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Abstract

We propose a general approach for encouraging fairness in survival analysis models that is
based on minimizing a worst-case error across all subpopulations that are “large enough” (occur-
ring with at least a user-specified probability threshold). This approach can be used to convert a
wide variety of existing survival analysis models into ones that simultaneously encourage fair-
ness, without requiring the user to specify which attributes or features to treat as sensitive in the
training loss function. From a technical standpoint, our approach applies recent methodological
developments of distributionally robust optimization (DRO) to survival analysis. The complication
is that existing DRO theory uses a training loss function that decomposes across contributions of
individual data points, i.e., any term that shows up in the loss function depends only on a single
training point. This decomposition does not hold for commonly used survival loss functions, in-
cluding for the standard Cox proportional hazards model, its deep neural network variants, and
many other recently developed survival analysis models that use loss functions involving ranking
or similarity score calculations. We address this technical hurdle using a sample splitting strategy.
We demonstrate our DRO approach by using it to create fair versions of a diverse set of existing
survival analysis models including the classical Cox model (and its deep neural network variant
DeepSurv), the discrete-time model DeepHit, and the neural ODE model SODEN. For all of these
models, we show that our DRO variants often score better on recently established fairness metrics
(without incurring a significant drop in accuracy) compared to existing survival analysis fairness
regularization techniques, including ones which directly use sensitive demographic information
in their training loss functions.

Our code is available at: https://github.com/discovershu/DRO_COX.

1 Introduction

Survival analysis aims to model time durations before a critical event happens. Examples of such
critical events include a patient dying, a convicted criminal reoffending, or a customer cancelling a
subscription service. Predicting such time durations accurately could help plan patient treatments,
make bail decisions, or target subscription pricing promotions. If a survival analysis model is to be
used in high-stakes decision making, fairness could be an important design criterion. For example,
in the case of making bail decisions with the help of predicted time durations until a criminal
reoffends, we may want a survival analysis model that produces these predictions to be similarly
accurate across different races.

One of the major recent advances in encouraging fairness for machine learning models is to
minimize a worst-case error over all subpopulations that are “large enough” (e.g., Hashimoto et al.
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2018, Duchi and Namkoong 2021, Li et al. 2021, Duchi et al. 2022, Hu et al. 2022a). In particular, a
modeler specifies a minimum probability threshold α. The goal then is to ensure that all subpopu-
lations that occur with probability at least α have low average error, whereas we make no promises
for subpopulations that occur with probability less than α. The modeler need not provide a list
of subpopulations to account for. This problem can be tractably solved in practice and is called
distributionally robust optimization (DRO).

We emphasize that curating a list of all subpopulations to account for can be challenging for
various reasons. For example, one major challenge is intersectionality: subpopulations that a ma-
chine learning model yields the worst accuracy scores for can be defined by complex intersections
of sensitive attributes (e.g., age, race, gender) [Buolamwini and Gebru, 2018]. Some of these at-
tributes might require discretization (e.g., dividing age into bins), for which choosing the “best”
discretization strategy might not be straightforward. Moreover, if there is a large number of fea-
tures and we suspect that the sensitive attributes (encoded by specific features) could possibly be
correlated with other features (not flagged as sensitive), there is a question of whether these other
features should also be accounted for in a listing of what the sensitive attributes are. DRO pro-
vides a theoretically sound alternative to having to specify which attributes to treat as sensitive in
a training loss function.

Our main contribution in this paper is to show how to apply DRO to survival analysis. Specifi-
cally, we propose a general strategy for converting a wide variety of survival analysis models into
ones that simultaneously encourage fairness. Our strategy supports all survival analysis models
we are aware of that minimize a loss function (details on the general form of survival analysis
models that our approach supports are in Section 3).

The key technical challenge is that existing DRO theory assumes that the overall training loss
is the sum of individual loss terms, where each such term only depends on a single data point.
This assumption fails to hold for commonly used survival analysis loss functions—including that
of the standard Cox proportional hazards model [Cox, 1972]—that involve pairwise comparisons
from ranking or similarity score evaluations (e.g., Steck et al. 2007, Lee et al. 2018, Chen 2020,
Wu et al. 2021). In particular, there are loss terms that arise that incorporate information from
multiple data points at once. We propose a sample splitting approach to address this technical
challenge. We point out that there are also parametric survival analysis models with loss functions
that directly adhere to existing DRO theory (e.g., parametric accelerated failure time models [Klein
and Moeschberger, 2003, Chapter 12] or, as a more exotic example, the recently proposed neural
ordinary differential equation (ODE) model called SODEN [Tang et al., 2022b]); such models can
trivially be modified to use DRO without the sample splitting approach that we propose.

We specifically show how to derive DRO variants of the standard Cox model [Cox, 1972] (and
its deep neural network variant DeepSurv [Faraggi and Simon, 1995, Katzman et al., 2018]), the
discrete-time DeepHit model [Lee et al., 2018], and the neural ODE model called SODEN [Tang
et al., 2022b]. Again, we emphasize that our strategy for converting an existing survival analy-
sis model to its DRO variant is fairly general and is not limited to only the few models that we
showcase as illustrative examples.

On three standard datasets that have been previously used for research on fair survival analy-
sis, we show that our DRO modification often outperforms various baseline fairness regularization
techniques in terms of existing fairness metrics that focus on user-specified sensitive attributes.
Most of these baselines require the user to specify which attributes to treat as sensitive attributes
within the added regularization term. As with other fairness methods recently developed for sur-
vival analysis (e.g., Keya et al. [2021], Rahman and Purushotham [2022]), our approach also results
in a drop in accuracy (compared to using a loss that does not encourage fairness). Note that our
paper does not aim to find which survival model is the most accurate or the most fair. In fact, per
survival model, there is in general a tradeoff between accuracy and fairness that can be tuned by
the modeler. We show how to visualize this tradeoff using a plot inspired by an ROC curve.

Related work on fair survival analysis Despite many recent advances in survival analysis method-
ology (see, for instance, the survey by Wang et al. [2019]), very few of these advances study fairness
[Keya et al., 2021, Zhang and Weiss, 2022, Sonabend et al., 2022, Rahman and Purushotham, 2022].
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We provide an overview of these existing papers, and we discuss how they differ from our work.
Keya et al. [2021] adapted existing fairness definitions to the survival analysis setting and

showed how to encourage different notions of fairness by adding fairness regularization terms.
Specifically, Keya et al. [2021] came up with individual [Dwork et al., 2012], group [Dwork et al.,
2012], and intersectional [Foulds et al., 2020] fairness definitions specialized to Cox models. Keya
et al. define individual fairness in terms of model predictions being similar for similar individu-
als, and group fairness in terms of different user-specified groups having similar average predicted
outcomes. Intersectional fairness further considers subgroups defined by intersections of protected
groups (e.g., individuals of a specific race and simultaneously a specific gender). However, a major
limitation of the notions of fairness defined by Keya et al. is that they focus on predicted model
outputs and do not actually use any of the ground truth label information. For example, if one uses
age as a sensitive attribute and suppose we discretize age into two groups, then the notion of group
fairness by Keya et al. would ask for the predicted outcomes of the two age groups to be similar,
which for healthcare problems often does not make sense (since age is often highly predictive of
different health outcomes). Instead, in such a scenario, a more desirable notion of fairness is that
the model’s accuracy for the different age groups be similar.

To account for model accuracy, Zhang and Weiss [2022] introduced a fairness metric called
concordance imparity that computes a quantity similar to the standard survival analysis accuracy
metric of concordance index [Harrell et al., 1982] for different groups and then looks at the worst-
case difference between any two groups’ accuracy scores. Meanwhile, Rahman and Purushotham
[2022] directly modified the fairness definitions of Keya et al. [2021] to account for ground truth
label information, and also generalized these definitions to survival models beyond Cox models.

Separately, Sonabend et al. [2022] empirically explored how well existing survival analysis accu-
racy and calibration metrics measure bias by synthetically modifying datasets (e.g., undersampling
disadvantaged groups). However, they do not propose any new fairness metric or survival model
that encourages fairness.

The papers mentioned above that propose new methods for learning fair survival models all
either require user-specified demographic information to treat as sensitive (possibly as a list of
subpopulations or groups to account for) or are simply adding a regularization term that encour-
ages smoothness in the model outputs (the individual fairness regularization by Keya et al. [2021]
and Rahman and Purushotham [2022] are directly related to encouraging Lipschitz continuity; for
details, see Appendix B). In contrast, our proposed DRO approach does not require the user to
indicate which attributes to treat as sensitive in the training loss function, and is not simply en-
couraging the model output to be Lipschitz continuous.

Bibliographical note This paper significantly extends our previous conference paper [Hu and
Chen, 2022] in methodological development and in experiments. For methodological develop-
ment, whereas our conference paper only considered Cox models, we show in this journal paper
version how to convert a much wider class of survival analysis models into their DRO variants
that encourage fairness. In fact, this wider class of models consists of all survival models we are
aware of that are learned by minimizing an overall loss function. For experiments, we demonstrate
our conversion strategy on not only Cox models but also on DeepHit and SODEN models. Our
experiments are overall more extensive, and the SEER dataset we now use is much larger (∼28k
data points in this version vs ∼4k in the conference paper). Lastly, we also add a new visualization
for seeing the tradeoff between accuracy and fairness across multiple models within a single plot.

Outline The rest of the paper is organized as follows. We provide background on survival anal-
ysis, existing research on fairness in survival analysis, and DRO in Section 2. We then present our
strategy for converting a wide family of existing survival analysis models into their correspond-
ing DRO variants that encourage fairness in Section 3. We conduct experiments to compare DRO
variants of Cox, DeepHit, and SODEN models to their original non-DRO variants as well as to
variants of these models that encourage fairness using non-DRO baseline regularization strategies.
We conclude the paper in Section 5.
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2 Background

We begin by reviewing the basic survival analysis problem setup in Section 2.1 and then provide
three examples of survival analysis models (Cox, DeepHit, and SODEN) in Section 2.2. We then
review DRO in Section 2.3. Throughout the paper, we frequently use the notation [ℓ] ≜ {1, 2, . . . , ℓ}
for any positive integer ℓ.

