‖22 + Reg(Φn). (2.21)

With deformations Φ fixed, minimizing (2.18) with respect to average image J

amounts to setting each partial derivative ∂Egroup/∂J(x) to 0 for each voxel x. A

straightforward calculation shows that the resulting average image estimate Ĵ for

fixed Φ is given by:

Ĵ(x)← 1

N

N∑
n=1

In(Φn(x)) for each voxel x. (2.22)

More compactly, we can write Ĵ ← 1
N

∑N
n=1 In ◦ Φn.

• Observed space cost. The similarity is evaluated in the qualitative space of each

image In:

Epair(Φn; In, J) = ‖In − J ◦ Φ−1
n ‖22 + Reg(Φn). (2.23)

This form leads to more involved analysis. Letting Ω denote the voxel space and

Ωc a continuous extension of Ω, Eq. (2.1) suggests an approximation:

∑
x∈Ω

f(Φ−1
n (x)) ≈

∫
Ωc

f(Φ−1
n (x))dx =

∫
Ωc

f(x)|JΦn(x)|dx ≈
∑
x∈Ω

|JΦn(x)|f(x),

(2.24)

for which we can take f to be x 7→ (In(Φ(x))− J(x))2, and so

Epair(Φn; In, J) ≈
∑
x

|JΦn(x)|(In(Φn(x))− J(x))2 + Reg(Φn). (2.25)

With this approximation, setting partial derivative ∂Egroup/∂J(x) to 0 for each

voxel x yields average image estimate Ĵ given by:

Ĵ(x)←
∑N

n=1 |JΦn(x)|In(Φn(x))∑N
n=1 |JΦn(x)|

for each voxel x, (2.26)
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which is a weighted average where the contribution of each In(Φ(x)) is weighted

by the volume change due to Φn at voxel x, e.g., if Φn shrinks volume at x, then

|JΦn(x)| is small.

The average space and observed space costs for pairwise image registration differ in

that the fixed and moving images are swapped. Note that function Reg(·) need not

be the same for the two different costs and can be chosen so that, in either case, we

can apply an existing image registration algorithm. Typically the observed space cost is

used in practice because it makes more sense measuring error in the qualitative spaces of

observed images, which we can more easily make sense of, rather than in the qualitative

space of the average image J , which is essentially a space we’re constructing as part of

the alignment procedure.

� 2.4.1 Parallel Groupwise Image Registration

The parallel approach optimizes each pairwise energy in eq. (2.18) independently and

then enforces the average deformation constraint before computing the average image.

The algorithm proceeds as follows:

Algorithm 1: Parallel Groupwise Image Registration

Input: Images I = {I1, . . . , IN}
Output: Aligned image Ĵ , deformations Φ̂ that align input images

1 Make an initial guess Ĵ for average image J , e.g., Ĵ ← 1
N

∑N
n=1 In.

2 repeat
3 for n = 1, . . . , N do

4 Update Φ̂n by solving a pairwise image registration problem

Φ̂n ← argmin
Φn

Epair(Φn; In, Ĵ).

This step can be parallelized across n.

5 Update Φ̂ to satisfy the average deformation constraint using eq. (2.20).

6 Update Ĵ by computing average image Ĵ based on images I and estimated

deformations Φ̂ using eq. (2.22) for the average space cost or eq. (2.26) for
the observed space cost.

7 until convergence

Empirically, initializing Ĵ with average image 1
N

∑N
n=1 In may result in a final av-

erage image Ĵ that is blurry compared to initializing Ĵ to be one of the images In.

Moreover, computing the average image after all the deformations have been updated

as in line 6 may introduce some blurriness. For example, after doing the first pairwise
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registration in line 4, if we immediately recomputed the average image Ĵ , then this

could affect what estimate Φ̂2 we obtain and, in practice, can lead to a sharper average

image. This leads to the serial approach discussed next.

� 2.4.2 Serial Groupwise Image Registration

We outline in Alg. 2 a serial groupwise registration approach by Sabuncu et al. [31]

that essentially recomputes an average image before every pairwise registration and

can result in a sharper resulting average image Ĵ . Excluding the current image being

registered in line 9 is done to reduce bias in pairwise image registration from line 10 and

can be thought of as an implementation detail. Without excluding the current image

being registered, lines 7-12 of the algorithm can be viewed as doing coordinate ascent

for energy Egroup simply in a different order than in the parallel approach.

� 2.5 Finding Group-level Functional Brain Activations in fMRI

To determine what brain regions consistently activate due to a specific task such as

language processing or face recognition, we first need some way of measuring brain

activity. One way of doing this is to use fMRI, which will be the source of our data

in Chapter 4. We provide some fMRI basics before reviewing prior work on finding

group-level functional brain activations in fMRI.

FMRI is a widely used imaging modality for observing functional activity in the

brain. We specifically consider fMRI that uses the blood-oxygenation-level-dependent

(BOLD) magnetic resonance contrast [26]. BOLD fMRI is a non-invasive way to mea-

sure the blood oxygenation level in the brain, where local blood flow and local brain

metabolism are closely linked [30]. In particular, when neural activity occurs at a cer-

tain location in the brain, blood oxygenation level rises around that location, tapering

off after the neural activity subsides. As such, fMRI provides an indirect measure of

neural activity.

For this thesis, we treat fMRI preprocessing as a black box, referring the reader

to prior work [4, 16] for details on standard fMRI preprocessing and to the first three

chapters of [21] for an overview of fMRI analysis. The output of the black box, which

we treat as the observed fMRI data, consists of one 3D image per individual or sub-

ject, where each voxel has an intensity value roughly correlated with the voxel being

“activated” by a particular stimulus of interest, such as reading sentences. Assuming

the stimulus to be the same across a group of individuals, we seek to draw conclusions
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Algorithm 2: Serial Groupwise Image Registration

Input: Images I = {I1, . . . , IN}
Output: Aligned image Ĵ , deformations Φ̂ that align input images

/* First pass through data */
1 begin

2 Set initial average image estimate Ĵ to be one of the images. Without loss of

generality, set Ĵ ← I1. Set Φ̂1 ← Id.
3 for n = 2, . . . , N do

4 Update Ĵ by computing average image Ĵ based on images I1, I2, . . . , In−1

deformed by Φ̂1, Φ̂2, . . . , Φ̂n−1.

5 Update Φ̂n by solving a pairwise image registration problem

Φ̂n ← argmin
Φn

Epair(Φn; In, Ĵ).

6 Update Φ̂ to satisfy the average deformation constraint.

/* Subsequent passes through data */
7 repeat
8 for n = 1, . . . , N do

9 Update Ĵ by computing average image Ĵ based on images I \ {In} and

estimated deformations Φ̂ \ {Φ̂n}.
10 Update Φ̂n by solving a pairwise image registration problem

Φ̂n ← argmin
Φn

Epair(Φn; In, Ĵ).

11 Update Φ̂ to satisfy the average deformation constraint.

12 until convergence

13 Update Ĵ by computing average image Ĵ based on all images I and all estimated

deformations Φ̂.
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about how the group responds to the stimulus.

As mentioned in the introduction to this thesis, two types of variability pose chal-

lenges to accurately assessing the group response:

• Anatomical variability. Different subjects’ brains are anatomically different.

Thus, a popular procedure for obtaining the average group response is to first

align all subjects’ fMRI data to a common space, such as the Talairach space [32].

This involves aligning each individual’s fMRI data to a template brain [7].

• Functional variability. Even if we first aligned each subject’s brain into a com-

mon anatomically-normalized space so that anatomical structures line up perfectly,

when given a particular stimulus, different subjects experience brain activations

in different locations within the anatomically-normalized space.

After addressing anatomical variability by aligning images to a template brain, the

standard approach assumes voxel-wise correspondences across subjects, which means

that for a given voxel in the common space, different subjects’ data at that voxel

are assumed to be from the same location in the brain. Then the group’s functional

response at a voxel is taken to be essentially the average of the subjects’ fMRI data

at that voxel. This approach relies on the registration process being perfect and there

being no functional variability, neither of which is true [1, 17, 19].

Recent work addresses functional variability in different ways [31, 34, 39]. Thirion

et al. [34] identify contiguous regions, or parcels, of functional activation at the subject

level and then find parcel correspondences across subjects. While this approach yields

reproducible activation regions and provides spatial correspondences across subjects, its

bottom-up, rule-based nature does not incorporate a notion of a group template while

finding the correspondences. Instead, it builds a group template as a post-processing

step. As such, the model lacks a clear group-level interpretation of the estimated

parcels. In contrast, Xu et al. [39] use a spatial point process in a hierarchical Bayesian

model to describe functional activation regions. Their formulation accounts for vari-

able shape of activation regions and has an intuitive interpretation of group-level acti-

vations. However, since the model represents shapes using Gaussian mixture models,

functional regions of complex shape could require a large number of Gaussian compo-

nents. Lastly, Sabuncu et al. [31] sidestep finding functional region correspondences

altogether by estimating voxel-wise correspondences through groupwise registration of

functional activation maps from different subjects. This approach does not explicitly

model functional regions.
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In this thesis, we propose a novel way to characterize functional variability that

combines ideas from [31, 34, 39]. We model each subject’s activation map as a weighted

sum of group-level functional activation parcels that undergo a subject-specific defor-

mation. Similar to Xu et al. [39], we define a hierarchical generative model, but instead

of using a Gaussian mixture model to represent shapes, we represent each parcel as

an image, which allows for complex shapes. By explicitly modeling parcels, our model

yields parcel correspondences across subjects, similar to [34]. Second, we assume that

the template regions can deform to account for spatial variability of activation regions

across subjects. This involves using groupwise registration similar to [31] that is guided

by estimated group-level functional activation regions. We perform inference within

the proposed model using an algorithm similar to expectation-maximization (EM) [8]

and illustrate our method on the language system, which is known to have significant

functional variability [14].



Chapter 3

Probabilistic Deformation-Invariant

Sparse Coding

In this chapter, we present our probabilistic model for deformation-invariant sparse

coding and provide an accompanying EM-like inference algorithm. For simplicity, we

assume signals we deal with to be 3D images defined over uniformly-spaced voxels. Our

framework easily extends to other signals defined over uniformly-spaced coordinates.

� 3.1 Formulation

Let I = {I1, I2, . . . , IN} ⊂ R|Ω| be the N observed images and Ω be a discrete set

of voxels our images are defined over; we assume that Ω consists of uniformly-spaced

voxels aligned in a grid. While images in I all reside in R|Ω|, each image has a different

qualitative space as discussed in Section 2.1; for example, if I1 and I2 are images of two

different people’s brains, then voxel x ∈ Ω in images I1 and I2 might not correspond

to the same anatomical structure such as the hippocampus because different people’s

brains vary anatomically. In this example, qualitatively, I1 lives in subject 1’s space

and I2 lives in subject 2’s space. Thus, each observation n is associated with a different

qualitative space.

Denoting Ωc to be a continuous extension of Ω, we assume each observation n to have

an associated deformation Φn : Ωc → Ωc that is diffeomorphic and that these deforma-

tions Φ = {Φ1,Φ2, . . . ,ΦN} along with a dictionary of K imagesD = {D1, D2, . . . , DK}
generates the observed images I. Dictionary size K is a fixed constant and can be set

to the maximum number of dictionary elements we want to consider. As we show later,

model parameters can encourage dictionary elements to be 0, so the number of non-zero

dictionary elements could be less than K.

We assume that each observed image In is generated i.i.d. as follows. First, we

31
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Dictionary 

D1 D2 D3 

1. Generate weights for each dictionary element, e.g., wn = (0.3, 1, 0).

2. Form weighted sum of dictionary elements with wn:

0.3  +1  +0  = 

pre-image 

Jn 

D1 D2 D3 

3. Deform pre-image and add noise:

noise 

Jn Jn   ○ ©n 
{1 In 

©n 
{1 

Figure 3.1: Illustration of how our generative model produces observed image In for a
given dictionary of size K = 3.

draw weight vector wn ∈ RK where each scalar entry wnk is independently sampled

from distribution pw(·;λk). Then, we construct pre-image Jn =
∑K

k=1wnkDk. The

observed image In = Jn ◦ Φ−1
n + εn is the result of applying invertible deformation Φ−1

n

to pre-image Jn and adding white Gaussian noise εn with variance σ2. This generative

process is illustrated in Fig. 3.1 and defines the following joint probability distribution

over weight vector wn and observed image In for observation n:

p(In, wn|Φn,D;λ, σ2) =

[
K∏
k=1

pw(wnk;λk)

]
N

(
In;

K∑
k=1

wnk(Dk ◦ Φ−1
n ), σ2I|Ω|×|Ω|

)
,

(3.1)

where λ = {λ1, λ2, . . . , λK}.
Our goal is to infer dictionary D and deformations Φ given a training set I of ob-

servations so that for future observations that have the same qualitative spaces as our
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Figure 3.2: A probabilistic graphical model for our generative process.

training observations, we can treat the dictionary and observation-specific deformations

as fixed. Thus, the sparse linear combination weights are treated as latent variables dur-

ing training. Meanwhile, since we don’t know λ and σ2, we find maximum-likelihood es-

timates for these parameters. Mathematically, the resulting inference problem amounts

to solving the optimization problem

(D̂, Φ̂, λ̂, σ̂2)← argmin
D,Φ,λ,σ2

p(Φ,D|I;λ, σ2). (3.2)

For example, in our neuroimaging application, we learn a dictionary and deformations

from a training set that comes from N subjects, and we validate on held-out data from

the same subjects. At the end of this chapter, we briefly discuss several extensions:

(i) estimating sparse linear combination weights w in addition to (D,Φ,λ, σ2), which

is an easier problem as the weights are not treated as latent variables; (ii) having

deformations be both observation-specific and dictionary-element specific; (iii) handling

new observations that have qualitative spaces that aren’t in the training observations;

and (iv) incorporating ground truth segmentations for supervised learning.

� 3.1.1 Model Parameters

We treat each deformation Φn as a random parameter with prior distribution pΦ(·),
which can also be viewed as regularizing each deformation to prevent overfitting. Choice

of the deformation prior allows us to leverage existing image registration algorithms;

specifically, our inference algorithm described in Section 3.2 works with any registration
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algorithm that minimizes an energy of the form

E(Φ; I, J) =
1

2σ2
‖I ◦ Φ− J‖22 − log pΦ(Φ), (3.3)

for moving image I ∈ R|Ω| that undergoes deformation Φ and fixed image J ∈ R|Ω|,
where Φ is restricted to be in a subset of diffeomorphisms mapping Ωc to Ωc. To

prevent spatial drift of the dictionary elements during inference, we add a constraint

that the average deformation be identity where we define the average deformation to

be Φ1 ◦ Φ2 ◦ · · · ◦ ΦN . The overall prior on deformations Φ is thus

p(Φ) =

[
N∏
n=1

pΦ(Φn)

]
· 1 {Φ1 ◦ · · · ◦ ΦN = Id} , (3.4)

where 1{·} is the indicator function that equals 1 when its argument is true and equals 0

otherwise.

Our inference algorithm depends on the following volume change condition on each

deformation Φn: Letting |JΦn(x)| denote the Jacobian determinant of Φn evaluated

at voxel x, we require |JΦn(x)| ≤ φmax for all x ∈ Ω and for some pre-specified con-

stant φmax ≥ 1. As |JΦn(x)| is the volume change ratio for voxel x due to deforma-

tion Φn, the volume change condition can be thought of as a constraint on how much

deformation Φn is allowed to shrink or expand part of an image (e.g., if Φn is identity,

then |JΦn(x)| = 1 for all x ∈ Ω). Rather than folding the volume change condition in

as a constraint on each deformation Φn, we instead just require that prior pΦ be chosen

so that this condition is satisfied. This condition is essentially a regularity condition,

showing up in the derivation for the inference algorithm and also resulting in a rescaling

of images when estimating a deformation to align them during inference.

We also treat each dictionary element Dk as a random parameter. Similar to the

sparse coding setup in Section 2.2, we resolve the discrepancy between scaling Dk and

inversely scaling wnk by constraining each dictionary element Dk to have bounded `2

norm: ‖Dk‖2 ≤ 1. To encourage sparsity and smoothness, we introduce `1 and MRF

penalties. To encourage each dictionary element to be a localized basis, we require each

Dk to have spatial support (i.e., the set of voxels for which Dk is non-zero) contained

within an ellipsoid of pre-specified (maximum) volume Vmax and maximum semi-axis

length rmax; notationally, we denote the set of ellipsoids satisfying these two conditions

as E(Vmax, rmax).1 Finally, to discourage overlap between different dictionary elements,

1The semi-axis constraint ensures that we don’t have oblong ellipsoids that satisfy the volume con-
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we place an `1 penalty on the element-wise product between every pair of distinct

dictionary elements. Formally,

p(D;α, β, γ, Vmax, rmax) ∝ exp

−
K∑
k=1

(α‖Dk‖1 +
β

2
D>k LDk)− γ

∑
k 6=`
‖Dk �D`‖1


·
K∏
k=1

1

{
‖Dk‖2 ≤ 1,

∃Ek ∈ E(Vmax, rmax) s.t. Ek ⊇ support(Dk)

}
,

(3.5)

where hyperparameters α, β, γ, Vmax, and rmax are positive constants, “�” denotes

element-wise multiplication, and L is the graph Laplacian for a grid graph defined over

voxels Ω. As eq. (3.5) suggests, the spatial support of different dictionary elements may

be contained by different ellipsoids from E(Vmax, rmax).

Other model parameters are treated as non-random: λ parameterizes distributions

pw(·;λk) for each k, and σ2 is the variance of the Gaussian noise. We use MAP esti-

mation for D and Φ and ML estimation for λ and σ2. Cross-validation can be used

to select hyperparameters α, β, and γ. Hyperparameters Vmax and rmax are set to val-

ues representative for the maximum spatial support we want our dictionary elements

to have.

With the above model parameters, the full joint distribution for our model becomes

p(I,w,Φ,D;λ, σ2)

∝ p(D)
N∏
n=1

{
pΦ(Φn)

[
K∏
k=1

pw(wnk;λk)

]
N

(
In;

K∑
k=1

wnk(Dk ◦ Φ−1
n ), σ2I|Ω|×|Ω|

)}
,

(3.6)

where average deformation Φ1 ◦ · · · ◦Φn is identity and p(D) refers to eq. (3.5); we omit

writing out hyperparameters α, β, γ, Vmax, and rmax for notational convenience and

since we will not be maximizing over these variables with our inference algorithm. A

probabilistic graphical model representation for this distribution is given in Fig. 3.2.

straint yet have, for example, one semi-axis length extremely large and all others close to 0. This
constraint also allows us to quickly find the spatial support of each dictionary element during inference.
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� 3.1.2 Relation to Sparse Coding

With λ1 = · · · = λK = λ for some constant λ > 0, a Laplace prior for pw, no defor-

mations (i.e., deformations are all identity), and a uniform prior for each Dk on the

unit `2 disk (i.e., α = β = γ = 0 and Vmax = rmax = ∞), we obtain the probabilistic

sparse coding model (2.7) discussed in Section 2.2. We extend sparse coding by allow-

ing dictionary elements to undergo observation-specific deformations. We estimate a

set of deformations Φ and the distribution for latent weights w in addition to learn-

ing the dictionary D. Effectively, we recover dictionary elements invariant to “small”

deformations, where the “size” of a deformation is governed by the deformation prior.

Our deformation-invariant sparse coding model can be interpreted as mapping each

observation In ∈ R|Ω| to a pair (wn,Φn), where wn ∈ RK and function Φn maps Ωc to Ωc.

If K = o(|Ω|) and Φn has a sparse description of size o(|Ω|), then deformation-invariant

sparse coding can be interpreted as performing a nonlinear dimensionality reduction.

Specifically for deformations, the subset of diffeomorphisms we work with could give Φn

a sparse description. For example, if Φn is an invertible affine transformation, then it

is fully characterized by a small matrix. Recent work by Durrleman et al. [11] param-

eterizes diffeomorphisms by a sparse set of control points with accompanying velocity

vectors, which can represent more fine-grain deformations than affine transformations.

� 3.2 Inference

We use an EM-like algorithm2 to estimate deformations Φ, dictionary D, and non-

random model parameters (λ, σ2). Appendix A contains detailed derivations of the

algorithm. To make computation tractable, a key ingredient of the E-step is to approx-

imate posterior distribution p(w|I,Φ,D;λ, σ2) with a fully-factored distribution

q(w;ψ) =
N∏
n=1

K∏
k=1

qw(wnk;ψnk), (3.7)

where distribution qw(·;ψnk) is parameterized by ψnk. Importantly, we keep track of the

first and second moments of each latent weight wnk, denoted as 〈ŵnk〉 , Eq̂w [wnk|I, Φ̂, D̂]

and 〈ŵ2
nk〉 , Eq̂w [w2

nk|I, Φ̂, D̂], where q̂w = qw(·; ψ̂nk); collectively the first moments

are denoted as 〈ŵ〉 and the second moments as 〈ŵ2〉. Effectively the E-step involves

computing these moments, which are just expectations. The resulting algorithm is

2Due to approximations we make, the algorithm is strictly speaking not EM or even generalized EM.
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summarized in Alg. 3.

We elaborate on how each dictionary element estimate D̂k is updated. By holding

all other estimated variables constant, updating D̂k amounts to numerically minimizing

the following energy:

E(Dk)

=
1

2σ̂2

N∑
n=1

∑
x∈Ω

|JΦ̂n
(x)|

(In(Φ̂n(x))−
K∑
`=1

〈ŵn`〉D`(x)

)2

+ (〈ŵ2
nk〉 − 〈ŵnk〉2)D2

k(x)


+ α‖Dk‖1 +

β

2
D>k LDk + γ

∑
` 6=k
‖Dk �D`‖1, (3.13)

where Dk satisfies ‖Dk‖2 ≤ 1 and is contained within an ellipsoid of volume Vmax. This

procedure allows for a dictionary element to converge to 0, which would suggest the

dictionary element to be extraneous. As for how the numerical minimization is carried

out, we first solve a convex relaxation that omits the ellipsoid constraint. The resulting

convex problem can be efficiently solved using the fast iterative shrinkage-thresholding

algorithm (FISTA) [3], which we specialize for minimizing E(Dk) subject to ‖Dk‖2 ≤ 1

in Alg. 4. Next, we reintroduce the ellipsoid constraint via the rounding scheme given

in Alg. 5. The rounding scheme basically masks the output of the convex program’s

solution D̃k to an ellipsoid of maximum volume Vmax and maximum semi-axis length

rmax such that the intensities inside the ellipsoid are large in terms of `2 norm. A sketch

of how this ellipsoid is found:

1. For every ball Bc of radius rmax with center c ∈ Ω, compute “mass” image M(c) =∑
x∈Bc |D̃k(x)|2. Basically M(c) gives us a measure of how much intensity “mass”

is preserved by restricting image D̃k to ball Bc.

2. Rank all voxels c1, . . . , c|Ω| in Ω so that M(c1) ≥M(c2) ≥ · · · ≥M(c|Ω|).

3. For i = 1, . . . , |Ω|: Fit an ellipsoid to voxels in Bci that preserves as much `2 norm

as possible in D̃k. Keep track of which ellipsoid found so far preserves the most

amount of intensity, and break out of the for loop as soon as our best ellipsoid found

so far preserves more intensity than any of the remaining balls Bci+1 , . . . ,Bc|Ω| .

The first step here can actually be computed efficiently with the help of a fast Fourier

transform. To fit an ellipsoid for the third step, we use an approximation that may not

yield the best possible ellipsoid within a ball of radius rmax.
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Algorithm 3: Deformation-Invariant Sparse Coding Inference

Input: Observed images I, hyperparameters (α, β, γ)

Output: Estimated dictionary D̂, deformations Φ̂, model parameters (λ̂, σ̂2)

1 Make an initial guess for D̂, Φ̂, λ̂, σ̂2, and 〈ŵ〉.
2 repeat

/* E-step */
3 for n = 1, . . . , N do
4 for k = 1, . . . ,K do

5 Update approximating distribution parameter ψ̂nk:

ψ̂nk ← argmin
ψnk

D(qw(·;ψnk)‖pw(·|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2)), (3.8)

where D(·‖·) denotes Kullback-Leibler divergence, and

pw(·|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2) is the posterior distribution of wnk given

In, Φ̂n, D̂, and wn` = 〈ŵn`〉 for ` 6= k.

6 Compute expectations 〈ŵnk〉 and 〈ŵ2
nk〉 using ψ̂nk.

/* M-step */
7 for n = 1, . . . , N do

8 Compute intermediate deformation estimate Φ̃n by registering rescaled, observed

image
√
φmaxIn to rescaled, expected pre-image

√
φmax

∑K
k=1〈ŵnk〉D̂k:

Φ̃n ← min
Φn

 1

2σ2

∥∥∥∥∥(
√
φmaxIn) ◦ Φn −

√
φmax

K∑
k=1

〈ŵnk〉D̂k

∥∥∥∥∥
2

2

− log pΦ(Φn)

 .

(3.9)
This step can be parallelized across observations.

9 for n = 1, . . . , N do

10 Enforce average deformation constraint to update deformation estimate Φ̂n:

Φ̂n ← exp

(
Ṽn −

1

N

N∑
m=1

Ṽm

)
, where Φ̃n = exp(Ṽn). (3.10)

11 for k = 1, . . . ,K do

12 Update parameter estimate λ̂k:

λ̂k ← argmax
λk

N∑
n=1

Eq̂w [log pw(wnk;λk)|I, Φ̂, D̂]. (3.11)

13 Update parameter estimate σ̂2:

σ̂2 ← 1

N |Ω|

N∑
n=1

∥∥∥∥∥In −
K∑
k=1

〈ŵnk〉(D̂k ◦ Φ̂−1
n )

∥∥∥∥∥
2

2

+

K∑
k=1

(〈ŵ2
nk〉 − 〈ŵnk〉2)‖D̂k ◦ Φ̂−1

n ‖22

 .
(3.12)

14 for k=1,. . . ,K do

15 Update D̃k ← DictionaryElementUpdate(D̂, Φ̂, λ̂, σ̂2, α, β, γ, k) (see Alg. 4).

16 Update D̂k ← EllipsoidRounding(D̃k, Vmax, rmax) (see Alg. 5).

17 until convergence
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Algorithm 4: DictionaryElementUpdate (FISTA)

Input: Estimated dictionary D̂, deformations Φ̂, model parameters (λ̂, σ̂2),
hyperparameters (α, β, γ), index k specifiying which dictionary element
to update

Output: Updated dictionary element D̃k

1 Initialize t(1) ← 1, D̄k ← D̃
(1)
k .

2 Choose step size

δ =

(
φmax

σ̂2

N∑
n=1

〈ŵ2
nk〉+ β‖L‖2

)−1

, (3.14)

where ‖L‖2 is the spectral norm of the grid graph’s graph Laplacian L.
Theorem 1.2 of [41] implies ‖L‖2 ≤ 4d, where d is the dimensionality of the grid
graph, so it suffices to pick smaller step size δ by substituting 4d in place of ‖L‖2.

3 Define
Esmooth(Dk)

,
1

2σ̂2

N∑
n=1

∑
x∈Ω

|JΦ̂n
(x)|

(In(Φ̂n(x))−
K∑
`=1

〈ŵn`〉D`(x)

)2

+ (〈ŵ2
nk〉 − 〈ŵnk〉2)D2

k(x)


+
β

2
D>k LDk. (3.15)4

5 Define shrinkage threshold image Tk by

Tk(x) = α+ γ
∑
`6=k
|D̂`(x)|. (3.16)

6 for i = 1, 2, . . . until convergence do

7 Compute D̃
(i)
k,smooth←D̄k − δ∇Esmooth(D̄k),

where ∇Esmooth(D̄k)(x) = ∂Esmooth(D̄k)
∂D̄k(x)

.

8 Apply voxel-dependent shrinkage thresholding:

D̃
(i)
k,thresholded ← η(D̃k,smooth, δTk), where

η(z, τ)(x) = sign(z(x)) max{|z(x)| − τ(x), 0}.

9 Project onto the `2 disk:

D̃
(i)
k ←

{
D̃

(i)
k,thresholded if ‖D̃(i)

k,thresholded‖2 ≤ 1,

D̃
(i)
k,thresholded/‖D̃

(i)
k,thresholded‖2 otherwise.

10 Compute t(i+1) ← 1+
√

1+4(t(i))2

2 .