2.1 Survival Analysis Setup

Survival analysis aims to model the amount of time that will elapse before a critical event of interest
happens. We assume that we have training data {(Xi, Yi, δi)}n

i=1, where training data point i ∈ [n]
has raw input Xi ∈ X , observed duration Yi ≥ 0, and event indicator δi ∈ {0, 1}. If δi = 1 (i.e.,
the critical event of interest happened for the i-th data point), then Yi is the time until the event
happens. Otherwise, if δi = 0, then Yi is the time until censoring for the i-th point, i.e., the true time
until event is unknown but we know that it is at least Yi. The raw input space X could be any input
space supported by standard neural network software (e.g., tabular data, images, time series).

Each training data point (Xi, Yi, δi) is assumed to be generated as follows:
1. Sample raw input Xi from a raw input distribution PX .
2. Sample nonnegative time duration Ti (this is the true time until the critical event happens)

from a conditional distribution PT|X=Xi
.

3. Sample nonnegative time duration Ci (this is the true time until the data point is censored)
from a conditional distribution PC|X=Xi

.
4. If Ti ≤ Ci (the critical event happens before censoring), then set Yi = Ti and δi = 1. Otherwise,

set Yi = Ci and δi = 0.
Distributions PX , PT|X , and PC|X are shared across data points and are unknown. We assume
that the random variables Ti and Ci are independent given Xi. We denote the CDF of distribution
PT|X=x as F(·|x).

Prediction A standard prediction task is to estimate the probability that a data point with raw
input x ∈ X survives beyond time t. Formally, this is defined as the conditional survival function

S(t|x) ≜ P(T > t|X = x) = 1− F(t|x) for t ≥ 0. (2.1)

Importantly, for raw input x, we are predicting an entire probability distribution (since S(·|x) en-
codes the same information as the CDF F(·|x)).

Some survival analysis models, such as the Cox proportional hazards model [Cox, 1972], esti-
mate a transformed version of S(·|x) called the hazard function, given by

h(t|x) ≜ − ∂

∂t
log S(t|x) for t ≥ 0. (2.2)

From negating both sides of this equation, integrating over time, and exponentiating, we get S(t|x) =
exp(−

∫ t
0 h(u|x)du). Thus, if we have an estimate of h(·|x), then we can readily estimate the condi-

tional survival function S(·|x).

2.2 Examples of Survival Analysis Models

We now review three examples of survival analysis models (Cox, DeepHit, and SODEN) that can
be modified to encourage fairness using DRO. In reviewing these models, we focus on aspects
most relevant to our exposition later for how to convert these models into their DRO variants. For
all three examples, we denote the neural network to be learned as f (·; θ), where θ denotes the
parameters of the neural network. The domain and range of f depends on the specific survival
model we look at. Meanwhile, the architecture of f is up to the modeler to specify, where standard
strategies could be used (e.g., if the raw inputs are tabular data, then a multilayer perceptron could
be used; if the raw inputs are images, a convolutional neural network could be used; etc).
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2.2.1 Classical and Deep Cox Models

The classical Cox model assumes that the hazard function has the factorization

h(t|x) = h0(t) exp( f (x; θ)), (2.3)

where h0 is called the baseline hazard function (h0 maps a nonnegative time t ≥ 0 to a nonnegative
number), and neural network f (·; θ) maps a raw input from X to a single real number (i.e., f (·; θ)
has domain X and range R). In particular, f (x; θ) models the so-called log partial hazard function
and could be thought of as assigning a real-valued “risk score” to raw input x ∈ X : when f (x; θ)
is higher, then x has a higher risk of the critical event happening, so that the survival time of x will
tend to be lower.

The original Cox model [Cox, 1972] defines f to be a dot product: f (x; θ) = θTx, where θ
and x are in the same Euclidean vector space. More recently, researchers replaced f with a neural
network [Faraggi and Simon, 1995, Katzman et al., 2018], resulting in a method called DeepSurv
(which could be viewed as a generalization of the original Cox model in that the classical definition
f (x; θ) = θTx is a simple neural network consisting of a linear layer with no bias and no nonlinear
activation). In either case, the standard approach for learning a Cox model is to first learn the neural
network parameters θ by minimizing the negative log partial likelihood:

LCox(θ) =
1
n

n

∑
i=1

LCox
i (θ), (2.4)

where the i-th data point’s loss is

LCox
i (θ) ≜ −δi

[
f (Xi; θ)− log ∑

j∈[n] s.t. Yj≥Yi

exp( f (Xj; θ))

]
. (2.5)

If the i-th data point is censored (i.e., δi = 0), then LCox
i (θ) = 0. Thus, the overall loss LCox(θ)

could be viewed as weighting the uncensored training points equally. After learning θ, we then
estimate h0; as this step is not essential to our exposition, we explain it in Appendix A.1, along with
details on constructing the final estimate of S(·|x).

We remark that the factorization in equation (2.3) is referred to as the proportional hazards as-
sumption: regardless of what the input x is, the hazard function h(·|x) is always proportional to
the baseline hazard function h0. A consequence of this assumption is that the resulting conditional
survival function S(·|x) is heavily constrained in terms of its shape. In particular, regardless of
what x is, S(t|x) must be a power of the function S0(t) ≜ exp(−

∫ t
0 h0(u)du) (for details, see Ap-

pendix A.2). The next two survival analysis models that we describe do not have this assumption
and can more flexibly estimate S(·|x).

2.2.2 DeepHit

A wide class of survival analysis models directly estimate (some transformed version of) the con-
ditional survival function S(·|x) along a discretized time grid, without requiring the proportional
hazards assumption. The time grid itself is up to the modeler to choose and can depend on the
observed time Yi and event indicator δi variables in the training data. For example, we could use a
uniformly-spaced time grid between the minimum and maximum observed times (for some user-
specified number of discretized time steps), or we could have the time grid consist of all unique
times in the training data in which the critical event happened (in fact, this how the classical
Kaplan-Meier estimator [Kaplan and Meier, 1958] discretizes time). Some other time grids are
discussed by Kvamme and Borgan [2021].

An example of a model that uses a discretized time grid is DeepHit [Lee et al., 2018]. Note
that DeepHit supports the so-called competing risks setting where there are multiple critical events
of interest. For simplicity, we review DeepHit where we only present the case where there is a
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single critical event of interest, which reduces the problem setup to the same one we specified in
Section 2.1.

Let t1 < t2 < · · · < tm denote the m discretized time points based on some user-specified
grid. We assume that these are the only time points in which the critical event or censoring could
happen (if a critical event or censoring happens at some other time point, we quantize it to one
of these m time points). Then DeepHit parameterizes the following conditional probability mass
function using a neural network:

P(T = tj|X = x) = f j(x; θ) for j ∈ [m], (2.6)

where neural network f (x; θ) =
(

f1(x; θ), f2(x; θ), . . . , fm(x; θ)
)
∈ [0, 1]m has parameters θ and

maps a raw input x ∈ X to a probability distribution over the m time steps. In other words, the
domain of f (·; θ) is X and the range of f (·; θ) is the probability simplex ∆m ≜

{
z ∈ Rm : zj ≥

0 for all j ∈ [m] and ∑m
j=1 zj = 1

}
. For example, when working with tabular data, f could be a

multilayer perceptron, where the last linear layer outputs m numbers and has softmax activation.
Because of the parameterization in equation (2.6), we can write the conditional survival function

S(t|x) at any discrete time point tj in terms of the neural network f (·; θ):

Sj(x; θ) ≜ S(tj|x) = P(T > tj|X = x) =
m

∑
ℓ=j+1

fℓ(x; θ) for j ∈ [m].

To learn θ, DeepHit uses the sum of two loss terms, corresponding to a negative log likelihood term
and, separately, a ranking loss term. In what follows, we use the notation κ(Yi) ∈ [m] to denote the
time step index corresponding to the i-th training point’s observed time Yi (i.e., Yi gets quantized
to integer time step κ(Yi)). Then the overall DeepHit loss is

LDeepHit(θ) ≜ β ·

negative log likelihood loss term︷ ︸︸ ︷
1
n

n

∑
i=1

[
− δi log( fκ(Yi)

(Xi; θ))− (1− δi) log(Sκ(Yi)
(Xi; θ))

]
+ (1− β) · 1

n2

n

∑
i=1

δi ∑
j∈[n] s.t. κ(Yj)>κ(Yi)

exp
(Sκ(Yi)

(Xi; θ)− Sκ(Yi)
(Xj; θ)

σ

)
︸ ︷︷ ︸

ranking loss term

, (2.7)

where β ∈ [0, 1] and σ > 0 are hyperparameters. Note that this formulation of the overall loss
follows the implementation of DeepHit by Kvamme et al. [2019] in the now-standard pycox soft-
ware package and is slightly different from the original formulation by Lee et al. [2018] (the only
difference is in the weights used to combine the two main loss terms).

For how we convert DeepHit into its DRO variant later, it will be helpful to rewrite the DeepHit
loss in terms of individual losses:

LDeepHit(θ) ≜
1
n

n

∑
i=1

LDeepHit
i (θ), (2.8)

where the i-th individual loss is

LDeepHit
i (θ) = β ·

[
− δi log( fκ(Yi)

(Xi; θ))− (1− δi) log(Sκ(Yi)
(Xi; θ))

]
+ (1− β) · 1

n
· δi ∑

j∈[n] s.t. κ(Yj)>κ(Yi)

exp
(Sκ(Yi)

(Xi; θ)− Sκ(Yi)
(Xj; θ)

σ

)
. (2.9)

2.2.3 SODEN

Recently, a number of researchers have considered a differential-equation approach to setting up a
survival analysis model that can avoid the proportional hazards assumption while also not requir-
ing the modeler to explicitly specify a discrete time grid [Groha et al., 2020, Moon et al., 2022, Tang
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et al., 2022a,b]. We review one such model called SODEN (Survival model through Ordinary Dif-
ferential Equation Networks), proposed by Tang et al. [2022b]. Note that we review a special case
that is easier to describe and that corresponds to our survival analysis problem setup in Section 2.1,
where survival times are all nonnegative.