11 Compute D̄k ← D̃
(i)
k + ( t

(i)−1
t(i+1) )(D̃

(i)
k − D̃

(i−1)
k ).

12 Set D̃k ← D̃
(i)
k where i is the final iteration index.



40 CHAPTER 3. PROBABILISTIC DEFORMATION-INVARIANT SPARSE CODING

Algorithm 5: EllipsoidRounding

Input: Image D, maximum volume Vmax, maximum semi-axis length rmax

Output: Image D̂, which is image D masked to have spatial support contained
within an ellipsoid of volume Vmax and maximum semi-axis length rmax

1 Initialize active set Ξ← Ω.

2 Initialize best ellipsoid found so far Ê ← ∅.
3 Initialize the preserved squared `2 norm of the best ellipsoid found so far to

be m̂← 0.
4 Let B be the image associated with a ball of radius rmax centered at the origin:

B(x) ,

{
1 if ‖x‖2 ≤ rmax, x ∈ Ω,

0 if ‖x‖2 > rmax, x ∈ Ω,
(3.17)

where without loss of generality, we assume Ω contains the spatial support of
image B.

5 Compute image D2 consisting of element-wise squared entries of D.
6 Compute intensity “mass” image M ← F−1{F{D2} � F{B}}, where F denotes

the multi-dimensional discrete Fourier transform, computed via a fast Fourier
transform.

7 while Ξ 6= ∅ do
8 Let c ∈ Ξ be a coordinate for which M(c) ≥M(x) for all x ∈ Ξ; this can be

done quickly if ahead of time we sort voxels by decreasing value of M(·).
9 Let Bc denote the set of voxels that are in the ball of radius rmax centered at

c, and let Z =
∑

x∈Bc D
2(x). Compute

v ←
∑
x∈Bc

D2(x)

Z
x, (3.18)

A−1 ←
∑
x∈Bc

D2(x)(x− v)(x− v)>. (3.19)

10 Set ellipsoid E ← {x ∈ Bc : (x− v)>A(x− v) ≤ ξ}, where constant ξ ensures
that E has volume Vmax. This fit may not guarantee finding the ellipsoid
contained within Bc that preserves the most `2 norm of D and is thus an
approximation.

11 Compute m←
∑

x∈E D
2(x).

12 if m > m̂ then Set m̂← m and Ê ← E .
13 Remove voxel c from Ξ. Remove every voxel x of active set Ξ where

M(x) < m.

14 Compute

D̂(x) =

{
D(x) if x ∈ Ê ,
0 otherwise.

(3.20)
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� 3.2.1 Initialization

We now detail how line 1 of Alg. 3 is carried out. To initialize deformation estimates Φ̂,

we align all the observed images together via the serial groupwise image registration

as discussed in Section 2.4. From groupwise registration, we also obtain an “average”

image across all observed images. We cluster this average image into K initial dictio-

nary elements D̂ = {D̂1, . . . , D̂K}. Different clustering methods can be used. We use

watershed segmentation and retain the largest K segments; parameters for watershed

segmentation depend on the kind of images that are being used.

Rather than initialize approximating distribution parameters ψ̂ for the latent weights,

we directly compute guesses for the expected latent weights 〈ŵn〉 , (〈ŵn1〉, . . . , 〈ŵnK〉) ∈
RK by solving a least-squares regression problem for each observation n:

〈ŵn〉 ← argmin
wn∈RK

∥∥∥∥∥In −
K∑
k=1

wnk(D̂k ◦ Φ̂−1
n )

∥∥∥∥∥
2

2

, (3.21)

where we may have to project 〈ŵnk〉 onto the support of distribution wnk. For example,

if wnk is a non-negative random variable and 〈ŵnk〉 is estimated by the above least-

squares optimization to be negative, then we just set 〈ŵnk〉 to be 0.

Lastly, we compute initial estimates for λ and σ2. We use update eq. (3.11) to get

an initial estimate for λ. As for σ2, we use the initial estimate of

σ̂2 =
1

N |Ω|

N∑
n=1

∥∥∥∥∥In −
K∑
k=1

〈ŵnk〉(D̂k ◦ Φ̂−1
n )

∥∥∥∥∥
2

2

. (3.22)

� 3.2.2 Intensity-equalization Interpretation

We can interpret the inference algorithm as a modification of the parallel groupwise

image registration algorithm presented in Section 2.4.1 where we now apply spatially-

adaptive intensity equalization per image. Specifically, the inference algorithm can be

phrased as follows:

1. For each n, estimate expected pre-images Ĵn ←
∑K

k=1〈ŵnk〉D̂k.

2. For each n, update Φ̂n by solving a pairwise image registration problem

Φ̂n ← argmin
Φn

Epair(Φn; In, Ĵn),
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which can be done in parallel across n = 1, 2, . . . , N .

3. Update Φ̂ to satisfy the average deformation constraint.

4. Update the estimates for D̂, λ̂, and σ̂2.

The expected pre-image for observation n allows each dictionary element to have a

different weight, which means that we adjust the intensity of the expected pre-image

by different amounts where different dictionary elements appear.

� 3.3 Extensions

We remark on a few possible extensions of our model.

• Estimating sparse linear combination weights instead of treating them as latent :

Regular sparse coding actually does not treat the weights as latent. By estimating

weights instead, our inference algorithm would actually become simpler since no

variational approximating distribution q over latent weights is needed. For exam-

ple, if the prior on weights pw is a Laplace distribution with the same parameter λ

across all dictionary elements, then the E-step becomes an instance of Lasso:

min
wn∈RK

1

2σ2

∥∥∥∥∥In −
K∑
k=1

wnk(Dk ◦ Φ−1
n )

∥∥∥∥∥
2

2

+ λ‖wn‖1. (3.23)

Moreover, the volume change condition can actually be dropped since it was in-

troduced to determine which image is treated as fixed and which is treated as

moving when updating each deformation. Specifically, as shown in eq. (A.5) in

Appendix A, there is a term involving ‖Dk ◦ Φ−1
n ‖22 that is present due to the

weights being latent and that would require modifying off-the-shelf image regis-

tration algorithms to account for it. Introducing the volume change condition and

making the expected pre-image the fixed image instead of the moving image allows

us to essentially get rid of this term when updating each deformation. However,

with weights that are not latent, we could treat the expected pre-image as the

moving image.

• Having deformations that are both observation-specific and dictionary-element-

specific: Our deformations are observation-specific, and depending on the subset of

diffeomorphisms we allow, observation-specific deformations could already provide
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enough flexibility to deform different dictionary elements differently. Of course, we

could extend our model to have deformations that are both observation-specific

and dictionary-element specific, where the main change will be that in the M-step,

we need to perform NK pairwise image registrations to align each observation

with K different dictionary elements.

• Handling new observations with qualitative spaces not seen during training : This

extension is challenging because ideally the deformations should be treated as la-

tent variables as well, but integration over the space of deformations is, in general,

non-trivial, especially for deformations as rich as diffeomorphisms. Risholm et

al. [29] provide a Markov-chain Monte Carlo approach to sampling deformations,

which can be used to numerically approximate an integral over deformations. How-

ever, this procedure, if used as a subroutine for our inference algorithm (by esti-

mating expected deformations in the E-step and no longer estimating deformations

in the M-step), would make the inference algorithm prohibitively slow.

A far simpler approach would be to use our inference algorithm that on a train-

ing dataset and then for a new observation, estimate both the deformation that

aligns the qualitative space of the new observation to the qualitative space of the

dictionary elements and the contribution of each dictionary element. Specifically,

treating (D,λ, σ2) as fixed constants learned from training data via our inference

algorithm, for new observation I ′, we would solve

(Φ′, w′)← argmax
Φ:Ωc→Ωc, w∈RK

p(Φ, w|D, I,λ, σ2). (3.24)

This problem can be numerically optimized via an alternating maximization scheme,

fixing the deformation and updating the weights then fixing the weights and up-

dating the deformation.

• Incorporating ground truth segmentations for supervised learning : In some appli-

cations, we could have ground truth segmentations indicating where dictionary

elements are in each observed image to be used for learning a dictionary and de-

formations via our model. Thus, we would like these ground truth segmentations

to guide our inference algorithm and effectively place additional soft or hard con-

straint on the dictionary elements. For example, if each image is of a handwritten

digit, then we could have a segmentation specifying where the handwritten digit

is and what number it is. Then we would like our dictionary elements learned
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to correspond to different digits. We now outline a simple way to incorporate

ground truth segmentations where we assume that for each image segmentation,

no voxel is assigned to more than one dictionary element. The end result will be

an inference algorithm that is nearly identical to the one in Section 3.2 where the

main change is that we now require an image registration algorithm that aligns

two K-channel images, i.e., voxels are assigned a value in RK .

First, we assume that the number of dictionary elements K is known in this super-

vised learning setup. For each training image In, we assume we have a segmenta-

tion of the image into non-overlapping regions, each region assigned to either none

of the dictionary elements or exactly one of the dictionary elements. Thus, the seg-

mentation for image In can be represented as (Ωn0,Ωn1, . . . ,ΩnK), where Ωn0 is the

set of voxels not assigned to any dictionary element, and Ωnk for k = 1, 2, . . . ,K

is the set of voxels assigned to dictionary element k. We have
⋃K
k=0 Ωnk = Ω,

the whole voxel space. So we observe I = {I1, . . . , IN} where for each In we also

observe corresponding segmentation (Ωn0,Ωn1, . . . ,ΩnK). We refer to the set of

all such observed segmentations as Ω.

Then we can employ the following representation:

In(x) =
K∑
k=0

Snk(x), (3.25)

where

Snk(x) ,

wnkDk(Φ
−1
n (x)) + εn(x) if x ∈ Ωnk,

0 otherwise,
(3.26)

and by convention wn0 , 0. Observing I and Ω means that we observe segmented

images Snk for all n and k. We let S denote the set of all Snk images. Importantly,

knowing S means that we can reconstruct all the observed images I as well as the

segmentations Ω except that there is a (benign) ambiguity where voxels that have 0

intensity could be assigned to any dictionary element; we address this ambiguity by

declaring such 0-intensity voxels to not be assigned to any dictionary element. We
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now consider a probabilistic model that treats segmented images S as observations:

p(S,w|Φ,D;λ, σ2)

=
N∏
n=1


[
K∏
k=1

p(wnk;λk)

] K∏
k=1

∏
x∈Ωk

N (Snk(x);wnkDk(Φ
−1
n (x)), σ2)

 . (3.27)

We can place priors on sparse linear combination weights, deformations, and the

dictionary as in Section 3.1. Treating weights w as latent and inferring defor-

mations Φ, dictionary D, and parameters (λ, σ2) can be done with an algorithm

similar the one in Section 3.2. The main change is that to update estimate Φ̂n,

we align K-channel image {Snk}Kk=1 with K-channel image {〈ŵnk〉D̂k}Kk=1. If we

know that each image has exactly one dictionary element present (e.g., each image

is of a handwritten digit), then we just need single-channel image registration.

Specifically for handwritten digits, the inference algorithm would just align all

the images of 1’s to obtain a dictionary element or template for digit 1 and then

repeat this for all the other digits. Then for a new observed image, we estimate

the contribution of each dictionary element, where one way to classify the obser-

vation is to declare the most likely digit to be the dictionary element with the

highest contribution, which essentially amounts to aligning the observed image to

each dictionary element and deciding which dictionary element provides the best

alignment. Such deformable template models are not new and have been used for

handwritten digit and face recognition [18, 24].

A general, probabilistic framework for deformable template models for object

recognition is presented in [15], which relies on choosing a dictionary of parts

that make sense for the recognition task (e.g., having the parts be eyes, a nose,

etc. for face recognition). In contrast, our model is presented in the context of

unsupervised learning.
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Chapter 4

Modeling Spatial Variability of

Functional Patterns in the Brain

We seek group-level functional units (i.e., parcels) in the brain that activate due to

language processing by representing them as dictionary elements with deformation-

invariant sparse coding. After instantiating our inference algorithm to a specific choice

of priors for sparse linear combination weights and deformations, this chapter showcases

results on synthetic data and fMRI activation maps from a language fMRI study.

� 4.1 Instantiation to fMRI Analysis

We specialize our model in Chapter 3 for fMRI analysis. First and foremost, obser-

vations directly correspond to different subjects; image In gives us a brain activa-

tion map for subject n. Since we look for positive activation due to functional stim-

uli probing lexical and structural language processing, it suffices to restrict weights

w in our model to be non-negative. We place i.i.d. exponential priors on each wnk

to encourage sparsity: pw(wnk;λk) = λke
−λkwnk where wnk ≥ 0 and λk > 0. We

use log-domain diffeomorphic Demons registration [37] to estimate deformations Φ:

pΦ(Φn) ∝ exp{−LogDiffDemonsReg(Φn)}, where LogDiffDemonsReg(·) is given by

eq. (2.11). Combining these priors for weights w and deformations Φ with eqs. (3.1),

(3.4), and (3.5) yields the full joint distribution:

p(I,w,Φ,D;λ, σ2)

∝ p(D)
N∏
n=1

{
exp(−LogDiffDemonsReg(Φn))[
K∏
k=1

λke
−λkwnk

]
N

(
In;

K∑
k=1

wnk(Dk ◦ Φ−1
n ), σ2I|Ω|×|Ω|

)}
, (4.1)

47
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where weights w are non-negative, the average deformation Φ1 ◦ · · · ◦Φn is identity, and

p(D) refers to eq. (3.5). As before, prior p(D) depends on hyperparameters α, β, γ,

Vmax, and rmax, which we suppress for notational convenience. While we don’t place a

hard constraint that each dictionary element Dk be a parcel, i.e., have spatial support

that is a contiguous region, we empirically find our ellipsoid constraint to produce

dictionary elements that are parcels provided that α, Vmax, and rmax are not too large.

Meanwhile, despite treating log-domain diffeomorphic Demons registration as a

black box, we acknowledge the importance of choosing registration parameters to pre-

vent data overfitting. These parameters largely depend on the images used for registra-

tion. In our experiments, we use default parameters from the ITK implementation of

log-domain diffeomorphic Demons registration [10] except that we increase the variance

of the isotropic Gaussian kernel used for smoothing the deformation’s velocity field from

(1.5 voxels)2 to (2.5 voxels)2 and decrease the maximum length of the velocity update

vector from 2 voxels to 1 voxel.