In what follows, we denote H(t|x) ≜ − log S(t|x). From how we defined the hazard function
h(t|x) in equation (2.2), we have h(t|x) = ∂

∂t H(t|x), so H(t|x) =
∫ t

0 h(u|x)du; this integral expres-
sion reveals why H(t|x) is commonly called the cumulative hazard function.

SODEN uses a neural network f (·; θ) to parameterize the hazard function as the solution to an
ordinary differential equation (ODE):{

∂
∂t H(t|x) = h(t|x) = f

(
(t, H(t|x), x); θ

)
for t > 0,

H(0|x) = 0 (initial condition at time 0),
(2.10)

where the neural network f (·; θ) has domain [0, ∞)× [0, ∞)× X and range R. Specifically f (·; θ)
takes as input time t ≥ 0, a cumulative hazard value H(t|x) (which is nonnegative), and a raw
input x ∈ X , and f (·; θ) outputs a single real number that is h(t|x). For example, f (·; θ) could
concatenate all its inputs to form a single vector of numbers that is then treated as the input to
a multilayer perceptron, where the final linear layer outputs a single number and has softplus
activation (to ensure that the output is always positive). The initial condition follows from the fact
that H(0|x) =

∫ 0
0 h(u|x)du = 0.

Learning neural networks in terms of ODEs (as in equation (2.10)) is possible thanks to the
landmark paper by Chen et al. [2018]. Importantly, using any user-specified ODE solver, given any
raw input x ∈ X and neural network parameters θ, we can numerically solve the ODE in equation
(2.10) (going from time 0 to any user-specified time t > 0) to obtain an estimate for H(t|x). In
particular, a major result of Chen et al. [2018] is that the loss function we use to train the neural
network can contain terms involving h(t|x) = f ((t, H(t|x), x); θ) and H(t|x); backpropagation is
possible with the help of any ODE solver.

To train the SODEN model, Tang et al. [2022b] use the overall loss function

LSODEN(θ) ≜
1
n

n

∑
i=1

LSODEN
i (θ), (2.11)

where the i-th individual loss is

LSODEN
i (θ) = −δi log f

(
(Yi, H(Yi|Xi), Xi); θ

)
+ H(Yi|Xi). (2.12)

Note that the overall loss (2.11) is just a negative log likelihood expression, so that minimizing this
loss corresponds to solving a maximum likelihood problem.

2.3 Distributionally Robust Optimization (DRO)

DRO uses a worst-case average error over “large enough” subpopulations. Note that there are now
a number of different versions of DRO (e.g., Hashimoto et al. 2018, Sagawa et al. 2020, Duchi and
Namkoong 2021, Duchi et al. 2022). We specifically use the one by Hashimoto et al. [2018]. Even
though existing literature on DRO does not consider survival analysis to the best of our knowl-
edge, we intentionally review DRO here using survival analysis notation that we have introduced
in Section 2.1. In fact, existing DRO theory actually works with many existing survival analysis loss
functions already, without modification. In particular, survival analysis models for which each data
point’s individual loss does not depend on any other data points could trivially use existing DRO
machinery. Examples of such survival analysis models include DeepHit when β = 1 (see equa-
tion (2.9)), SODEN (see equation (2.12)), as well as exponential, Weibull, log-logistic, log-normal,
and generalized Gamma accelerated failure time models [Klein and Moeschberger, 2003, Chapter
12].
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Problem setup Let P denote the joint distribution over each data point (Xi, Yi, δi). This joint
distribution corresponds to the generative procedure described in Section 2.1. We assume that there
are K groups that comprise P. In particular, P is a mixture of K distributions P ≜ ∑K

k=1 πkPk, where
the k-th group occurs with probability πk ∈ (0, 1) and has associated distribution Pk. Moreover,
∑K

k=1 πk = 1. We assume that we do not know {(πk, Pk)}K
k=1, nor do we know K. This setting,

for instance, handles the case where we do not exhaustively know all subpopulations to consider.
The smallest minority group corresponds to whichever group has the smallest πk value. A simple
special case would be when K = 2, where data are drawn from either a minority group or a majority
group.

We would like to minimize the risk

Rmax(θ) ≜ max
k=1,...,K

E(X,Y,δ)∼Pk
[Lindiv(θ; X, Y, δ)],

where Lindiv is a loss function that depends only on the parameters θ (for a survival analysis model
that we aim to learn) and on a single data point (X, Y, δ). However, minimizing Rmax(θ) is not
possible as we do not know any of the latent groups. Nevertheless, it turns out that there is an
optimization problem that we can tractably solve that minimizes an empirical version of an upper
bound on Rmax(θ). We explain what the upper bound is in Section 2.3.1 and how to empirically
minimize the upper bound in Section 2.3.2.

2.3.1 Upper Bound on the RiskRmax(θ) Using DRO

For a set of distributions Br(P) to be defined shortly, we consider minimizing the following alter-
native risk instead:

RDRO(θ; r) ≜ sup
Q∈Br(P)

E(X,Y,δ)∼Q[Lindiv(θ; X, Y, δ)]. (2.13)

This is the worst-case expected loss when we sample from any distribution in Br(P).
The definition for Br(P) is somewhat technical; we first give its precise definition and then state

how to choose r so that RDRO(θ; r) is an upper bound on Rmax(θ). Importantly, we will be able to
efficiently minimize an empirical version ofRDRO(θ; r).

Definition 1. The set Br(P) consists of all distributions Q that have the same (or smaller) support as P

and have χ2-divergence at most r from distribution P. Formally,

Br(P) ≜ {distribution Q such that Q≪ P and Dχ2(Q∥P) ≤ r},

where, using standard measure theory notation, “ Q ≪ P” means that Q is absolutely continuous with
respect to P, and Dχ2(Q∥P) ≜

∫
(dQ

dP
− 1)2dP.

Working with Br(P) turns out to be straightforward so long as we have a lower bound on the
smallest group’s probability (i.e., a lower bound on mink=1,...,K πk).

Proposition 1. (Directly follows from Proposition 2 of Hashimoto et al. [2018]) Suppose that we have a
lower bound α > 0 on the K latent groups’ probabilities of occurring (i.e., α ≤ mink=1,...,K πk). Then
RDRO(θ; rmax) ≥ Rmax(θ), where rmax ≜ ( 1

α − 1)2.

In other words, if we have a guess for α ∈ (0, mink=1,...,K πk], then it suffices to choose r for
Br(P) to be rmax = ( 1

α − 1)2. Furthermore, the risk RDRO(θ; rmax) is an upper bound on Rmax(θ).
In practice, α ∈ (0, 1) is a user-specified hyperparameter since we do not know π1, . . . , πK nor K.
Choosing α to be smaller means that we want to ensure that groups with smaller probabilities of
occurring also have low expected loss. For example, setting α = 0.1 means that the “rarest” group
that we want to ensure low expected loss for occurs with probability at least 0.1.
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Algorithm 1: DRO

Input: A training dataset {(Xi , Yi , δi)}n
i=1, minimum subpopulation probability hyperparameter α, learning rate ξ,

max_iterations
Output: Survival model parameters θ̂

1 Obtain initial survival model parameters θ̂0 (e.g., using default PyTorch parameter initialization).
2 for ℓ = 0 to max_iterations do
3 for i = 1 to n do
4 Set ui ← Lindiv(θ̂ℓ; Xi , Yi , δi).
5 end

6 Set η̂ ← arg minη∈R

{(√
2
( 1

α − 1
)2

+ 1
)√

1
n ∑n

i=1[ui − η]2+ + η
}

, where this minimization is solved using

binary search. (This step directly corresponds to minimizing LDRO(θ̂ℓ, η) as given in equation (2.15).)
7 Set θ̂ℓ+1 ← θ̂ℓ − ξ · ∇θ LDRO(θ̂ℓ, η̂).
8 end
9 return θ̂ ← θ̂max_iterations+1

2.3.2 Empirical DRO Risk

The next issue is how to minimize the risk RDRO(θ; rmax), which at a first glance might appear
daunting due to the supremum over all distributions in Brmax(P). However, a fundamental theo-
retical result from DRO literature is thatRDRO(θ; rmax) can be written in a form that is amenable to
computation.

Proposition 2. (Lemma 1 in Duchi and Namkoong [2021]) Suppose ℓ̂(θ; X, Y, δ) is upper semi-continuous
with respect to θ. Let [·]+ denote the ReLU function (i.e., [a]+ ≜ max{a, 0} for any a ∈ R), and Cα ≜√

2( 1
α − 1)2 + 1. Then

RDRO(θ; rmax) = inf
η∈R

{
Cα

√
E(X,Y,δ)∼P

[
[Lindiv(θ; X, Y, δ)− η]2+

]
+ η

}
. (2.14)

The right-hand side of equation (2.14) could be interpreted as follows. Suppose that we have
achieved the optimal value η∗. Then the loss from a data point will be ignored if it is less than
η∗ (due to the ReLU function). Thus, only the data points with losses above η∗ are considered for
learning the survival model.

Note that as we vary the model parameters θ, the different data points’ losses change. Thus,
as a function of θ, the DRO risk RDRO(θ; rmax) dynamically adjusts which data points to focus on,
always prioritizing the points with the highest loss values (again, we only consider the points with
a loss greater than the optimal value of η).

We can readily minimize an empirical version of RDRO(θ; rmax). Specifically, we replace the
expectation on the right-hand side of equation (2.14) with an empirical average to arrive at the
following optimization problem:

min
θ∈Θ,η∈R

(
Cα

√
1
n

n

∑
i=1

[Lindiv(θ; Xi, Yi, δi)− η]2+ + η︸ ︷︷ ︸
≜LDRO(θ,η)

)
, (2.15)

where Θ denotes the feasible set of the model parameters.