Given our choice of priors on weights and deformations, we can now extract explicit

update rules for optimization problems (3.8) and (3.11) in the EM-like algorithm of

Chapter 3 while using log-domain Demons registration to solve (3.9). Approximating

posterior probability distribution q for latent weights w is set to

q(w;µ,ν) =

N∏
n=1

K∏
k=1

N+(wnk;µnk, νnk), (4.2)

whereN+(·;µnk, νnk) is the probability density of the normal distribution with mean µnk

and variance νnk restricted to have non-negative support, i.e., the positive normal distri-

bution. Thus, ψnk from eq. (3.7) is given by ψnk = (µnk, νnk). Deferring derivations to

Appendix B, we summarize the resulting inference algorithm in Alg. 6, where we denote

〈ŵnk〉 , Eq̂[wnk|I, Φ̂, D̂], 〈ŵ2
nk〉 , Eq̂[w2

nk|I, Φ̂, D̂], and q̂ to be distribution (4.2) pa-

rameterized by µ̂ and ν̂. The initialization procedure expands on that of Section 3.2.1

and is outlined in Alg. 7. Before running the inference algorithm, we must set the

hyperparameters. As mentioned previously, hyperparameters Vmax and rmax have intu-

itive interpretations and are hand-set based on the maximum spatial support size we

would like each dictionary element to have. Thus, our discussion of hyperparameter

tuning will focus on choosing α, β, and γ.
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Algorithm 6: Deformation-Invariant Sparse Coding Inference for fMRI Analysis

Input: Observed images I, hyperparameters (α, β, γ)

Output: Estimated dictionary D̂, deformations Φ̂, model parameters (λ̂, σ̂2)

1 Make an initial guess for D̂, Φ̂, λ̂, σ̂2, and 〈ŵ〉 using Alg. 7.
2 repeat

/* E-step */
3 for n = 1, . . . , N do
4 for k = 1, . . . ,K do
5 Update approximating distribution parameters µ̂nk and ν̂nk:

µ̂nk ←
〈In −

∑
` 6=k〈ŵn`〉(D̂` ◦ Φ̂−1

n ), D̂k ◦ Φ̂−1
n 〉 − σ̂2λ̂k

‖D̂k ◦ Φ̂−1
n ‖22

, (4.3)

ν̂nk ←
σ̂2

‖D̂k ◦ Φ̂−1
n ‖22

, (4.4)

6 where 〈·, ·〉 denotes the standard inner product.

7 Compute expectations 〈ŵnk〉 and 〈ŵ2
nk〉:

〈ŵnk〉 ← µ̂nk +

√
ν̂nk exp(−µ̂2

nk/(2ν̂nk))√
2πQ(−µ̂nk/

√
ν̂nk)

, (4.5)

〈ŵ2
nk〉 ← ν̂nk + µ̂2

nk +
µ̂nk
√
ν̂nk exp(−µ̂2

nk/(2ν̂nk))√
2πQ(−µ̂nk/

√
ν̂nk)

, (4.6)

8 where Q(s) ,
∫∞
s

1√
2π
e−t

2/2dt is the tail probability of the standard normal

distribution.

/* M-step */
9 for n = 1, . . . , N do

10 Compute intermediate deformation estimate Φ̃n by registering rescaled, observed

image
√
φmaxIn to rescaled, expected pre-image

√
φmax

∑K
k=1〈ŵnk〉D̂k using

log-domain diffeomorphic Demons registration; this can be parallelized across n.

11 for n = 1, . . . , N do

12 Enforce average deformation constraint to update deformation estimate Φ̂n:

Φ̂n ← exp

(
Ṽn −

1

N

N∑
m=1

Ṽm

)
, where Φ̃n = exp(Ṽn). (4.7)

13 for k = 1, . . . ,K do

14 Update parameter estimate λ̂k: λ̂k ← 1/( 1
N

∑N
n=1〈ŵnk〉).

15 Update parameter estimate σ̂2:

σ̂2 ← 1

N |Ω|

N∑
n=1

∥∥∥∥∥In −
K∑
k=1

〈ŵnk〉(D̂k ◦ Φ̂−1
n )

∥∥∥∥∥
2

2

+

K∑
k=1

(〈ŵ2
nk〉 − 〈ŵnk〉2)‖D̂k ◦ Φ̂−1

n ‖22

 .
(4.8)

16 for k=1,. . . ,K do

17 Update D̃k ← DictionaryElementUpdate(D̂, Φ̂, λ̂, σ̂2, α, β, γ, k) (see Alg. 4).

18 Update D̂k ← EllipsoidRounding(D̃k, Vmax, rmax) (see Alg. 5).

19 until convergence
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Algorithm 7: Initialization for fMRI Analysis

Input: Observed images I
Output: Guesses for estimated dictionary D̂, deformations Φ̂, model

parameters (λ̂, σ̂2), and expectations 〈ŵ〉
/* Initialize deformations */

1 Compute Â, Φ̂ via serial groupwise image registration of images I (see Alg. 2).

/* Initialize dictionary using watershed segmentation clustering */
2 Choose an intensity threshold τ : For synthetic data, set τ ← 0. For real fMRI

data, set τ ← 75th percentile value of {Â(x) : x ∈ Ω, Â(x) > 0}.
3 Compute Ã to be a Gaussian-blurred version of Â. For synthetic data, the

Gaussian blur standard deviation is set to 3 voxels. For real data, we use an
8mm-FWHM blur.

4 Compute S1, S2, . . . , SK ⊂ Ω, which are the largest K segments (in volume) of

image Ã using watershed segmentation, where only voxels with intensity value
greater than τ are considered.

5 for k = 1, . . . ,K do
6 Set

D̂k ←

{
Â(x) if x ∈ Sk,
0 otherwise.

(4.9)

/* Initialize expected weights */
7 for n = 1, . . . , N do
8 Solve:

〈ŵn〉 ← argmin
wn∈RK

∥∥∥∥∥In −
K∑
k=1

wnk(D̂k ◦ Φ̂−1
n )

∥∥∥∥∥
2

2

, (4.10)

9 for k = 1, . . . ,K do
10 Set 〈ŵnk〉 ← max{〈ŵnk〉, 0}.

/* Initialize parameter estimate λ̂ */

11 for k = 1, . . . ,K do Set λ̂k ← 1/( 1
N

∑N
n=1〈ŵnk〉).

/* Initialize parameter estimate σ̂2 */
12 Compute

σ̂2 =
1

N |Ω|

N∑
n=1

∥∥∥∥∥In −
K∑
k=1

〈ŵnk〉(D̂k ◦ Φ̂−1
n )

∥∥∥∥∥
2

2

. (4.11)
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� 4.2 Hyperparameter Selection

Before venturing further, we elaborate on some nuances in hyperparameter tuning.

First, setting these hyperparameters as to maximize the likelihood of our model is

infeasible because we cannot tractably compute the partition function for the dictionary

prior. Second, since dictionary D and deformations Φ serve as ground truth for both

training and test images, we can’t use them during training since we’d contaminate

training with ground truth from test data. We could instead train on a separate set

of observations that have different underlying dictionary elements and deformations.

However, for real fMRI data, this would require a training set of subjects that is disjoint

from the test set of subjects, which could be problematic if the total number of subjects

for a study is small. Also, ultimately we would like to draw conclusions about all

subjects—not just subjects used for testing.

In the next section, we select hyperparameters α, β, and γ via cross-validation

with limited ground truth. Then in Section 4.2.2, we discuss heuristics for selecting

hyperparameters in the absence of ground truth; these heuristics play a pivotal role

when we work with real fMRI data. In both cases, we assume that each subject n has

three images I
(0)
n , I

(1)
n , I

(2)
n that share the same qualitative space since they’re from the

same brain. Thus, our data can be partitioned into three sets I(0) = {I(0)
1 , . . . , I

(0)
N },

I(1) = {I(1)
1 , . . . , I

(1)
N }, and I(2) = {I(2)

1 , . . . , I
(2)
N }. Sets I(1) and I(2) are used for training

and are called folds, where fold 1 contains images I(1) and fold 2 contains images I(2).

Set I(0) denotes the test images. For simplicity, we choose hyperparameters based on

2-fold cross-validation, but the selection methods we describe can be generalized to

handle more folds.

Notationally, we use (D̂(m)[α, β, γ], Φ̂(m)[α, β, γ]) to denote the estimated dictionary

and deformations learned from observed images I(m) in fold m using hyperparameters

(α, β, γ). We use (D̂k ◦ Φ̂−1
n )(m)[α, β, γ] to denote dictionary element D̂

(m)
k [α, β, γ] de-

formed into the space of subject n.

� 4.2.1 Cross-validation Based on Limited Ground Truth

We now discuss the cost function placed on hyperparameters α, β, and γ. To avoid

touching the ground truth dictionary and deformations shared across training and test

data, we assume that the only ground truth data we have access to during training are

the true warped pre-images W
(m)
n , J

(m)
n ◦ Φ−1

n for m = 1, 2 and n = 1, . . . , N ; we

don’t get access to the true dictionary, deformations, or latent weights. Then we use
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the following error:

Ecross-val(α, β, γ) =
1

2N

2∑
m=1

N∑
n=1

‖W (m)
n − Ŵ (m)

n [α, β, γ]‖22, (4.12)

where Ŵ
(m)
n [α, β, γ] is an estimate of warped pre-image for observation n in fold m

based on the dictionary and deformations estimated using observed images from the

other fold. In particular:

(Ŵ (1)
n [α, β, γ])(x) =

I
(1)
n (x) if x ∈ support0.75((D̂k ◦ Φ̂−1

n )(2)[α, β, γ]) for some k,

0 otherwise,

(4.13)

(Ŵ (2)
n [α, β, γ])(x) =

I
(2)
n (x) if x ∈ support0.75((D̂k ◦ Φ̂−1

n )(1)[α, β, γ]) for some k,

0 otherwise,

(4.14)

where support0.75(·) is the set of voxels in an image that have absolute intensity value

at least 0.75 of the maximum:

support0.75(Z) , {x ∈ Ω : |Z(x)| ≥ 0.75 maxy∈Ω |Z(y)|}. (4.15)

The reason why this support restriction is added is to only consider voxels that have

“high enough” intensity, essentially reducing noise in the estimated warped pre-images

Ŵ
(m)
n [α, β, γ]. Note that we specifically choose not to treat the dictionary and deforma-

tions learned from one fold as fixed and then estimate sparse linear combination weights

for the observed images from the other fold to produce estimated warped pre-images.1

The reason we don’t use this approach is that it fails to penalize extraneous dictionary

elements, which could just be assigned weight 0 for an observed image.

1Specifically, this approach would set estimated warped pre-image Ŵ
(1)
n ←

∑K
k=1 ŵ

(1)
nk (D̂k ◦

Φ̂−1)(2)[α, β, γ], where ŵ
(1)
n ∈ RK

+ is the solution to a convex program:

ŵ(1)
n ← argmin

wn∈RK
+

 1

2(σ̂2)(2)

∥∥∥∥∥I(1)
n −

K∑
k=1

wnk(D̂k ◦ Φ̂−1)(2)[α, β, γ]

∥∥∥∥∥
2

2

+
K∑

k=1

θ̂
(2)
k wnk


with (σ̂2)(2) and θ̂

(2)
k denoting estimates of parameters σ2 and θk learned using data from fold 2. We

can similarly define Ŵ
(2)
n . Note that if dictionary element D̂

(2)
j is extraneous, then the convex program

would set ŵ
(1)
nj = 0, which means that estimated warped pre-image Ŵ

(1)
n will not depend on D̂

(2)
j .
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We choose hyperparameters (α, β, γ) as follows:

(α̂, β̂, γ̂) = argmin
α,β,γ∈{0,102,104,106}

Ecross-val(α, β, γ). (4.16)

Finally, we estimate dictionary D̂ and deformations Φ̂ using all observed training data

by training on images 1
2(I

(1)
1 + I

(2)
1 ), . . . , 1

2(I
(1)
N + I

(2)
N ) with hyperparameters (α̂, β̂, γ̂).

The resulting training procedure is summarized in Alg. 8.

Algorithm 8: Training Using 2-Fold Cross-Validation with Limited Ground Truth

Input: Observed images I
Output: Estimated dictionary D̂, deformations Φ̂

1 Initialize Eopt
cross-val ←∞, α̂← 0, β̂ ← 0, γ̂ ← 0.

2 for α, β, γ ∈ {0, 102, 104, 106} do

3 (Fold 1) Train on images I(1) = {I(1)
1 , . . . , I

(1)
N } using Alg. 6 with

hyperparameters (α, β, γ) to produce dictionary and deformation estimates
(D̂(1)[α, β, γ], Φ̂(1)[α, β, γ]).

4 (Fold 2) Train on images I(2) = {I(2)
1 , . . . , I

(2)
N } using Alg. 6 with

hyperparameters (α, β, γ) to produce dictionary and deformation estimates
(D̂(2)[α, β, γ], Φ̂(2)[α, β, γ]).

5 Using I, (D̂(1)[α, β, γ], Φ̂(1)[α, β, γ]), and (D̂(2)[α, β, γ], Φ̂(2)[α, β, γ]),
compute Ecross-val(α, β, γ), given by eq. (4.12).

6 if Ecross-val(α, β, γ) < Eoptcross-val then

7 Set Eopt
cross-val ← Ecross-val(α, β, γ), α̂← α, β̂ ← β, γ̂ ← γ.

8 Train on images { I
(1)
1 +I

(2)
1

2 , . . . ,
I

(1)
N +I

(2)
N

2 } using Alg. 6 with hyperparameters

(α̂, β̂, γ̂) to produce final dictionary and deformation estimates (D̂, Φ̂).

� 4.2.2 Heuristics in the Absence of Ground Truth

In the absence of ground truth, we use two key ideas to design heuristics for selecting

hyperparameters α, β, and γ while still taking advantage of training data comprising of

two separate folds. First, aligning observed images using estimated deformations should

boost peak values within each estimated dictionary element support, as suggested by

our toy example in Chapter 1. Second, by training separately on two different folds, the

estimated dictionaries and deformations should be consistent across the two folds. We

use two different consistency measures. In total, we have three heuristics, each giving

a score value in R that quantifies the quality of a choice of hyperparameters:
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• Better alignment within dictionary elements. We formalize the idea that

aligning observed images should produce more pronounced peaks. Note that the

average image Â(1)[α, β, γ] for observed images I(1) in fold 1 aligned using defor-

mations Φ̂(2)[α, β, γ] learned from fold 2 is given by

Â(1)[α, β, γ](x)←

∑N
n=1 |JΦ̂

(2)
n

(x)|(I(1)
n ◦ Φ̂

(2)
n [α, β, γ])(x)∑N

n=1 |JΦ̂
(2)
n

(x)|
. (4.17)

To quantify the top intensity values of this average image restricted to the support

of the estimated dictionary element D̂
(2)
k [α, β, γ] from fold 2, we use their 75th

percentile value:

p̂
(1)
k [α, β, γ]

, 75th percentile value of {Â(1)[α, β, γ](x) : x ∈ support(D̂
(2)
k [α, β, γ])}. (4.18)

We do not use the maximum, i.e., the peak value, which may be unstable.

If we did not align the images first, then the average image would be defined as

Ā(1) =
1

N

N∑
n=1

I(1)
n . (4.19)

A conservative guess as to where estimated dictionary element D̂
(2)
k appears in Ā(1)

is to examine the union of all the supports of D̂
(2)
k deformed into the space of

observation n. Thus, we quantify the top intensity values of average image Ā(1)

within the support of the k-th estimated dictionary element D̂k[α, β, γ] from fold

2 with:

p̄
(1)
k [α, β, γ]

, 75th percentile value of {Ā(1)(x) : x ∈ ∪Nn=1support((D̂k ◦ Φ̂−1
n )(2)[α, β, γ])}.

(4.20)

We define the improvement in top intensity value for fold 1 resulting from using

information learned from fold 2 as:

∆(1)[α, β, γ] ,
K∑
k=1

(p̂
(1)
k [α, β, γ]− p̄(1)

k [α, β, γ]). (4.21)
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We can similarly define Â(2), Ā(2), p̂
(2)
k , p̄

(2)
k , and ∆(2). The average intensity im-

provement score across folds is thus given by

Hintensity-improvement(α, β, γ) =
1

2
(∆(1)[α, β, γ] + ∆(2)[α, β, γ]), (4.22)

where higher is better.

• Consistency of alignment improvement across folds. We seek to avoid large

differences in improvement between the folds, suggesting a simple consistency

score:

Hintensity-improvement-difference(α, β, γ) = |∆(1)[α, β, γ]−∆(2)[α, β, γ]|, (4.23)

where lower is better.

• Consistency of dictionary element supports across folds. We want the

support of dictionary elements across folds to be similar. As the dictionary element

support across folds has different qualitative spaces, we compare the support across

folds instead in the qualitative space of the observations. To achieve this, we

measure the overlap between set Ω̂
(1)
n [α, β, γ] , ∪Kk=1support((D̂k◦Φ̂−1

n )(1)[α, β, γ])

and set Ω̂
(2)
n [α, β, γ] , ∪Kk=1support((D̂k ◦ Φ̂−1

n )(2)[α, β, γ]) using the Dice volume

overlap measure [9]:

Dice(Ω̂(1)
n [α, β, γ], Ω̂(2)

n [α, β, γ]) =
2|Ω̂(1)

n [α, β, γ] ∩ Ω̂
(2)
n [α, β, γ]|

|Ω̂(1)
n [α, β, γ]|+ |Ω̂(2)

n [α, β, γ]|
, (4.24)

which only measures overlap in observation n’s qualitative space. Averaging across

all observations’ qualitative spaces gives the consistency score

Hdictionary-consistency(α, β, γ) =
1

N

N∑
n=1

Dice(Ω̂(1)
n [α, β, γ], Ω̂(2)

n [α, β, γ]), (4.25)

which is a value between 0 (no overlap) and 1 (perfect overlap); higher is better.

To select which hyperparameter setting to use, we handpick a hyperparameter setting

that provides a good trade-off between all three heuristics.
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� 4.3 Synthetic Data

In this section, we apply our inference algorithm to synthetic data. We describe how

this data is generated in Section 4.3.1 and how we evaluate the performance of our

inference algorithm in Section 4.3.2. Results are in Section 4.3.3.

� 4.3.1 Data Generation

Observed images, dictionary elements, and deformations are generated as follows:

Algorithm 9: Synthetic Data Generator

Input: Gaussian bump parameters (µ1,Σ1), . . . , (µK∗ ,ΣK∗), deformation
generation parameters (σ2

v , σ
2
s), model parameters (λ, σ2), model

hyperparameter Vmax

Output: Three sets of images I(0) = {I(0)
1 , . . . , I

(0)
N }, I(1) = {I(1)

1 , . . . , I
(1)
N }, and

I(2) = {I(2)
1 , . . . , I

(2)
N }, dictionary D = {D1, . . . , DK∗ , deformations

Φ = {Φ1, . . . ,ΦN}
/* Generate dictionary */

1 for k = 1, . . . ,K do
2 Set Dk to be a Gaussian density with mean voxel location µk and covariance

Σk.
3 Zero out entries of Dk outside the ellipsoid associated with Gaussian

N (µk,Σk) scaled to have maximum volume Vmax.
4 Set Dk ← Dk/‖Dk‖2.

/* Generate deformations */
5 for n = 1, . . . , N do
6 Set velocity field Vn to consist of i.i.d. N (0, σ2

v) entries.
7 Set Vn(x) to be the 0 vector if voxel x is not in the support of any of the

dictionary elements.
8 Apply a Gaussian-blur of variance σ2

s along each dimension of Vn.

9 Normalize the velocity fields so that the average velocity field is 0 using
eq. (2.20) and set Φn = exp(Vn) for each n.

/* Generate observed images */
10 for m = 0, 1, 2 do
11 for n = 1, . . . , N do

12 Sample w
(m)
n ∈ RK∗ consisting of i.i.d. exp(λk) entries.

13 Compute pre-image J
(m)
n ←

∑K∗

k=1w
(m)
nk Dk.

14 Compute observed image I
(m)
n ← J

(m)
n ◦Φ−1

n + ε
(m)
n , where ε

(m)
n consists of

i.i.d. N (0, σ2) entries.
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We specifically generate 100-by-100 images with the above procedure using parame-

ters µ1 = (45, 35), µ2 = (40, 60), µ3 = (65, 55), µ4 = (60, 40), Σ1 = 2I, Σ2 = I, Σ3 = 3I,

Σ4 = 4I, λ = (1/5, 1/8, 1/4, 1/10), V ∗max = 300, σ2
v = 4000, σ2

s = 36, and σ2 = 1. Speci-

fying a maximum ellipse semi-axis length r∗max is unnecessary as our generative process

implies the existence of some r∗max. The dictionary generated is shown in Fig. 4.1a.

Examples of the generated pre-images with their corresponding observed images are

shown in Fig. 4.2. For the specific values of the parameters for σ2
v and σ2

s we use to

generate these images, we find that our volume change condition is met with φmax = 4.

For inference, we set the number of estimated dictionary elements to K = 10, the

maximum ellipse volume to Vmax = 500 voxels3, and the maximum ellipse semi-axis

length to rmax = 10 voxels. With these parameters treated as fixed, we only need to

tune hyperparameters α, β, and γ.

� 4.3.2 Evaluation

To assess error in test data, we use several error measures:

• Deformation error. We use error

Edeformations(Φ̂; Φ) =
1

N

N∑
n=1

∑
x∈Ω

‖Φ̂n(x)− Φn(x)‖22. (4.26)

• Dictionary error. Since the number of true dictionary elements K∗ and the

number of estimated dictionary elements K are, in general, not equal, we need to

compute a matching between the dictionaries. For simplicity, we consider the case

when K∗ < K. Then the error we use is

Edictionary(D̂;D) = min
ρ∈SK

{
K∗∑
k=1

‖D̂ρ(k) −Dk‖22 +

K∑
k=K∗+1

‖D̂ρ(k)‖22

}
, (4.27)

where SK is the set of all permutations of {1, . . . ,K}.

Note that for ρ ∈ SK , we can actually reorder ρ(K∗+1), . . . , ρ(K) and the objective

function would be unaffected, so we’re actually only optimizing over K!/(K−K∗)!
assignments, namely the subset of estimated dictionary elements that map to the

true dictionary elements under ρ.

• Group average error. This error measures how far an estimate of the average

group signal is from the true group average signal that perfectly accounts for
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misalignment. Formally, for test images I(0) = {I(0)
1 , . . . , I

(0)
N } with pre-images

J (0) = {J (0)
1 , . . . , J

(0)
N }, the true group average image is

A(0) =
1

N

N∑
n=1

J (0)
n , (4.28)

which can also be interpreted as the true group average response had we known

all the deformations for aligning the images and had there been no noise.

We estimate pre-images for the test images using our dictionary and deformation

estimates:

Ĵ (0)
n (x) =

(I
(0)
n ◦ Φ̂n)(x) if x is in the spatial support of D̂k for some k,

0 otherwise.

(4.29)

Averaging these pre-image estimates creates

Â(0) ← 1

N

N∑
n=1

Ĵ (0)
n . (4.30)

Unfortunately, images A(0) and Â(0) do not share the same qualitative space since

the former has qualitative space defined by the true dictionary while the latter

has one defined by the estimated dictionary. Thus, we can’t compare images A(0)

and Â(0) directly. However, we can bring both images A(0) and Â(0) into the qual-

itative space of observation n before computing the squared `2 distance between

them, i.e., ‖A(0) ◦ Φ−1
n − Â(0) ◦ Φ̂−1

n ‖22. Repeating this distance calculation in the

qualitative space of all observations n = 1, . . . , N and averaging produces the final

group average error:

Egroup-average(D̂, Φ̂; I(0),J (0),Φ) =
1

N

N∑
n=1

‖Â(0) ◦ Φ̂−1
n −A(0) ◦ Φ−1

n ‖22, (4.31)

where Â(0) depends on I(0), D̂, and Φ̂ while A(0) depends on J (0).

� 4.3.3 Results

We compare our results from cross-validation training of our inference algorithm (la-

beled deformation-invariant sparse coding in tables and plots) against the baseline of
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the exact same approach except where all the estimated deformations are constrained to

be identity (labeled sparse coding in tables and plots). We also compare against another

baseline that does not use deformations; specifically we simply estimate the dictionary

elements by using the dictionary initialization procedure described in Section 4.1 except

that rather than performing serial groupwise registration in the first step to obtain an

average image, the average image is estimated to be 1
2N

∑2
m=1

∑N
n=1 I

(m)
n . (We label

this second baseline method as watershed in tables and plots.)

Estimated dictionaries by the three methods are shown in Figs. 4.1b, 4.1c, and 4.1d.

Strictly for display purposes, the estimated dictionary elements within each method

are permuted so that dictionary elements across methods correspond visually, and we

normalize the intensity of each dictionary element. While the watershed baseline is

intentionally initialized to have the same number of dictionary elements as the ground

truth, the sparse coding baseline and deformation-invariant sparse coding both estimate

four non-zero dictionary elements, also agreeing with the ground truth, even though they

were initialized with 10 dictionary elements each. Visually, deformation-invariant sparse

coding finds dictionary elements that are the most “concentrated” across the three

methods. In other words, the region containing the main peak within each dictionary

element is less spread out.

Deformation, dictionary, and group average errors are reported in Table 4.1. We

remark that we provide no guarantee that our inference algorthm produces unbiased

estimates for the dictionary or the deformations. Specifically, the qualitative space of

the estimated dictionary is not guaranteed to match the qualitative space of the true

dictionary, which explains why we do not expect the deformation error or the dictionary

error to be lower for deformation-invariant sparse coding compared to those of the base-

line methods. However, as the group average error across the three methods suggests,

while the qualitative space of the true dictionary is not recovered, the estimated group

average signal for deformation-invariant sparse coding is substantially closer to the true

group average signal compared to the group average signal achieved by not accounting

for deformations. These average signals of test images with and without pre-aligning

with estimated deformations are shown in Fig. 4.3, where using deformations results

in more pronounced peaks. This is promising since for real data, estimating the group

average signal is ultimately what we want rather than exactly recovering the qualitative

space of the group average signal.

Next, we verify that trading off the heuristics in Section 4.2.2 for selecting hy-

perparameters in the absence of ground truth can yield a good hyperparameter selec-
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(a)

(b)

(c)

(d)

Figure 4.1: The synthetic data’s (a) true dictionary, and estimated dictionaries using
(b) the watershed baseline, (c) the sparse coding baseline, and (d) deformation-invariant
sparse coding.

Method Edeformations Edictionary Egroup-average

Watershed 17811.8297 4.2473 166.9231

Sparse coding 17811.8297 3.1564 169.2603

Deformation-invariant sparse coding 45737.5875 2.8732 150.2779

Table 4.1: Deformation, dictionary, and group average errors across different methods.
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warp add noise 

pre-image observed image 

warp add noise 

pre-image observed image 

warp add noise 

pre-image observed image 

Figure 4.2: Synthetic data examples of pre-images and their corresponding observed
images. All images are shown with the same intensity scale.

(a) (b)

Figure 4.3: Synthetic data average of test images (a) without deformations, and
(b) aligned with deformations estimated from training data using deformation-invariant
sparse coding. Both images are shown with the same intensity scale and zoomed in.
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Evaluation of Hyperparameter Selection Heuristics on Synthetic Data

Figure 4.4: Scatter plot used to evaluate hyperparameter selection heuristics for syn-
thetic data. Each hyperparameter setting (α, β, γ) is depicted as a single point, where
α, β, γ ∈ {0, 102, 104, 106}. The top 5 hyperparameter settings (some overlap in the
plot) according to our group average error on test data are shown in red; all other
hyperparameter settings are shown in blue.

tion. We show a scatter plot across the three different heuristics’ scores in Fig. 4.4,

where each point corresponds to a hyperparameter configuration (α, β, γ) for α, β, γ ∈
{0, 102, 104, 106}; red points indicate the top 5 hyperparameter configurations according

to group average error on test data, and blue points are all other hyperparameter config-

urations. As seen in the scatter plot, the best hyperparameter configurations according

to our group average error correspond to configurations that simultaneously strike a

balance between high dictionary consistency, low intensity improvement difference, and

intensity improvement that is not too low.

� 4.4 Language fMRI Study

We apply our inference algorithm on real fMRI data from a language fMRI study.