Numerical optimization The optimization problem in equation (2.15) can be solved with an it-
erative gradient descent approach [Hu et al., 2020, 2021, 2022b]. Specifically, we first initialize the
model parameters θ. Then, following Hashimoto et al. [2018], we alternate between two steps:

• We fix θ and update η by finding the value of η that minimizes LDRO(θ, η). To do this, we
use binary search to find the global optimum of η since LDRO(θ, η) is a convex function with
respect to η.
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• We fix η and update θ by minimizing LDRO(θ, η) (e.g., using gradient descent).
We stop iterating after user-specified stopping criteria are reached (e.g., maximum number of iter-
ations reached, early stopping due to no improvement in a validation metric after a pre-specified
number of epochs). The pseudocode can be found in Algorithm 1.

3 Converting Existing Survival Analysis Models into DRO Vari-
ants

Throughout this section, we assume that the training points {(Xi, Yi, δi)}n
i=1 are generated by the

procedure stated in Section 2.1. We describe the general class of survival models that we can convert
into DRO variants in Section 3.1. For some models (such as SODEN), the existing DRO approach
stated in Section 2.3 directly works without modification. For other survival models (such as Cox
models), existing DRO theory does not work as advertised and we propose a sample splitting
approach in Section 3.2 to obtain an approximate loss to minimize that does comply with DRO
theory.

3.1 Class of Survival Models Convertible Into DRO Variants

Our technique for converting a survival model into its DRO variant works with any survival model
that minimizes a loss of the form

Laverage(θ) =
1
n

n

∑
i=1

Li(θ;Ai), (3.1)

where the i-th loss term Li depends on training point i ∈ [n] as well as possibly other training points
Ai ⊆ [n] \ {i}. We refer to Ai as the adjacency set for the i-th training point, where Ai can be empty.
Meanwhile, for any subset I ⊆ [n] \ {i}, we assume that the function Li(θ; I) is well-defined (I
need not equal Ai). To provide some intuition for the adjacency set Ai and the individual loss
Li(θ; I), we state what these are for the survival models we presented in Section 2.2.

Example 1 (Cox models). For the i-th training point, define the adjacency set

Ai ≜
{

j ∈ [n] \ {i} such that Yj ≥ Yi}, (3.2)

and define the individual loss function

Li(θ; I) ≜ −δi

[
f (Xi; θ)− log

(
exp( f (Xi; θ)) + ∑

j∈I
exp( f (Xj; θ))

)]
.

One can verify that plugging in these choices for Ai and Li into equation (3.1) yields the Cox loss from
equation (2.4).

Example 2 (DeepHit). We first consider when hyperparameter β ∈ [0, 1). For the i-th training point,
define the adjacency set

Ai ≜
{

j ∈ [n] \ {i} such that κ(Yj) > κ(Yi)}, (3.3)

and define the individual loss function

Li(θ; I) = β ·
[
− δi log( fκ(Yi)

(Xi; θ))− (1− δi) log(Sκ(Yi)
(Xi; θ))

]
+ (1− β) · 1

n
· δi ∑

j∈I
exp

(Sκ(Yi)
(Xi; θ)− Sκ(Yi)

(Xj; θ)

σ

)
. (3.4)

One can verify that plugging in these choices for Ai and Li into equation (3.1) yields the DeepHit loss from
equation (2.8).
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Next, we consider when hyperparameter β = 1. In this case, we can still use Li(θ; I) as defined in
equation (3.4), where we note that the second term becomes 0; thus, Li(θ; I) actually no longer depends on
I . In fact, when β = 1, it suffices to set Ai = ∅ for all i ∈ [n]. Conceptually, what is happening is that the
ranking loss disappears from the overall DeepHit loss (2.7), and this ranking loss is the only loss term that
introduces coupling between different data points.

If Ai = ∅ for all i ∈ [n], then we can directly use the existing DRO optimization (2.15); the
overall loss decouples across the different data points so we do not run into issues where multiple
data points get “coupled”.

Example 3 (SODEN). For the SODEN model, the overall loss function (2.11) actually has no coupling
across training points, so it suffices to set Ai = ∅ for all i ∈ [n], and have Li(θ; I) = LSODEN

i (θ) using
equation (2.12) (so Li(θ; I) does not actually depend on I).

3.2 Applying DRO When Adjacency Sets Can be Nonempty

We now discuss how to use DRO when Ai is not guaranteed to be empty (as in the case of the Cox
model or of DeepHit when β ∈ [0, 1)).

Heuristic approach To convert a survival analysis model that minimizes the loss (3.1) into one
that uses DRO, a heuristic approach that does not comply with existing DRO theory would be to
solve the DRO optimization problem (2.15), ignoring the fact that the individual loss terms are not
guaranteed to depend only on a single data point each. To be clear, existing DRO theory effectively
requires that the sets Ai are all empty. As a preview of our experimental results, we mention that
this heuristic approach actually works well in practice but we lack any justification as to why it
should be expected to work well.

Sample splitting approach We now propose a sample splitting approach that creates an approx-
imate loss function that complies with existing DRO theory. We divide the training data into two
setsD1 ⊂ [n] andD2 ≜ [n] \D1 of sizes n1 ≜ |D1| and n2 ≜ |D2| = n− n1. The basic idea is that we
treat the data points inD2 as fixed, and then define a DRO loss only over data points inD1. For each
i ∈ D1, we replace its original individual loss Li(θ;Ai) with an approximate version Li(θ;Ai ∩D2)
that only depends on the i-th point along with points in D2. Specifically, we minimize the new
DRO loss function

Lsplit
DRO(θ, η,D1 | D2) ≜ Cα

√
1
|D1| ∑

i∈D1

[Li(θ;Ai ∩ D2)− η]2+ + η. (3.5)

The key observation is that conditioned on the points in D2, the loss terms Li(θ;Ai ∩ D2) appear
i.i.d. across i ∈ D1 and the i-th loss only depends on the i-th data point (and possibly points in D2
which are treated as fixed). Hence, the original DRO theory applies. Note that our sample splitting
strategy is somewhat inspired by the “case control” strategy by Kvamme et al. [2019], where instead
of using the full Cox loss, they approximate each individual data point’s loss (which could depend
on many other data points) to only depend on a single other data point.

Although minimizing Lsplit
DRO(θ, η,D1 | D2) is compliant with DRO theory, it uses data “less

effectively” since at most n1 data points (rather than n) are used to compute the empirical average
inside the square root in equation (3.5) (as compared to the empirical average inside the square root
of LDRO(θ, η) in equation (2.15)); as reminder, some individual loss terms might actually be zero
(in the case of the Cox model, individual loss terms are zero for censored data). Moreover, in the
new split loss Lsplit

DRO(θ, η,D1 | D2), each individual loss within the empirical average is computed
using only a subset of each individual’s original adjacency set (for each i ∈ D1, we approximate
individual loss Li(θ;Ai) by Li(θ;Ai ∩D2)).

To “more effectively” use data, we use the following simple strategy. Whereas the loss Lsplit
DRO(θ, η,D1 |

D2) treats D2 as fixed and computes an average over D1, we also do the opposite: we treat D1
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Algorithm 2: DRO (SPLIT)
Input: A training dataset {(Xi , Yi , δi)}n

i=1, minimum subpopulation probability hyperparameter α, subset size n1,
learning rate ξ, max_iterations

Output: Survival model parameters θ̂

1 Obtain initial survival model parameters θ̂0 (e.g., using default PyTorch parameter initialization).
2 Set D1 ← {1, 2, . . . , n1} and D2 ← {n1 + 1, . . . , n}.
3 for ℓ = 0 to max_iterations do
4 for i ∈ D1 do
5 Set ui ← Li(θ̂ℓ;Ai ∩ D2).
6 end

7 Set η̂ ← arg minη∈R

{(√
2
( 1

α − 1
)2

+ 1
)√

1
n1

∑i∈D1
[ui − η]2+ + η

}
, where this minimization is solved using

binary search.
8 for i ∈ D2 do
9 Set vi ← Li(θ̂ℓ;Ai ∩ D1).

10 end

11 Set η̂′ ← arg minη′∈R

{(√
2
( 1

α − 1
)2

+ 1
)√

1
n−n1

∑i∈D2
[vi − η′]2+ + η′

}
, where this minimization is solved

using binary search.
12 Set θ̂ℓ+1 ← θ̂ℓ − ξ ·

(
∇θ Lsplit

DRO(θ̂ℓ, η̂,D1 | D2) +∇θ Lsplit
DRO(θ̂ℓ, η̂′,D2 | D1)

)
.

13 end
14 return θ̂ ← θ̂max_iterations+1

as fixed and compute an average over D2, which would corresponds precisely to using the loss
Lsplit

DRO(θ, η′,D2 | D1); note that we use a different variable η′ than the variable η used in Lsplit
DRO(θ, η,D1 |

D2). Overall, we minimize the loss

Lsplit
DRO(θ, η, η′) ≜ Lsplit

DRO(θ, η,D1 | D2) + Lsplit
DRO(θ, η′,D2 | D1)

via coordinate descent, alternating between the following steps:

• Treating η′ and θ as fixed, we update η by finding the value of η that minimizes Lsplit
DRO(θ, η, η′).

This amounts to solving minη∈R Lsplit
DRO(θ, η,D1 | D2) using binary search (since Lsplit

DRO(θ, η,D1 |
D2) is convex w.r.t. η).

• Treating η and θ as fixed, we update η′ by finding the value of η′ that minimizes Lsplit
DRO(θ, η, η′).

This amounts to solving minη′∈R Lsplit
DRO(θ, η′,D2 | D1) using binary search.

• Treating η and η′ as fixed, we update θ by minimizing Lsplit
DRO(θ, η, η′) (e.g., using gradient

descent).
We provide the pseudocode in Algorithm 2.