Importantly, this data does not have any ground truth. We provide some details on the

dataset in Section 4.4.1, discuss how we evaluate our algorithm in Section 4.4.2, and

present results in Section 4.4.3.
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� 4.4.1 Data

Our dataset is from an fMRI study of 82 subjects reading sentences and pronounce-

able non-words [14]. First, we apply the standard fMRI general linear model [16] and

weighted random effects analysis [33] for the sentences vs. non-words contrast, which

for the purposes of this thesis amounts to applying a black box that takes as input raw

fMRI time course data from a subject and outputs a t-statistic map. In one of these

maps, a voxel, which corresponds to a location in the brain, has a t-statistic indicating

statistical significance to the sentences vs. non-words contrast, which serves as an in-

dicator for lexical and structural processing. Observed images I are thus taken to be

the t-statistic maps of each subject thresholded at p-value=0.01, where each subject’s

t-statistic map has been affinely pre-aligned to the MNI305 template brain [13] based

on the corresponding anatomical MRI scan as to account for anatomical variability.

As with the synthetic data setting, subject n has three observed images I
(0)
n , I

(1)
n , I

(2)
n ,

each originating from a separate run of the fMRI protocol where the subject was asked

to essentially repeat the same language task. Each image I
(m)
n is of size 128×128×128,

where each voxel is of (2mm)3 volume. We train on images I(1) = {I(1)
1 , . . . , I

(1)
N } and

I(2) = {I(2)
1 , . . . , I

(2)
N } and test on images I(0) = {I(0)

1 , . . . , I
(0)
N }. For inference, we set

K = 20, Vmax = 1000, and rmax = 7. Empirically, we find that the volume change

condition is satisfied with φmax = 2.

� 4.4.2 Evaluation

Due to the lack of ground truth, we can only examine the learned dictionary elements

and qualitatively compare against existing neuroscience literature. As for validating the

deformations, we work off the intuition that accounting for deformations should make

the peaks within group-level parcels more pronounced. To this end, we pre-align raw

fMRI data associated with test images I(0) using deformations learned from training

images (I(1), I(2)) and actually re-run standard fMRI analysis to produce new t-statistic

maps, which now account for the deformations learned; this essentially amounts to

applying deformation Φn to I
(0)
n for each subject n. Then we want to look within each

dictionary element support to see if there are more pronounced peaks.

Specifically for drawing conclusions on the group-level parcels defined by the esti-

mated dictionary elements, within each parcel, it is the peak and regions around the

peak that are of interest rather than the full support of the dictionary element. Thus,

to quantify the advantage of pre-aligning with our estimated deformations, within each
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dictionary element we compare the top 25% highest significance values for our method

versus those of anatomical alignment.2 Formally, we compare average image

Ā(0) ← 1

N

N∑
n=1

I(0)
n , (4.32)

which has only accounted for anatomical alignment, with average image

Â(0) ← 1

N

N∑
n=1

(I(0)
n ◦ Φ̂n), (4.33)

where, as discussed above, I
(0)
n ◦Φ̂n is actually computed by pre-aligning raw fMRI data

and re-running standard fMRI analysis rather than directly deforming I
(0)
n . Then to

compare the top 25% of significance values in the support of estimated dictionary ele-

ment D̂k, we plot a histogram of the top 25% highest values in {Â(x) : x ∈ support(D̂k)}
versus the top 25% highest values in {Ā(x) : x ∈ ∪Nn=1support(D̂k ◦ Φ̂−1

n )}. For visual-

ization purposes, we shall show the histograms as box plots, where rather than using

the t-statistic values, we actually show the negative log p-values associated with each

of the t-statistic values. Negative log p-values have a natural interpretation of statis-

tical significance, with an increase of 1 negative log p-value meaning that the p-value

dropped by an order of magnitude. Of course, we can then look at how much different

dictionary elements benefit from the estimated deformations.

� 4.4.3 Results

Using our approach from Section 4.2.2 to select hyperparameters is expensive as it

requires iterating through many combinations of hyperparameters. As such, we only

computed our heuristics on an arbitrary choice of 20 subjects to obtain the scatter plot in

Fig. 4.5, where each point corresponds to a specific choice of hyperparameters (α, β, γ) ∈
{0, 102, 104, 106, 108}3. Points that we deemed to be a good-trade off between the

three different heuristics are shown in green and correspond to hyperparameter settings

(α, β, γ)=(104, 0, 0), (104, 0, 102), (104, 102, 0), (104, 102, 102), (104, 104, 0), (104, 104, 102),

(104, 104, 104). With these hyperparameter settings, we then estimated dictionaries and

deformations using all 82 subjects to find that the results were similar. Thus, in what

2We’ve found that looking at the top 50% up through the top 1% of the highest significance values
yields similar results, so the choice of looking specifically at the top 25% is arbitrary but sufficient for
our purposes.
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Figure 4.5: Scatter plot used to evaluate hyperparameter selection heuristics for
language fMRI data. Each hyperparameter setting (α, β, γ) is depicted as a sin-
gle point, where α, β, γ ∈ {0, 102, 104, 106, 108}. Hyperparameter settings in red
and green have comparable dictionary consistency, Hintensity-improvement-difference < 0.1,
and Hintensity-improvement > 0.4. Hyperparameter settings in green further achieve
Hintensity-improvement > 0.6.

follows, we only show results for hyperparameter setting α = β = γ = 104.

Fig. 4.6a shows the spatial support of the final learned dictionary elements on four

slices. Fig. 4.6b illustrates some of the dictionary elements extracted by the algorithm.

The dictionary elements include regions previously reported as indicative of lexical and

structural language processing [14], namely portions of the temporal lobes, the right

cerebellum, and the left frontal lobe. There are also dictionary elements corresponding

to the medial prefrontal cortex, the posterior cingulate, and the precuneus.

Next, we validate the estimated deformations using the method described in Sec-

tion 4.4.2. Within each estimated dictionary element/group-level parcel, we compare

the top 25% highest significance values for our method versus those of anatomical align-

ment; the resulting box plots are shown in Fig. 4.7. We observe that accounting for

functional variability via deformations results in higher peak significance values within

the estimated group-level parcels, suggesting better overlap of these functional activa-
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(a)

(b)

Figure 4.6: Estimated dictionary. (a) Four slices of a map showing the spatial support
of the extracted dictionary elements. Different colors correspond to distinct dictionary
elements where there is some overlap between dictionary elements. From left to right:
left frontal lobe and temporal regions, medial prefrontal cortex and posterior cingu-
late/precuneus, right cerebellum, and right temporal lobe. Dictionary element indices
correspond to those in Fig. 4.7. (b) A single slice from three different estimated dictio-
nary elements where relative intensity varies from high (red) to low (blue). From left
to right: left posterior temporal lobe, left anterior temporal lobe, left inferior frontal
gyrus.
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Figure 4.7: Box plots of top 25% weighted random effects analysis significance values
within dictionary element supports. For each dictionary element, “A” refers to anatom-
ical alignment, and “F” refers to alignment via deformations learned by our model.
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Figure 4.8: Box plots of top 50% weighted random effects analysis significance values
within dictionary element supports. For each dictionary element, “A” refers to anatom-
ical alignment, and “F” refers to alignment via deformations learned by our model.
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Figure 4.9: Box plots of top 1% weighted random effects analysis significance values
within dictionary element supports. For each dictionary element, “A” refers to anatom-
ical alignment, and “F” refers to alignment via deformations learned by our model.
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Dict. elt. index Improvement Description

19 4.78 Left mid anterior temporal lobe

5 4.03 Left mid temporal lobe

18 3.92 Left mid posterior temporal lobe

2 3.34 Left anterior temporal lobe

12 3.19 Left posterior temporal lobe

1 2.91 Left posterior temporal lobe

13 2.39 Right mid anterior temporal lobe

0 2.06 Left posterior temporal lobe

8 1.88 Left inferior frontal gyrus orbital

14 1.77 Right cerebellum

6 1.71 Left inferior frontal gyrus

9 1.62 Posterior cingulate/precuneus

15 1.46 Right mid posterior temporal lobe

11 1.44 Left middle frontal gyrus

10 1.20 Ventral medial prefrontal cortex

4 1.18 Left inferior frontal gyrus

16 0.94 Ventral medial prefrontal cortex

7 0.72 Dorsal medial prefrontal cortex

17 0.52 Right anterior temporal lobe

3 0.29 Posterior cingulate/precuneus

Table 4.2: Group-level parcels ranked by improvement in 75th percentile − log(p-value).

tion regions across subjects. On average, our method improves the significance of group

analysis by roughly 1.5 orders of magnitude when looking at the top 25% significance

values. Similar results hold when looking at the top 50% or the top 1% of significance

values as shown in Figs. 4.8 and 4.9, respectively.

Lastly, by cross-referencing with Fig. 4.6a to associate dictionary element/group-

parcel indices with activated brain regions, we can identify which functional regions

benefit the most or the least from the estimated deformations. The full ranking is shown

in Table 4.2. The left temporal lobe benefits the most from the estimated deformations,

suggesting that it has significant functional variability. Meanwhile, the medial prefrontal

cortex, right anterior temporal lobe, and part of the posterior cingulate/precuneus

benefit the least from estimated deformations.



Chapter 5

Discussion and Conclusions

This thesis has extended sparse coding to account for deformations and provided an ac-

companying inference algorithm that can take advantage of existing work in image reg-

istration. Our treatment has largely been algorithmic rather than theoretical. Natural

questions that arise are how inference can be changed to provide theoretical guarantees

for consistently estimating dictionary and deformations, and how much observed data

is needed to obtain accurate dictionary and deformation estimates. The latter question

has practical implications as to determine how many subjects are needed for an fMRI

study if deformation-invariant sparse coding is to be used. The former question remains

open; Kurtek et al. [20] have recently resolved the case of a single dictionary element

and noise that is a single unknown constant across observations, but analyzing our more

general setting has yet to be done.

On the neuroscience side, more validation is needed to justify the usefulness of

modeling functional variability using deformation-invariant sparse coding. A direction

worth exploring is to see whether an estimated dictionary learned from, say, a language

study can be used as markers for a new study with a different stimulus to see how

the new stimulus relates to language processing. If the estimated dictionary indeed

provides a more accurate assessment of the stimulus used to train the dictionary than

other existing approaches, then we could confirm the utility of our model and hopefully

use it for neuroscientific discovery.

69
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Appendix A

Deriving the Inference Algorithm

We derive our EM-like inference algorithm in Chapter 3. Specifically, we would like to

solve optimization problem (3.2), which is equivalent to solving

(D̂, Φ̂, λ̂, σ̂2)← argmin
D,Φ,λ,σ2

∫
p(I,w,Φ,D;λ, σ2)dw. (A.1)

The full joint distribution in the integrand is given by eq. (3.6), reproduced below for

convenience:

p(I,w,Φ,D;λ, σ2)

∝
N∏
n=1

{
pΦ(Φn)

K∏
k=1

pw(wnk;λk)
∏
x∈Ω

N

(
In(x);

K∑
k=1

wnkDk(Φ
−1
n (x)), σ2

)}

· exp

−
K∑
k=1

(α‖Dk‖1 +
β

2
D>k LDk)− γ

∑
k 6=`
‖Dk �D`‖1

 , (A.2)

where average deformation Φ1 ◦ · · · ◦Φn is identity; each Dk satisfies ‖Dk‖2 ≤ 1 and has

spatial support contained within an ellipsoid of volume Vmax and maximum semi-axis

length rmax; and hyperparameters α, β, γ, Vmax, and rmax are treated as constants.

Distributions pw(·;λk) and pΦ(·) are left general. We specialize to the case of exponen-

tial pw and positive normal qw in Appendix B, which builds off the results of this section.

Importantly, our derivations in this section work with any registration framework that

minimizes an energy of the form in eq. (3.3).

Since marginalizing out the latent weights w in optimization problem (A.1) is in-

tractable, the EM algorithm instead locally maximizes a lower bound on log likelihood

log p(I,Φ,D;λ, σ2). In particular, using Jensen’s inequality and introducing an auxil-

71
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iary distribution q(w) over latent weights w, we have

log p(I,Φ,D;λ, σ2) = log

∫
q(w|I,Φ,D;λ, σ2)

p(I,w,Φ,D;λ, σ2)

q(w|I,Φ,D;λ, σ2)
dw

= logEq
[
p(I,w,Φ,D;λ, σ2)

q(w|I,Φ,D;λ, σ2)

∣∣∣∣ I,Φ,D]
≥ Eq

[
log

p(I,w,Φ,D;λ, σ2)

q(w|I,Φ,D;λ, σ2)

∣∣∣∣ I,Φ,D]
=

N∑
n=1

[
log pΦ(Φn) +

K∑
k=1

Eq[log pw(wnk;λk)|I,Φ,D]

− 1

2σ2
Eq

∥∥∥∥∥In −
K∑
k=1

wnk(Dk ◦ Φ−1
n )

∥∥∥∥∥
2

2

∣∣∣∣∣∣ I,Φ,D


− N |Ω|
2

log(2πσ2) +H(q) + log p(D) + constant

, L(q,Φ,D,λ, σ2), (A.3)

where H(q) is the differential entropy of distribution q(w). The EM algorithm itera-

tively maximizes this lower bound L(q,Φ,D,λ, σ2) via coordinate ascent until reaching

a local maximum. Exact EM calls for choosing q(w) = p(w|I,Φ,D;λ, σ2); however,

with this choice of q and by inspecting the graphical model (Fig. 3.2), once we condition

on observed images I, all the weights wnk for the same n become coupled, rendering ex-

pectation Eq[‖In −
∑K

k=1wnk(Dk ◦ Φ−1
n )‖22|I,Φ,D] intractable to compute due to the

marginalizations required. Thus, we choose auxiliary distribution q to be a variational

approximation to the distribution p(w|I,Φ,D;λ, σ2) where q has factorization

q(w;ψ) =

N∏
n=1

K∏
k=1

qw(wnk;ψnk), (A.4)

and distribution qw(·;ψnk) is parameterized by ψnk. With this choice of q and a bit of
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algebra, lower bound L in inequality (A.3) can be written as

L(q(·;ψ),Φ,D,λ, σ2)

=

N∑
n=1

[
log pΦ(Φn) +

K∑
k=1

Eqw [log pw(wnk;λk)|I,Φ,D]

− 1

2σ2

∥∥∥∥∥In −
K∑
k=1

〈wnk〉(Dk ◦ Φ−1
n )

∥∥∥∥∥
2

2

+
K∑
k=1

(〈w2
nk〉 − 〈wnk〉2)‖Dk ◦ Φ−1

n ‖22


− N |Ω|

2
log(2πσ2) +

N∑
n=1

K∑
k=1

H(qw(·;ψnk)) + log p(D) + constant

, L−(ψ,Φ,D,λ, σ2), (A.5)

where 〈wnk〉 , Eq[wnk|I,Φ,D] and 〈w2
nk〉 , Eq[w2

nk|I,Φ,D].