4 Experiments

To see how well our proposed DRO conversion strategy works in practice, we now conduct exten-
sive experiments to evaluate the accuracy and fairness of DRO variants of different survival models
compared to the original versions of these models, as well as to versions of these models modified
to encourage fairness using existing fairness regularizers. We describe the datasets we use in Sec-
tion 4.1, the experimental setup in Section 4.2, the evaluation metrics in Section 4.3, and the models
evaluated in Section 4.4. We then present our experimental results in Section 4.5. Lastly, we show
how to compare across multiple models using a plot inspired by ROC curves in Section 4.6.

4.1 Datasets

We use three standard, publicly available survival analysis datasets:

12



Table 4.1: Basic dataset characteristics.

FLC SUPPORT SEER

# samples 7,874 9,105 28,018
# features 6 (9∗) 14 (19∗) 11

Censoring rate 0.725 0.319 0.654
Sensitive attributes age, gender age, race, gender age, race

∗ indicates the number before preprocessing (preprocessing removes some features)

• The FLC dataset [Dispenzieri et al., 2012] is from a study on the relationship between serum
free light chain (FLC) and mortality of Olmsted County residents aged 50 or higher. We treat
discretized age (age≤65 and age>65) and gender (women and men) as sensitive attributes.

• The SUPPORT dataset [Knaus et al., 1995] is from a study at Vanderbilt University on un-
derstanding prognoses, preferences, outcomes, and risks of treatment by analyzing survival
times of severely ill hospitalized patients. We treat discretized age (age≤65 and age>65), race
(white and non-white), and gender (women and men) as sensitive attributes.

• The SEER dataset is on breast cancer patients from the Sureillance, Epidemiology, and End
Results (SEER) program of the National Cancer Institute. We collected this dataset using the
data extraction software from the official SEER program of the National Cancer Institute. We
used 11 covariates that also appear in an existing snapshot of the SEER dataset [Teng, 2019]
that only contained 4024 data points. We also treat discretized age (age≤65 and age>65) and
race (white and non-white) as sensitive attributes.

These datasets have appeared in existing fair survival analysis research (e.g., Keya et al. 2021, Rah-
man and Purushotham 2022, Zhang and Weiss 2022) although not always with all three of these
appearing within the same paper. Basic characteristics of these datasets are reported in Table 4.1.

4.2 Experimental Setup

For all models, we first use a random 80%/20% train/test split to hold out a test set that will be
the same across experimental repeats for all datasets. Then we repeat the following basic experi-
ment 10 times: (1) We hold out 20% of the training data to treat as a validation set, which is used
to tune hyperparameters. (2) We then compute evaluation metrics across the same test set. We
describe the evaluation metrics and how hyperparameter tuning works shortly. When we report
our experimental results, we provide the mean and standard deviation of each metric across the 10
experimental repeats. More hyperparameter settings can be found in Appendix C.

4.3 Evaluation Metrics

For accuracy metrics, we use Time-dependent concordance index (Ctd, higher is better) [Antolini
et al., 2005] and Integrated IPCW Brier Score (IBS, lower is better) [Graf et al., 1999]. For fair-
ness metrics, we use the concordance imparity (CI) fairness metric by [Zhang and Weiss, 2022],
Censoring-based individual fairness (FCI) [Rahman and Purushotham, 2022], and Censoring-based
group fairness (FCG) [Rahman and Purushotham, 2022]. For these fairness metrics, lower is better.
Definitions of these fairness metrics are in Appendix B.

Note that the fairness metrics CI and FCG require us to specify groups. For the FLC dataset,
we use (discretized) age and, separately, gender (i.e., we first run experiments using only age in
evaluating CI and FCG; we then re-run experiments using gender instead of age). For the SUPPORT
dataset, we separately use gender, age, and race. For the SEER dataset, we separately use race and
age.
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4.4 Models Evaluated

Working off our running examples from Section 2.2, we consider Cox models (classical and deep),
DeepHit, and SODEN. For each of these, we compare the original model with its DRO variants
using our conversion strategy (the heuristic approach and also the sample splitting approach stated
in Section 3.2; for SODEN, there is no need to do sample splitting and the heuristic approach is
actually exact). We also try versions of the original models modified to encourage fairness using
existing fairness regularizers.

Cox models We separately experiment on the classical linear setting (the log partial hazard func-
tion is f (x; θ) = θTx) or the “deep” nonlinear setting in which f is a multilayer perceptron (MLP).
In the linear case, we denote the heuristic DRO variant as DRO-COX and the sample splitting DRO
variant as DRO-COX (SPLIT). For the nonlinear case, we add the prefix “Deep” to these names for
clarity.

In terms of baselines, we use the unregularized linear Cox model [Cox, 1972] (denoted as
“Cox”), whereas the unregularized nonlinear Cox model [Katzman et al., 2018] is denoted as “Deep-
Surv”. The rest of our baselines are all regularized versions of either the standard Cox or DeepSurv
models, using different fairness regularization terms. When we use individual, group, or inter-
sectional regularization terms by Keya et al. [2021] (we discuss these in Appendix B), we add the
suffix “I(Keya et al.)”, “G(Keya et al.)”, or “∩(Keya et al.)” respectively to a model name; for ex-
ample, “DeepSurvG(Keya et al.)” corresponds to DeepSurv with group fairness regularization by
Keya et al. [2021]. When we use the individual or group fairness regularization terms that account
for observed times and censoring information [Rahman and Purushotham, 2022], we instead use
the suffix “I(R&P)” or “G(R&P)”.1 Note that group fairness regularization (suffixes “G(Keya et al.)”
and “G(R&P)”) uses the same groups that test set CI and FCG fairness metrics use.

In terms of hyperparameter tuning, we use the strategy by Keya et al. [2021]: the final hyperpa-
rameter setting used per dataset and per method is determined based on a preset rule in practice
that allows up to a 5% degradation in the validation set Ctd from the classical Cox model (for the lin-
ear setting) or DeepSurv (for the nonlinear setting) while minimizing the validation set CI fairness
metric or FCG fairness metric (see Appendix D).

DeepHit and SODEN For DeepHit [Tang et al., 2022b], we denote its heuristic DRO variant as
DRO-DEEPHIT and its sample splitting DRO variant as DRO-DEEPHIT (SPLIT). For SODEN [Tang
et al., 2022b], there is only one DRO variant to consider which we denote as DRO-SODEN.

In terms of baselines, we consider the original DeepHit and SODEN models that do not account
for fairness. We further adapt the group-based fairness regularization that accounts for censoring
from Rahman and Purushotham [2022] to each of DeepHit and SODEN separately as additional
baselines (DEEPHITG(R&P) and SODENG(R&P)).

The hyperparameter setting used per dataset and per method is also determined based on a
preset rule in practice that allows up to a 5% degradation in the validation set Ctd from the original
model (that does not encourage fairness) while minimizing the validation set CI fairness metric
or FCG fairness metric. Hyperparameter grids for all methods are in Appendix C, where we also
provide information on the compute environment that we used.

4.5 Experimental Results

Cox models We compare DRO-COX and DRO-COX (SPLIT) against various baselines using a sim-
ilar experimental setup as Keya et al. [2021]. Specifically, we report the test set evaluation metrics
for FLC (using age to evaluate CI and FCG) in Table 4.2, SUPPORT (gender) in Table 4.3, and SEER

1Rahman and Purushotham [2022] did not propose an intersectional fairness regularizer and technically did not try regu-
larized versions of Cox models using their fairness definitions. However, it is straightforward to adapt their individual and
group fairness definitions as regularization terms for a Cox model, especially as their work is directly modifying definitions
by Keya et al. [2021].
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Table 4.2: Cox model test set accuracy and fairness metrics on the FLC (age) dataset. We report mean and
standard deviation (in parentheses) across 10 experimental repeats (each repeat holds out a different 20% of
the training data as a validation set for hyperparameter tuning; the test set is the same across experimental
repeats). Higher is better for metrics with “↑”, while lower is better for metrics with “↓”. The best results
are shown in bold for linear and, separately, nonlinear models. When one of our methods outperforms all
baselines (in linear and, separately, nonlinear models), we highlight the corresponding cell in green.

Methods
CI-based Tuning FCG -based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓

Li
ne

ar
Cox 0.8032

(0.0002)
0.1739

(0.0004)
0.5350

(0.0413)
0.3608

(0.0045)
0.0744

(0.0011)
0.8032

(0.0002)
0.1739

(0.0004)
0.4479

(0.0919)
0.3608

(0.0045)
0.0744

(0.0011)

CoxI (Keya et al.) 0.7937
(0.0068)

0.1414
(0.0073)

0.5400
(0.3270)

0.1081
(0.0254)

0.0210
(0.0051)

0.7923
(0.0074)

0.1334
(0.0034)

0.2280
(0.2540)

0.0551
(0.0048)

0.0100
(0.0013)

CoxI (R&P) 0.8034
(0.0007)

0.1636
(0.0030)

0.4330
(0.1196)

0.2291
(0.0256)

0.0452
(0.0053)

0.8020
(0.0015)

0.1565
(0.0008)

0.2219
(0.1426)

0.1688
(0.0050)

0.0326
(0.0012)

CoxG (Keya et al.) 0.7974
(0.0117)

0.1492
(0.0077)

0.3410
(0.3011)

0.2465
(0.1576)

0.1201
(0.0905)

0.7862
(0.0133)

0.1413
(0.0035)

0.3026
(0.3611)

0.0693
(0.0248)

0.0168
(0.0070)

CoxG (R&P) 0.8027
(0.0005)

0.1676
(0.0012)

0.4950
(0.1517)

0.2718
(0.0130)

0.0539
(0.0026)

0.8012
(0.0004)

0.1637
(0.0006)

0.1871
(0.0567)

0.2323
(0.0046)

0.0455
(0.0011)

Cox∩ (Keya et al.) 0.7870
(0.0029)

0.1400
(0.0005)

1.0790
(0.1098)

0.0615
(0.0012)

0.0153
(0.0013)

0.7875
(0.0021)

0.1402
(0.0004)

0.5904
(0.5340)

0.0618
(0.0014)

0.0149
(0.0017)

DRO-COX 0.7959
(0.0036)

0.1408
(0.0050)

0.0510
(0.0401)

0.0631
(0.0413)

0.0116
(0.0076)

0.7958
(0.0049)

0.1330
(0.0002)

0.0810
(0.1139)

0.0000
(0.0000)

0.0000
(0.0000)

DRO-COX (SPLIT) 0.7964
(0.0045))

0.1389
(0.0008)

0.1175
(0.1482)

0.0000
(0.0000)

0.0000
(0.0000)

0.7964
(0.0045))

0.1389
(0.0008)

0.1175
(0.1482)

0.0000
(0.0000)

0.0000
(0.0000)

N
on

lin
ea

r

DeepSurv 0.8070
(0.0014)

0.1767
(0.0018)

0.2940
(0.2147)

0.5788
(0.2493)

0.1314
(0.0606)

0.8070
(0.0014)

0.1767
(0.0018)

0.2940
(0.2147)

0.5788
(0.2493)

0.1314
(0.0606)

DeepSurvI (Keya et al.) 0.7884
(0.0070)

0.1441
(0.0130)

0.3700
(0.2523)

0.0355
(0.0266)

0.0082
(0.0067)

0.7994
(0.0069)

0.1672
(0.0051)

0.3155
(0.4907)

0.0001
(0.0002)

0.0000
(0.0001)

DeepSurvI (R&P) 0.8071
(0.0041)

0.1729
(0.0093)

0.1870
(0.1117)

0.0138
(0.0264)

0.0036
(0.0073)

0.8084
(0.0021)

0.1757
(0.0029)

0.0912
(0.1975)

0.0004
(0.0002)

0.0001
(0.0001)

DeepSurvG (Keya et al.) 0.7990
(0.0120)

0.4190
(0.2487)

0.2490
(0.1646)

0.0446
(0.1048)

0.0240
(0.0609)

0.8061
(0.0020)

0.4713
(0.2142)

0.1350
(0.2092)

0.0000
(0.0000)

0.0000
(0.0000)

DeepSurvG (R&P) 0.8073
(0.0036)

0.1731
(0.0087)

0.2290
(0.1344)

0.0472
(0.0488)

0.0119
(0.0133)

0.8092
(0.0017)

0.1764
(0.0022)

0.0955
(0.1085)

0.0060
(0.0022)

0.0014
(0.0005)

DeepSurv∩ (Keya et al.) 0.7751
(0.0018)

0.1357
(0.0002)

0.4300
(0.1091)

0.0394
(0.0010)

0.0125
(0.0005)

0.7751
(0.0018)

0.1357
(0.0002)

0.2347
(0.2100)

0.0394
(0.0010)

0.0125
(0.0005)

Deep DRO-COX 0.8068
(0.0024)

0.1595
(0.0135)

0.0730
(0.0822)

0.2865
(0.2425)

0.0642
(0.0573)

0.7781
(0.0091)

0.1331
(0.0002)

1.2177
(1.2368)

0.0054
(0.0012)

0.0012
(0.0002)

Deep DRO-COX (SPLIT) 0.7784
(0.0092)

0.1647
(0.0037)

1.1632
(1.1853)

0.0054
(0.0013)

0.0011
(0.0002)

0.7784
(0.0092)

0.1647
(0.0037)

1.1632
(1.1853)

0.0054
(0.0013)

0.0011
(0.0002)

Table 4.3: Cox model test set scores on the SUPPORT (gender) dataset, in the same format as Table 4.2.

Methods
CI-based Tuning FCG -based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓

Li
ne

ar

Cox 0.6025
(0.0005)

0.2304
(0.0015)

1.4300
(0.0654)

0.0207
(0.0008)

0.0105
(0.0004)

0.6025
(0.0005)

0.2304
(0.0015)

1.4300
(0.0654)

0.0207
(0.0008)

0.0105
(0.0004)

CoxI (Keya et al.) 0.5881
(0.0114)

0.2157
(0.0060)

0.9650
(0.6126)

0.0028
(0.0026)

0.0014
(0.0013)

0.5829
(0.0099)

0.2147
(0.0063)

0.5665
(0.7451)

0.0000
(0.0000)

0.0000
(0.0000)

CoxI (R&P) 0.6019
(0.0019)

0.2282
(0.0013)

1.4190
(0.1002)

0.0177
(0.0012)

0.0090
(0.0006)

0.6024
(0.0008)

0.2276
(0.0011)

0.6989
(0.6852)

0.0169
(0.0005)

0.0086
(0.0002)

CoxG (Keya et al.) 0.6030
(0.0007)

0.2297
(0.0018)

1.4190
(0.0632)

0.0197
(0.0011)

0.0101
(0.0005)

0.6024
(0.0006)

0.2284
(0.0009)

0.7273
(0.7103)

0.0185
(0.0003)

0.0095
(0.0001)

CoxG (R&P) 0.6018
(0.0017)

0.2295
(0.0009)

1.4340
(0.1039)

0.0196
(0.0005)

0.0100
(0.0002)

0.6026
(0.0008)

0.2290
(0.0012)

0.7054
(0.6896)

0.0188
(0.0005)

0.0096
(0.0002)

Cox∩ (Keya et al.) 0.5715
(0.0062)

0.2275
(0.0016)

1.1270
(0.2457)

0.0131
(0.0013)

0.0067
(0.0006)

0.5631
(0.0070)

0.2264
(0.0017)

0.4383
(0.4752)

0.0117
(0.0012)

0.0059
(0.0006)

DRO-COX 0.5734
(0.0019)

0.2210
(0.0010)

0.4350
(0.0674)

0.0028
(0.0001)

0.0015
(0.0001)

0.5641
(0.0105)

0.2211
(0.0010)

0.1930
(0.2308)

0.0019
(0.0012)

0.0010
(0.0006)

DRO-COX (SPLIT) 0.5701
(0.0056)

0.4569
(0.1314)

0.1941
(0.2088)

0.0023
(0.0011)

0.0012
(0.0006)

0.5701
(0.0056)

0.4570
(0.1314)

0.1941
(0.2088)

0.0023
(0.0011)

0.0012
(0.0006)

N
on

lin
ea

r

DeepSurv 0.6108
(0.0029)

0.2417
(0.0016)

1.6220
(0.3303)

0.0453
(0.0041)

0.0233
(0.0021)

0.6108
(0.0029)

0.2417
(0.0016)

1.6220
(0.3303)

0.0453
(0.0041)

0.0233
(0.0021)

DeepSurvI (Keya et al.) 0.5984
(0.0124)

0.2376
(0.0182)

1.3280
(0.7670)

0.0012
(0.0020)

0.0006
(0.0011)

0.6031
(0.0059)

0.2459
(0.0102)

0.5795
(0.8413)

0.0000
(0.0000)

0.0000
(0.0000)

DeepSurvI (R&P) 0.6104
(0.0076)

0.2379
(0.0079)

1.6490
(0.2368)

0.0049
(0.0046)

0.0026
(0.0024)

0.6124
(0.0048)

0.2448
(0.0043)

0.8630
(0.8925)

0.0000
(0.0000)

0.0000
(0.0000)

DeepSurvG (Keya et al.) 0.5982
(0.0109)

0.2436
(0.0121)

1.6540
(0.3892)

0.0111
(0.0082)

0.0057
(0.0042)

0.6034
(0.0037)

0.2499
(0.0024)

0.6218
(0.6885)

0.0046
(0.0007)

0.0024
(0.0004)

DeepSurvG (R&P) 0.6110
(0.0057)

0.2406
(0.0068)

1.6250
(0.1931)

0.0039
(0.0049)

0.0020
(0.0025)

0.6117
(0.0049)

0.2440
(0.0034)

0.8281
(0.8359)

0.0002
(0.0000)

0.0001
(0.0000)

DeepSurv∩ (Keya et al.) 0.6015
(0.0069)

0.2378
(0.0053)

1.4110
(0.2129)

0.0256
(0.0054)

0.0131
(0.0027)

0.5912
(0.0012)

0.2309
(0.0011)

0.7786
(0.7659)

0.0182
(0.0008)

0.0094
(0.0004)

Deep DRO-COX 0.5829
(0.0067)

0.2240
(0.0010)

1.2600
(0.4412)

0.0117
(0.0049)

0.0061
(0.0025)

0.5754
(0.0120)

0.2227
(0.0011)

0.7807
(0.8404)

0.0065
(0.0023)

0.0034
(0.0012)

Deep DRO-COX (SPLIT) 0.5772
(0.0093)

0.6387
(0.0007)

0.7799
(0.8410)

0.0069
(0.0021)

0.0036
(0.0010)

0.5772
(0.0093)

0.6387
(0.0007)

0.7799
(0.8410)

0.0069
(0.0021)

0.0036
(0.0010)

(race) in Table 4.4. Experimental results using other sensitive attributes for the datasets have similar
trends and are in Appendix D. From these tables, we have the following observations:
• Among linear methods, the heuristic DRO-COX method consistently outperforms baselines in

terms of the CI fairness metric (and often on the other fairness metrics too) while still achiev-
ing reasonably high accuracy scores. A similar trend holds among nonlinear methods for the
heuristic deep DRO-COX variant.

• The performance difference (in terms of both accuracy and fairness) between the heuristic DRO-
COX and sample-splitting-based DRO-COX (SPLIT) is not clear cut; sometimes one performs better
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Table 4.4: Cox model test set scores on the SEER (race) dataset, in the same format as Table 4.2.