Since q is chosen to not necessarily be the optimal choice q(w) = p(w|I,Φ,D;λ, σ2),

the E-step of the resulting EM-like algorithm does not guarantee maximization of lower

bound L of ineq. (A.3) over all possible distributions for latent weights w but instead

maximizes the looser variational lower bound L−. This approximation results in a

variational EM algorithm [38]. For part of the M-step, we maximize an even looser

approximate lower bound on the log likelihood. Effectively, our inference algorithm

is based on the EM algorithm but lacks theoretical guarantees of the latter due to

approximations we make. Moreover, maximizing looser bounds does not guarantee an

increase in the log likelihood at each step, so our algorithm is not a generalized EM

algorithm.

Equipped with variational lower bound L−, we’re ready to derive the steps of each

iteration of our inference algorithm. First, we let (Φ̂, D̂, λ̂, σ̂2, ψ̂) be current estimates

for (Φ,D,λ, σ2,ψ) and denote 〈ŵnk〉 , Eq̂w [wnk|I, Φ̂, D̂], 〈ŵ2
nk〉 , Eq̂w [w2

nk|I, Φ̂, D̂],

and q̂w = qw(·; ψ̂nk). Then our EM-like algorithm alternates between the following

steps:

E-step. Compute

ψ̂ ← argmax
ψ

L−(ψ, Φ̂, D̂, λ̂, σ̂2). (A.6)

Then compute expectations 〈ŵnk〉 and 〈ŵ2
nk〉 for all n and k.
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M-step. Compute

(Φ̂, D̂, λ̂, σ̂2)← argmax
Φ,D,λ,σ2

L−(ψ̂,Φ,D,λ, σ2), (A.7)

which depends on expectations 〈ŵnk〉 and 〈ŵ2
nk〉.

The next sections detail how each step is carried out.

� A.1 E-step

Rather than simultaneously updating all estimates ψ̂nk to numerically optimize (A.6),

we do a coordinate ascent, i.e., we maximize variational lower bound L− with respect

to ψnk. To do this, we’ll make use of the following identity:∥∥∥∥∥In −
K∑
k=1

〈wnk〉(Dk ◦ Φ−1
n )

∥∥∥∥∥
2

2

+ (〈w2
nk〉 − 〈wnk〉2)‖Dk ◦ Φ−1

n ‖22

=
∑
x∈Ω

In(x)−
∑
` 6=k
〈wn`〉D`(Φ

−1
n (x))

− 〈wnk〉Dk(Φ
−1
n (x))

2

+ (〈w2
nk〉 − 〈wnk〉2)D2

k(Φ
−1
n (x))


=
∑
x∈Ω

In(x)−
∑
6̀=k
〈wn`〉D`(Φ

−1
n (x))

2

− 2

In(x)−
∑
` 6=k
〈wn`〉D`(Φ

−1
n (x))

 〈wnk〉Dk(Φ
−1
n (x)) + 〈w2

nk〉D2
k(Φ

−1
n (x))

 .
(A.8)
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Dropping terms in L−—viz. eq. (A.5)—that do not involve ψnk for fixed n and k, and

using eq. (A.8), we see that we should set estimate ψ̂nk to be the minimizer of energy

E(ψnk)

= −Eqw [log pw(wnk; λ̂k)|I, Φ̂, D̂]

− 1

σ̂2

∑
x∈Ω

In(x)−
∑
` 6=k
〈ŵn`〉D̂`(Φ̂

−1
n (x))

〈wnk〉Dk(Φ
−1
n (x))− 1

2
〈w2

nk〉D2
k(Φ

−1
n (x))


−H(qw(·;ψnk)), (A.9)

where 〈wnk〉 and 〈w2
nk〉 depend on ψnk as they are expectations with respect to qw(·;ψnk).

Another interpretation makes it clear that the E-step involves variational infer-

ence, which will be handy for derivations in Appendix B. In particular, note that

all terms except the trailing entropy term in energy (A.9) are from the expected

log posterior of wnk given In, Φ̂n, D̂, and 〈ŵn`〉 for ` 6= k; the expectation is taken

over random variable wnk with respect to qw(wnk;ψnk); we denote this posterior as

pw(wnk|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2). Indeed, a few lines of algebra shows that if we take

joint distribution (3.6), fix everything except wnk, and use eq. (A.8), then we obtain

proportionality

pw(wnk|In, wn¬k,Φn,D;λk, σ
2)

∝ pw(wnk;λk)×

exp

 1

σ2

∑
x∈Ω

In(x)−
∑
` 6=k

wn`D`(Φ
−1
n (x))

wnkDk(Φ
−1
n (x))− 1

2
w2
nkD

2
k(Φ

−1
n (x))

.
(A.10)

Plugging in expectations 〈ŵn`〉 in place of wn` for ` 6= k and estimates (Φ̂n, D̂, λ̂k, σ̂
2)

in place of (Φn,D, λk, σ
2), we can then take logs, apply expectation over random vari-

able wnk with respect to qw(wnk;ψnk), and negate both sides to precisely recover the

first two terms of (A.9). We thus arrive at the critical observation that

E(ψnk) = −Eqw [log pw(wnk|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2)]−H(qw(·;ψnk)) + constant

= D(qw(·;ψnk)‖pw(wnk|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2)) + constant, (A.11)

where D(·‖·) is the Kullback-Leibler divergence. Hence, we can summarize the update
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rule for the E-step as

ψ̂nk ← argmin
ψnk

D(qw(·;ψnk)‖pw(·|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2)). (A.12)

Once we solve (A.12) for each n and k, we can compute all expectations 〈ŵnk〉 and 〈ŵ2
nk〉.

Explicit update equations for ψ̂nk, 〈ŵnk〉, and 〈ŵ2
nk〉 depend on what distributions pw

and qw are. We derive updates for the case when pw(·;λk) is exponential and qw(·;ψnk) is

positive normal in Appendix B, where observing that pw(wnk|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2)

is positive normal when prior pw(·;λk) is exponential eases the calculation.

� A.2 M-step: Updating Deformations Φ

We also use coordinate ascent for the M-step, beginning with optimizing over deforma-

tions Φ. Our derivations here actually do not guarantee coordinate ascent with respect

to Φ. Specifically, we first maximize over an approximate lower bound on the varia-

tional lower bound L− with respect to each Φn while ignoring the average deformation

constraint, and then project our solution onto a space in which the average deformation

constraint is met.

Our derivation for updating each deformation relies on approximation (2.24). Com-

bining this approximation with with variational lower bound (A.5) and dropping terms

that do not involve Φn, we see that maximizing L− with respect to Φn is equivalent to

minimizing energy functional

Ẽ(Φn) =
∑
x∈Ω

|JΦn(x)|
2σ̂2

(In(Φn(x))−
K∑
k=1

〈ŵnk〉D̂k(x)

)2

+

K∑
k=1

(〈ŵ2
nk〉 − 〈ŵnk〉2)D̂2

k(x)


− log pΦ(Φn). (A.13)

Since |JΦn(x)| ≤ φmax for all n and x, and ‖Dk‖2 ≤ 1 for each k, energy Ẽ(Φn) is

bounded above by

E+(Φn) =
φmax

2σ̂2

∥∥∥∥∥In ◦ Φn −
K∑
k=1

〈ŵnk〉D̂k

∥∥∥∥∥
2

2

+
K∑
k=1

(〈ŵ2
nk〉 − 〈ŵnk〉2)

− log pΦ(Φn).

(A.14)
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We opt to solve

Φ̃n ← argmin
Φn

E+(Φn) = argmin
Φn

φmax

2σ̂2

∥∥∥∥∥In ◦ Φn −
K∑
k=1

〈ŵnk〉D̂k

∥∥∥∥∥
2

2

− log pΦ(Φn)

 ,

(A.15)

which amounts to registering image
√
φmaxIn to image

√
φmax

∑K
k=1〈ŵnk〉D̂k for energy

functional (3.3). Assuming that approximation (2.24) is accurate, optimization (A.15)

may not maximize variational lower bound L− over Φn; however, it maximizes a lower

bound on L− with respect to Φn.

Lastly, we project intermediate deformation estimates Φ̃n to a space where the av-

erage deformation is approximately identity. Assuming that each deformation Φn =

exp(Vn) is sufficiently small and has associated velocity field Vn, then the average de-

formation can be approximated as Φ1 ◦ · · · ◦ ΦN ≈ exp(
∑N

n=1 Vn). Thus, the average

deformation is approximately identity when the sum of the velocity fields is 0. With

this intuition, let Ṽn be the velocity field of intermediate deformation Φ̃n from opti-

mization (A.15). Then compute

Φ̂n ← exp

(
Ṽn −

1

N

N∑
m=1

Ṽm

)
, (A.16)

which ensures that average deformation Φ̂1 ◦ · · · ◦ Φ̂N is approximately identity.

� A.3 M-step: Updating Parameters λ and σ2

To maximize variational lower bound L− over λk, observe that it suffices to solve

λ̂k ← argmax
λk

N∑
n=1

Eq̂w [log pw(wnk;λk)|I, Φ̂, D̂], (A.17)

i.e., maximization of an expected log likelihood. If distribution pw is in the exponen-

tial family, then the resulting maximization is essentially maximum likelihood where

expected “soft” counts involving wnk are used.

To maximize variational lower bound L− over σ2, a simple calculation shows that



78 APPENDIX A. DERIVING THE INFERENCE ALGORITHM

setting the derivative with respect to σ2 to 0 and rearranging terms gives update

σ̂2 ← 1

N |Ω|

N∑
n=1

∥∥∥∥∥In −
K∑
k=1

〈ŵnk〉(D̂k ◦ Φ̂−1
n )

∥∥∥∥∥
2

2

+

K∑
k=1

(〈ŵ2
nk〉 − 〈ŵnk〉2)‖D̂k ◦ Φ̂−1

n ‖22

 .
(A.18)

� A.4 M-step: Updating Dictionary D

Lastly, we maximize variational lower bound L− over each dictionary element Dk.

Fixing k, dropping terms from L− that don’t depend on Dk, and using approxima-

tion (2.24), we find that maximizing L− with respect to Dk is equivalent to minimizing

energy (3.13) with respect to Dk. Rearranging terms in (3.13) yields

E(Dk) = Esmooth,1(Dk) + Esmooth,2(Dk)︸ ︷︷ ︸
Esmooth(Dk)

+Eseparable(Dk), (A.19)

where:

Esmooth,1(Dk) =
1

2σ̂2

N∑
n=1

∑
x∈Ω

|JΦ̂n
(x)|

(In(Φ̂n(x))−
K∑
k=1

〈ŵnk〉Dk(x)

)2

+

K∑
k=1

(〈ŵ2
nk〉 − 〈ŵnk〉2)D2

k(x)

 , (A.20)

Esmooth,2(Dk) =
β

2
D>k LDk, (A.21)

Eseparable(Dk) =
∑
x∈Ω

|Dk(x)|

α+ γ
∑
`6=k
|D̂`(x)|

 . (A.22)

We want to minimize (A.19) subject to ‖Dk‖2 ≤ 1 and there existing ellipsoid Ek ∈
E(Vmax, rmax) containing the spatial support of Dk.

Convex relaxation: Ignoring the ellipsoid constraint, we’re left with a convex pro-

gram, which is similar to Lasso except that each voxel/index x of Dk has a different

regularization parameter α + γ
∑

`6=k |D̂`(x)|, as indicated in eq. (A.22), and, further-

more, we have constraint ‖Dk‖2 ≤ 1.

As the notation suggests, Esmooth,1(Dk) and Esmooth,2(Dk) are smooth functions

whereas Eseparable(Dk) is separable but not smooth. With this decomposition, mini-

mizing (A.19) subject to ‖Dk‖2 ≤ 1 using fast iterative shrinkage-thresholding [3] is
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straightforward; the algorithm for the Lasso is in [3] and the only modifications are

having the shrinkage operator threshold vary per voxel and projecting onto the `2 disk

at each step. What remains is choosing an appropriate step size so that we don’t have

to use backtracking.

Following derivations from [3], it suffices to set the step size to δ = 1/L, where L is

a Lipschitz constant of ∇Esmooth(Dk) = ∇Esmooth,1(Dk) + ∇Esmooth,2(Dk). A simple

calculation shows that ∇Esmooth,1(Dk) and ∇Esmooth,2(Dk) have Lipschitz constants
φmax

σ̂2

∑N
n=1〈ŵ2

nk〉 and β‖L‖2 respectively:

‖∇Esmooth,1(I)−∇Esmooth,1(J)‖22 =
∑
x∈Ω

(
∂Esmooth,1(I)

∂Dk(x)
−
∂Esmooth,1(J)

∂Dk(x)

)2

=
∑
x∈Ω

[
1

σ2

N∑
n=1

|JΦn(x)|〈w2
nk〉(I(x)− J(x))

]2

≤
∑
x∈Ω

[
φmax

σ2

N∑
n=1

〈w2
nk〉(I(x)− J(x))

]2

=

[
φmax

σ2

N∑
n=1

〈w2
nk〉

]2

︸ ︷︷ ︸
squared Lipschitz constant

∑
x∈Ω

(I(x)− J(x))2

︸ ︷︷ ︸
‖I−J‖22

, (A.23)

‖∇Esmooth,2(I)−∇Esmooth,2(J)‖2 = ‖βLI − βLJ‖2
= ‖βL(I − J)‖2
≤ β‖L‖2︸ ︷︷ ︸

Lipschitz constant

‖I − J‖2. (A.24)

Hence, ∇Esmooth(Dk) has Lipschitz constant

L =
φmax

σ̂2

N∑
n=1

〈ŵ2
nk〉+ β‖L‖2. (A.25)

Of course, ∇Esmooth(Dk) is also Lipschitz continuous with any constant larger than L,

so we could upper bound ‖L‖2 and effectively use a smaller step size δ.