Methods
CI-based Tuning FCG -based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓

Li
ne

ar

Cox 0.7025
(0.0003)

0.2128
(0.0009)

1.3445
(1.1759)

0.1690
(0.0053)

0.1299
(0.0041)

0.7025
(0.0003)

0.2128
(0.0009)

1.3445
(1.1759)

0.1690
(0.0053)

0.1299
(0.0041)

CoxI (Keya et al.) 0.6894
(0.0046)

0.1837
(0.0027)

1.9930
(1.0836)

0.0110
(0.0013)

0.0090
(0.0010)

0.6894
(0.0046)

0.1837
(0.0027)

1.9930
(1.0836)

0.0110
(0.0013)

0.0090
(0.0010)

CoxI (R&P) 0.7022
(0.0022)

0.1974
(0.0007)

1.4192
(1.1402)

0.0823
(0.0022)

0.0638
(0.0015)

0.7023
(0.0022)

0.1973
(0.0008)

1.2311
(1.1520)

0.0822
(0.0021)

0.0636
(0.0013)

CoxG (Keya et al.) 0.6952
(0.0146)

0.2073
(0.0049)

1.5037
(1.4153)

0.1384
(0.0256)

0.1100
(0.0215)

0.6952
(0.0146)

0.2073
(0.0049)

1.5037
(1.4153)

0.1384
(0.0256)

0.1100
(0.0215)

CoxG (R&P) 0.7027
(0.0022)

0.2000
(0.0004)

1.3053
(1.2116)

0.0965
(0.0015)

0.0723
(0.0014)

0.7024
(0.0024)

0.2001
(0.0008)

1.3214
(1.2252)

0.0967
(0.0020)

0.0720
(0.0009)

Cox∩ (Keya et al.) 0.6494
(0.0016)

0.1963
(0.0012)

1.4998
(1.0451)

0.0707
(0.0058)

0.0562
(0.0045)

0.6494
(0.0016)

0.1963
(0.0012)

1.4998
(1.0451)

0.0707
(0.0058)

0.0562
(0.0045)

DRO-COX 0.6927
(0.0069)

0.1868
(0.0004)

1.1545
(1.2119)

0.0001
(0.0001)

0.0001
(0.0001)

0.6927
(0.0069)

0.1868
(0.0004)

1.1545
(1.2119)

0.0001
(0.0001)

0.0001
(0.0001)

DRO-COX (SPLIT) 0.6872
(0.0047)

0.1869
(0.0004)

1.4140
(1.5085)

0.0000
(0.0000)

0.0000
(0.0000)

0.6872
(0.0047)

0.1869
(0.0004)

1.4140
(1.5085)

0.0000
(0.0000)

0.0000
(0.0000)

N
on

lin
ea

r

DeepSurv 0.7095
(0.0014)

0.2200
(0.0012)

1.4812
(1.1237)

0.3635
(0.1116)

0.2792
(0.0844)

0.7095
(0.0014)

0.2200
(0.0012)

1.4812
(1.1237)

0.3635
(0.1116)

0.2792
(0.0844)

DeepSurvI (Keya et al.) 0.6982
(0.0045)

0.2127
(0.0032)

1.7870
(0.9286)

0.0000
(0.0000)

0.0000
(0.0000)

0.6982
(0.0045)

0.2127
(0.0032)

1.7870
(0.9286)

0.0000
(0.0000)

0.0000
(0.0000)

DeepSurvI (R&P) 0.7078
(0.0015)

0.2167
(0.0012)

1.3616
(1.2716)

0.0001
(0.0001)

0.0001
(0.0001)

0.7078
(0.0015)

0.2167
(0.0012)

1.2616
(1.2716)

0.0001
(0.0001)

0.0001
(0.0001)

DeepSurvG (Keya et al.) 0.7034
(0.0016)

0.2154
(0.0007)

1.3546
(1.2420)

0.1172
(0.0343)

0.0950
(0.0277)

0.7034
(0.0016)

0.2154
(0.0007)

1.3546
(1.2420)

0.1172
(0.0343)

0.0950
(0.0277)

DeepSurvG (R&P) 0.7079
(0.0017)

0.2167
(0.0012)

1.3392
(1.2448)

0.0013
(0.0004)

0.0011
(0.0004)

0.7079
(0.0017)

0.2167
(0.0012)

1.2392
(1.2448)

0.0013
(0.0004)

0.0011
(0.0004)

DeepSurv∩ (Keya et al.) 0.6537
(0.0054)

0.1998
(0.0008)

1.5587
(1.5744)

0.0694
(0.0143)

0.0558
(0.0115)

0.6537
(0.0054)

0.1998
(0.0008)

1.5587
(0.5744)

0.0694
(0.0143)

0.0558
(0.0115)

Deep DRO-COX 0.6830
(0.0050)

0.1869
(0.0004)

1.2908
(1.3424)

0.0006
(0.0004)

0.0006
(0.0003)

0.6830
(0.0050)

0.1869
(0.0004)

1.2908
(1.3424)

0.0006
(0.0004)

0.0006
(0.0003)

Deep DRO-COX (SPLIT) 0.6829
(0.0049)

0.1881
(0.0012)

1.2443
(1.2960)

0.0006
(0.0005)

0.0005
(0.0004)

0.6829
(0.0049)

0.1881
(0.0012)

1.2443
(1.2960)

0.0006
(0.0005)

0.0005
(0.0004)

(a) FLC (age) (b) SUPPORT (age) (c) SEER (age)

Figure 1: Effect of α on test set accuracy (c-index; higher is better) and fairness metrics (FI , FG, F∩, FA, and
CI; lower is better for all fairness metrics) of DRO-COX on four datasets.

than the other and vice versa. This holds for their linear variants as well as, separately, their
nonlinear (deep) variants.

• As expected, the unregularized Cox and DeepSurv models often have (among) the highest accu-
racy scores but tend to have poor performance on fairness metrics.

• The baselines that are regularized variants of Cox and DeepSurv typically do not simultaneously
achieve low scores across all fairness metrics. Even though some of these can work well with
some of the metrics by Keya et al. [2021], they clearly do not work as well as our DRO-COX
variants when it comes to the CI fairness metric that actually accounts for accuracy.

Effect of α. To show how α trades off between fairness and accuracy, we show results for DRO-COX
in the linear setting across all datasets (using age for evaluating FG and CI) in Figure 1, where we
use c-index as the accuracy metric. It is clear that accuracy tends to increase when α increases from
0.1 to 0.3 on FLC and SEER, and from 0.3 to 0.5 on SUPPORT. However, the increase in α results in
worse scores across fairness metrics.
Additional experiments. Across all methods, instead of minimizing the validation set CI fairness
metric during hyperparameter tuning (tolerating a small degradation in the validation set Ctd), we
also tried instead minimizing the validation set FCG metric and found similar results. We also show
that our DRO-COX (SPLIT) procedure is somewhat robust to the choice of n1 and n2, and if DRO-COX

(SPLIT) did not use both losses Lsplit
DRO(θ, η,D1 | D2) and Lsplit

DRO(θ, η,D2 | D1) (i.e., if it only used one
of these), then it performs worse. For details on these experiments, see Appendix D.
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Table 4.5: DeepHit test set scores on the FLC, SUPPORT, SEER datasets when hyperparameter tuning is based
on CI and FCG.

Datasets Methods
CI-based Tuning FCG -based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓

FLC
(age)

DeepHit 0.7937
(0.0080)

0.1560
(0.0204)

1.1950
(0.7885)

0.0108
(0.0012)

0.0038
(0.0005)

0.7937
(0.0080)

0.1560
(0.0204)

1.1950
(0.7885)

0.0108
(0.0012)

0.0038
(0.0005)

DEEPHITG (R&P) 0.7825
(0.0237)

0.1449
(0.0201)

1.2340
(0.6046)

0.0097
(0.0023)

0.0038
(0.0005)

0.7446
(0.0051)

0.1326
(0.0027)

2.1110
(0.4770)

0.0064
(0.0001)

0.0035
(0.0001)

DRO-DEEPHIT
0.7956

(0.0051)
0.1971

(0.0543)
1.0430

(0.4835)
0.0084

(0.0028)
0.0032

(0.0010)
0.7821

(0.0101)
0.2754

(0.0076)
1.0180

(0.5330)
0.0026

(0.0005)
0.0012

(0.0002)

DRO-DEEPHIT (SPLIT) 0.7748
(0.0189)

0.2264
(0.0623)

0.9950
(0.4556)

0.0067
(0.0036)

0.0028
(0.0011)

0.7622
(0.0122)

0.2734
(0.0092)

0.9270
(0.5411)

0.0027
(0.0009)

0.0014
(0.0004)

FLC
(gender)

DeepHit 0.7937
(0.0080)

0.1560
(0.0204)

0.4990
(0.3792)

0.0108
(0.0012)

0.0095
(0.0011)

0.7937
(0.0080)

0.1560
(0.0204)

0.4990
(0.3792)

0.0108
(0.0012)

0.0095
(0.0011)

DEEPHITG (R&P) 0.7840
(0.0245)

0.1489
(0.0212)

0.5170
(0.3982)

0.0099
(0.0021)

0.0089
(0.0016)

0.7937
(0.0080)

0.1560
(0.0204)

0.4990
(0.3792)

0.0108
(0.0012)

0.0095
(0.0011)

DRO-DEEPHIT
0.7956

(0.0051)
0.1971

(0.0543)
0.4320

(0.4786)
0.0084

(0.0028)
0.0078

(0.0023)
0.7821

(0.0101)
0.2754

(0.0076)
1.3700

(0.6702)
0.0026

(0.0005)
0.0028

(0.0005)

DRO-DEEPHIT (SPLIT) 0.7748
(0.0189)

0.2264
(0.0623)

1.3100
(0.9915)

0.0067
(0.0036)

0.0062
(0.0030)

0.7622
(0.0122)

0.2734
(0.0092)

1.9350
(0.7234)

0.0027
(0.0009)

0.0027
(0.0009)

SUPPORT
(age)

DeepHit 0.6029
(0.0071)

0.2151
(0.0067)

3.5910
(0.3987)

0.0055
(0.0008)

0.0049
(0.0008)

0.6029
(0.0071)

0.2151
(0.0067)

3.5910
(0.3987)

0.0055
(0.0008)