Rounding to enforce the ellipsoid constraint: Here, we just fill in a few details for

the rounding procedure in Section 3.2. First, note that the intensity “mass” image is
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given by

M(c) =
∑
x∈Bc

|D̃k(x)|2 =
∑
x∈Bc

D̃2
k(x) =

∑
x

D̃2
k(x)B(c− x), (A.26)

where B is the image associated with a ball of radius rmax centered at the origin:

B(x) ,

1 if ‖x‖2 ≤ rmax, x ∈ Ω,

0 if ‖x‖2 > rmax, x ∈ Ω.
(A.27)

Without loss of generality, we can assume Ω contains the spatial support of image B;

otherwise, we just need to zero-pad or shift coordinates. Next, recognizing that eq. (A.26)

is a convolution, we compute M in the frequency domain: M ← F−1{F{D2}�F{B}},
where F is the multi-dimensional discrete Fourier transform.

We conclude this section by elaborating on why the ellipsoid fitting for Alg. 5 is

approximate. Specifically, the problem can be rephrased as trying to preserve as much

squared `2 norm of an input image I as possible when masking it with an ellipsoid of

volume Vmax, where we assume that we’ve already zeroed out all elements of I except for

within spatial support defined by some ball of radius rmax. Without loss of generality,

we can assume this ball to be centered at the origin. Thus, we seek a solution to

max
ellipsoid E

∑
x∈E

I2(x) subject to: vol(E) = Vmax. (A.28)

With parameterization E = {x ∈ Ω : (x − v)>A(x − v) ≤ 1} where A is positive

semidefinite (denoted A � 0) and voxel v is in the convex hull Ωc of Ω, then the above

optimization problem can be rewritten as

max
A�0,v∈Ωc

∑
x∈Ω

I2(x)1{(x− v)>A(x− v) ≤ 1}

subject to: log det A = κ, (A.29)

where constant κ ensures that the volume of the ellipsoid, which scales with det A,

is Vmax. The crux of the problem is assigning which voxels are “outliers” that should not

be in the ellipsoid and which voxels should be in the ellipsoid. Rather than maximizing

the nonconcave objective in (A.29), we maximize a lower bound on the objective by

noting that

1{(x− v)>A(x− v) ≤ 1} ≥ 1− (x− v)>A(x− v), (A.30)
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which follows from A being positive semidefinite. Thus, we instead solve

max
A�0,v∈Ωc

∑
x∈Ω

I2(x)(1− (x− v)>A(x− v))

subject to: log det A = κ. (A.31)

This problem is nearly identical to maximum likelihood estimation for a multivariate

Gaussian! The derivation is nearly identical as well, so we just state the solution:

v =
∑
x∈Ω

I2(x)∑
y∈Ω I

2(y)
x, (A.32)

A−1 ∝
∑
x∈Ω

I2(x)(x− v)(x− v)>, (A.33)

where the constant of proportionality ensures that the ellipsoid has volume Vmax. This

ellipsoid fit can be interpreted as just fitting a Gaussian to a distribution proportional

to I2(·) and then rescaling the ellipsoid defining the Gaussian’s covariance to have

volume Vmax.
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Appendix B

Deriving the Specialized Inference

Algorithm for Chapter 4

We consider the case where pw(wnk;λk) = λke
−λkwnk with wnk ≥ 0 and λk > 0,

and qw(wnk;ψnk) = N+(wnk;µnk, νnk), i.e., ψnk = (µnk, νnk). It suffices to derive up-

dates for estimating variational distribution parameters ψ (optimization problem (A.12)

in the E-step) and estimating prior distribution parameters λ (optimization prob-

lem (A.17) from the M-step).

Estimating variational distribution parameters ψ: We begin by showing that poste-

rior pw(wnk|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2) in (A.10) is positive normal. Then we solve the

optimization problem in update rule (A.12) by setting the KL divergence to 0, which

effectively means finding the parameters of posterior pw(wnk|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2).

We shall use the fact that the positive normal density N+(·;µ, ν) can be written in

exponential family form:

N+(w;µ, ν) = exp

{
µ

ν
w − 1

2ν
w2 − µ

2ν
− 1

2
log(2πν)− logQ

(
− µ√

ν

)}
∝ exp

{
µ

ν
w − 1

2ν
w2

}
, (B.1)

where w ≥ 0 and Q(s) ,
∫∞
s

1√
2π
e−t

2/2dt is the tail probability of the standard normal

distribution. Specifically, the natural parameters of the positive normal distribution in

exponential family form (B.1) are (µν ,−
1
2ν ) and the natural statistics are (w,w2).
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With proportionality pw(wnk;λk) ∝ exp{−λkwnk} and eq. (A.10), we have

log pw(wnk|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2)

=

 1

σ̂2

∑
x∈Ω

In(x)−
∑
6̀=k
〈ŵn`〉D̂`(Φ̂

−1
n (x))

 D̂k(Φ̂
−1
n (x))− λ̂k

wnk
−

[
1

2σ̂2

∑
x∈Ω

D̂2
k(Φ̂

−1
n (x))

]
w2
nk + constant, (B.2)

where we must have wnk ≥ 0 as stipulated by the exponential prior on wnk. This density

directly corresponds to the log of exponential family form (B.1) of a positive normal,

so we conclude that posterior pw(wnk|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2) is positive normal.

Next, we minimize

D(qw(·;ψnk)‖pw(·|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2), (B.3)

i.e., we solve (A.12). First, observe that qw(·;ψnk) is positive normal, so using form (B.1),

we have:

log qw(wnk;µnk, νnk) =
µnk
νnk

wnk −
1

2νnk
w2
nk + constant. (B.4)

We are now ready for the key step: The KL divergence between the two distribu-

tions is 0 (i.e., minimized) when the two distributions are the same, which happens

if we match the natural parameters of the (log) exponential family forms of posterior

pw(wnk|In, 〈ŵn¬k〉, Φ̂n, D̂; λ̂k, σ̂
2) and approximating distribution qw(wnk;µnk, νnk), i.e.,

match the natural parameters from eqs. (B.2) and (B.4):

µnk
νnk

=
1

σ̂2

∑
x∈Ω

In(x)−
∑
6̀=k
〈ŵn`〉D̂`(Φ̂

−1
n (x))

 D̂k(Φ̂
−1
n (x))

− λ̂k, (B.5)

− 1

2νnk
= − 1

2σ̂2

∑
x∈Ω

D̂2
k(Φ̂

−1
n (x)). (B.6)

Solving for µnk and νnk, we obtain the update rules:

µ̂nk ←
〈In −

∑
6̀=k〈ŵn`〉(D̂` ◦ Φ̂−1

n ), D̂k ◦ Φ̂−1
n 〉 − σ̂2λ̂k

‖D̂k ◦ Φ̂−1
n ‖22

, (B.7)

ν̂nk ←
σ̂2

‖D̂k ◦ Φ̂−1
n ‖22

. (B.8)
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Next, computing 〈ŵnk〉 and 〈ŵ2
nk〉 is straightforward since distribution w ∼ N+(µ, ν)

has first and second moments:

E[w] = µ+

√
ν exp(−µ2/(2ν))√

2πQ(−µ/
√
ν)

, (B.9)

E[w2] = ν + µ2 +
µ
√
ν exp(−µ2/(2ν))√
2πQ(−µ/

√
ν)

. (B.10)

Estimating prior parameters λ: To update λk, we solve solving optimization prob-

lem (A.17) from the M-step. With pw(wnk;λk) = λke
−λkwnk , the problem becomes

λ̂k ← argmax
λk

{
−λk

N∑
n=1

〈ŵnk〉+N log λk

}
, (B.11)

which has a derivation identical to that of maximum likelihood for the exponential

distribution where each “observed” count is instead an expected count. Thus, we just

state the final result:

λ̂k ←
1

1
N

∑N
n=1〈ŵnk〉

. (B.12)
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wisher. New method for fMRI investigations of language: Defining ROIs function-

ally in individual subjects. Neurophysiology, 104:1177–1194, 2010.

[15] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recog-

nition. International Journal of Computer Vision, 61:55–79, 2005.

[16] K. J. Friston, J. T. Ashburner, S. J. Kiebel, T. E. Nichols, and W. D. Penny,

editors. Statistical Parametric Mapping: The Analysis of Functional Brain Images.

Academic Press, 2007.

[17] O. P. Hinds, N. Rajendran, J. R. Polimeni, J. C. Augustinack, G. Wiggins, L. L.

Wald, H. D. Rosas, A. Potthast, E. L. Schwartz, and B. Fischl. Accurate prediction

of v1 location from cortical folds in a surface coordinate system. Neuroimage, 39

(4):1585–1599, 02 2008.

[18] A. K. Jain and D. Zongker. Representation and recognition of handwritten digits

using deformable templates. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(12):1386–1390, 1997.



BIBLIOGRAPHY 89

[19] A. Klein, S. S. Ghosh, B. Avants, B.T.T. Yeo, B. Fischl, B. Ardekani, J. C. Gee,

J.J. Mann, and R. V. Parsey. Evaluation of volume-based and surface-based brain

image registration methods. NeuroImage, 51(1):214 – 220, 2010.

[20] S. Kurtek, A. Srivastava, and W. Wu. Signal estimation under random time-

warpings and nonlinear signal alignment. In NIPS, pages 675–683, 2011.

[21] D. Lashkari. In Search of Functional Specificity in the Brain: Generative Models

for Group fMRI Data. PhD thesis, Massachusetts Institute of Technology, June

2011.

[22] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In

B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information

Processing Systems 19, pages 801–808. MIT Press, Cambridge, MA, 2007.

[23] M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural

Computation, 12(2):337–365, 2000.

[24] Xiaoguang Lu and Anil K. Jain. Deformation analysis for 3d face matching.

In Proc. Seventh IEEE Workshops on Application of Computer Vision, WACV-

MOTION ’05, pages 99–104, 2005.

[25] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse

models for image restoration. In Proc. IEEE International Conference on Computer

Vision, pages 2272–2279, 2009.

[26] S. Ogawa, T-M Lee, A. S. Nayak, and P. Glynn. Oxygenation-sensitive contrast

in magnetic resonance image of rodent brain at high magnetic fields. Magnetic

Resonance in Medicine, 14(1):68–78, 1990.

[27] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties

by learning a sparse code for natural images. Nature, 381:607–609, 1996.

[28] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a

strategy employed by v1. Vision Research, 37:3311–3325, 1997.

[29] P. Risholm, S. Pieper, E. Samset, and W. M. Wells. Summarizing and visualiz-

ing uncertainty in non-rigid registration. In Proc. Medical Image Computing and

Computer-Assisted Intervention, volume 6362 of LNCS, pages 554–561, 2010.



90 BIBLIOGRAPHY

[30] C. S. Roy and C. S. Sherrington. On the regulation of the blood-supply of the

brain. Journal of Physiology (London), 11:85–108, 1890.

[31] M. R. Sabuncu, B. D. Singer, B. Conroy, R. E. Bryan, P. J. Ramadge, and J. V.

Haxby. Function-based intersubject alignment of human cortical anatomy. Cerebral

Cortex, 20(1):130–140, 2010.

[32] J. Talairach and P. Tournoux. Co-Planar Stereotaxic Atlas of the Human Brain:

3-Dimensional Proportional System: An Approach to Cerebral Imaging, volume 39.

Thieme, 1988.

[33] B. Thirion, P. Pinel, S. Mériaux, A. Roche, S. Dehaene, and J-B Poline. Analysis

of a large fMRI cohort: Statistical and methodological issues for group analyses.

NeuroImage, 35(1):105–120, 2007.

[34] B. Thirion, P. Pinel, A. Tucholka, A. Roche, P. Ciuciu, J-F Mangin, and J-B

Poline. Structural analysis of fMRI data revisited: improving the sensitivity and

reliability of fMRI group studies. IEEE Transactions in Medical Imaging, 26(9):

1256–1269, 2007.

[35] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society (Series B), 58:267–288, 1996.

[36] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Non-parametric dif-

feomorphic image registration with the demons algorithm. In Proc. International

Conference on Medical Image Computing and Computer-Assisted Intervention, vol-

ume 4792 of LNCS, pages 319–326, 2007.

[37] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Symmetric log-domain

diffeomorphic registration: A demons-based approach. In Proc. International Con-

ference on Medical Image Computing and Computer-Assisted Intervention, volume

5241 of LNCS, pages 754–761, 2008.

[38] M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and

Variational Inference. Now Publishers Inc., Hanover, MA, USA, 2008. ISBN

1601981848, 9781601981844.

[39] L. Xu, T. D. Johnson, T. E. Nichols, and D. E. Nee. Modeling inter-subject variabil-

ity in fMRI activation location: a bayesian hierarchical spatial model. Biometrics,

65(4):1041–1051, 2009.



BIBLIOGRAPHY 91

[40] J. Yang, K. Yu, Y. Gong, and T. S. Huang. Linear spatial pyramid matching using

sparse coding for image classification. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition, pages 1794–1801. IEEE, 2009.

[41] X-D Zhang. Two sharp upper bounds for the laplacian eigenvalues. Linear Algebra

and its Applications, 376(0):207 – 213, 2004.


	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Background
	Images, Deformations, Qualitative Spaces, and Masks
	Sparse Coding
	Estimating a Deformation that Aligns Two Images
	Pairwise Image Registration as an Optimization Problem
	Diffeomorphic Demons Registration

	Estimating Deformations that Align a Group of Images
	Parallel Groupwise Image Registration
	Serial Groupwise Image Registration

	Finding Group-level Functional Brain Activations in fMRI

	Probabilistic Deformation-Invariant Sparse Coding
	Formulation
	Model Parameters
	Relation to Sparse Coding

	Inference
	Initialization
	Intensity-equalization Interpretation

	Extensions

	Modeling Spatial Variability of Functional Patterns in the Brain
	Instantiation to fMRI Analysis
	Hyperparameter Selection
	Cross-validation Based on Limited Ground Truth
	Heuristics in the Absence of Ground Truth

	Synthetic Data
	Data Generation
	Evaluation
	Results

	Language fMRI Study
	Data
	Evaluation
	Results


	Discussion and Conclusions
	Deriving the Inference Algorithm
	E-step
	M-step: Updating Deformations 
	M-step: Updating Parameters  and 2
	M-step: Updating Dictionary D

	Deriving the Specialized Inference Algorithm for Chapter 4
	Bibliography