0.0049
(0.0008)

DEEPHITG (R&P) 0.5775
(0.0050)

0.2123
(0.0009)

1.1940
(0.8221)

0.0046
(0.0006)

0.0044
(0.0005)

0.5766
(0.0033)

0.2126
(0.0007)

1.0230
(0.4416)

0.0044
(0.0002)

0.0042
(0.0002)

DRO-DEEPHIT
0.5932

(0.0159)
0.2447

(0.0147)
2.9160

(0.8347)
0.0014

(0.0009)
0.0014

(0.0009)
0.5899

(0.0154)
0.2493

(0.0159)
3.3740

(0.6078)
0.0007

(0.0002)
0.0008

(0.0002)

DRO-DEEPHIT (SPLIT) 0.5753
(0.0236)

0.2225
(0.0112)

2.7280
(0.9570)

0.0044
(0.0013)

0.0041
(0.0010)

0.5792
(0.0234)

0.2392
(0.0268)

3.5270
(0.7331)

0.0037
(0.0019)

0.0035
(0.0014)

SUPPORT
(gender)

DeepHit 0.6029
(0.0071)

0.2151
(0.0067)

0.5880
(0.2895)

0.0055
(0.0008)

0.0052
(0.0008)

0.6029
(0.0071)

0.2151
(0.0067)

0.5880
(0.2895)

0.0055
(0.0008)

0.0052
(0.0008)

DEEPHITG (R&P) 0.5767
(0.0034)

0.2126
(0.0008)

0.6960
(0.3183)

0.0044
(0.0002)

0.0043
(0.0002)

0.5773
(0.0039)

0.2125
(0.0007)

0.7600
(0.2994)

0.0043
(0.0002)

0.0043
(0.0001)

DRO-DEEPHIT
0.5932

(0.0159)
0.2447

(0.0147)
1.1980

(0.6834)
0.0014

(0.0009)
0.0016

(0.0009)
0.5899

(0.0154)
0.2493

(0.0159)
1.4460

(0.4235)
0.0007

(0.0002)
0.0008

(0.0003)

DRO-DEEPHIT (SPLIT) 0.5753
(0.0236)

0.2225
(0.0112)

0.5160
(0.3942)

0.0044
(0.0013)

0.0043
(0.0011)

0.5792
(0.0234)

0.2392
(0.0268)

0.7550
(0.5022)

0.0037
(0.0019)

0.0037
(0.0015)

SUPPORT
(race)

DeepHit 0.6029
(0.0071)

0.2151
(0.0067)

1.2250
(0.4454)

0.0055
(0.0008)

0.0062
(0.0010)

0.6029
(0.0071)

0.2151
(0.0067)

1.2250
(0.4454)

0.0055
(0.0008)

0.0062
(0.0010)

DEEPHITG (R&P) 0.5767
(0.0031)

0.2126
(0.0008)

0.7290
(0.4122)

0.0044
(0.0002)

0.0050
(0.0003)

0.5813
(0.0108)

0.2144
(0.0041)

0.7400
(0.4211)

0.0043
(0.0003)

0.0049
(0.0005)

DRO-DEEPHIT
0.5932

(0.0159)
0.2447

(0.0147)
1.0630

(0.5174)
0.0014

(0.0009)
0.0019

(0.0010)
0.5899

(0.0154)
0.2493

(0.0159)
1.4220

(0.4302)
0.0007

(0.0002)
0.0010

(0.0003)

DRO-DEEPHIT (SPLIT) 0.5753
(0.0236)

0.2225
(0.0112)

1.1930
(0.4449)

0.0044
(0.0013)

0.0051
(0.0013)

0.5792
(0.0234)

0.2392
(0.0268)

1.5640
(0.6744)

0.0037
(0.0019)

0.0044
(0.0019)

SEER
(age)

DeepHit 0.7156
(0.0047)

0.1715
(0.0038)

1.4450
(0.2901)

0.0122
(0.0011)

0.0069
(0.0005)

0.7156
(0.0047)

0.1715
(0.0038)

1.4450
(0.2901)

0.0122
(0.0011)

0.0069
(0.0005)

DEEPHITG (R&P) 0.7122
(0.0086)

0.1743
(0.0064)

1.4160
(0.2443)

0.0105
(0.0029)

0.0063
(0.0013)

0.6987
(0.0025)

0.1801
(0.0021)

2.0960
(0.4633)

0.0046
(0.0002)

0.0037
(0.0001)

DRO-DEEPHIT
0.7112

(0.0084)
0.2794

(0.0871)
0.7990

(0.3281)
0.0061

(0.0041)
0.0038

(0.0023)
0.6951

(0.0051)
0.4122

(0.0304)
1.3800

(0.5574)
0.0002

(0.0002)
0.0002

(0.0003)

DRO-DEEPHIT (SPLIT) 0.6969
(0.0211)

0.2073
(0.0464)

1.0240
(0.3449)

0.0107
(0.0016)

0.0070
(0.0006)

0.6963
(0.0224)

0.2063
(0.0419)

1.2630
(0.7467)

0.0098
(0.0025)

0.0064
(0.0009)

SEER
(race)

DeepHit 0.7156
(0.0047)

0.1715
(0.0038)

3.2820
(0.5958)

0.0122
(0.0011)

0.0169
(0.0017)

0.7156
(0.0047)

0.1715
(0.0038)

3.2820
(0.5958)

0.0122
(0.0011)

0.0169
(0.0017)

DEEPHITG (R&P) 0.7132
(0.0073)

0.1728
(0.0045)

3.1330
(0.8321)

0.0113
(0.0028)

0.0157
(0.0038)

0.6987
(0.0048)

0.1806
(0.0028)

1.6760
(0.6385)

0.0045
(0.0023)

0.0066
(0.0030)

DRO-DEEPHIT
0.7112

(0.0084)
0.2794

(0.0871)
3.0120

(0.5652)
0.0061

(0.0041)
0.0089

(0.0056)
0.6951

(0.0051)
0.4122

(0.0304)
3.2520

(1.7820)
0.0002

(0.0002)
0.0004

(0.0004)

DRO-DEEPHIT (SPLIT) 0.6969
(0.0211)

0.2073
(0.0464)

2.7700
(0.5636)

0.0107
(0.0016)

0.0155
(0.0016)

0.6963
(0.0224)

0.2063
(0.0419)

3.0070
(0.8355)

0.0098
(0.0025)

0.0142
(0.0031)

DeepHit We now compare DRO-DEEPHIT and DRO-DEEPHIT (SPLIT) to the original DeepHit method
[Lee et al., 2018] and the regularized variant DEEPHITG(R&P). We report the test performance on
all three datasets in Table 4.5. According to the results in Table 4.5, we have the following observa-
tions:
• Our DRO variants can achieve better CI performance than the original DeepHit method on most

of datasets with different sensitive attributes when using a CI-based hyperparameter tuning
strategy. It is also clear that DRO-DEEPHIT and DRO-DEEPHIT (SPLIT) can achieve lower values
on FCI and FCG on all datasets when using an FCG-based hyperparameter tuning strategy. These
results indicate that our DRO methods can encourage fairness for DeepHit and can obtain better
fairness scores than DEEPHITG(R&P).

• We find that our DRO variants outperform DeepHit on FCI and FCG metrics when using CI-based
hyperparameter tuning. However, we find that our DRO variants cannot always achieve the best
scores on the CI fairness metric when using FCG-based hyperparameter tuning. We conclude that
the CI metric may reflect fairness in the FCG fairness metric but the reverse may not be true.

• It is hard to distinguish which method is better between DRO-DEEPHIT and DRO-DEEPHIT (SPLIT).
For both methods, as expected, they have slightly lower performance than the DeepHit method
on accuracy metrics. However, DRO-DEEPHIT method has the best Ctd performance on the FLC
dataset in Table 4.5.
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Table 4.6: SODEN test set scores on the FLC, SUPPORT, SEER datasets when hyperparameter tuning is based
on CI and FCG.

Datasets Methods
CI-based Tuning FCG -based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓

FLC
(age)

SODEN 0.7785
(0.0175)

0.1482
(0.0138)

1.1790
(0.6098)

0.0004
(0.0009)

0.0002
(0.0003)

0.7785
(0.0175)

0.1482
(0.0138)

1.1790
(0.6098)

0.0004
(0.0009)

0.0002
(0.0003)

SODENG (R&P) 0.7832
(0.0138)

0.1454
(0.0134)

0.8248
(0.6491)

0.0006
(0.0007)

0.0004
(0.0004)

0.7807
(0.0140)

0.1454
(0.0134)

1.7324
(1.2715)

0.0001
(0.0001)

0.0000
(0.0000)

DRO-SODEN
0.7857

(0.0124)
0.1434

(0.0141)
1.0401

(0.7724)
0.0000

(0.0000)
0.0000

(0.0000)
0.7787

(0.0134)
0.1619

(0.0247)
1.4140

(0.7545)
0.0000

(0.0000)
0.0000

(0.0000)

FLC
(gender)

SODEN 0.7785
(0.0175)

0.1482
(0.0138)

1.3822
(0.6028)

0.0004
(0.0009)

0.0005
(0.0010)

0.7785
(0.0175)

0.1482
(0.0138)

1.3822
(0.6028)

0.0004
(0.0009)

0.0005
(0.0010)

SODENG (R&P) 0.7824
(0.0126)

0.1496
(0.0117)

0.8252
(0.3665)

0.0005
(0.0006)

0.0005
(0.0007)

0.7832
(0.0126)

0.1452
(0.0131)

1.0564
(0.4984)

0.0001
(0.0001)

0.0001
(0.0001)

DRO-SODEN
0.7857

(0.0100)
0.1350

(0.0069)
0.7115

(0.3545)
0.0008

(0.0023)
0.0008

(0.0022)
0.7811

(0.0131)
0.1592

(0.0258)
1.5226

(0.7068)
0.0000

(0.0000)
0.0000

(0.0000)

SUPPORT
(age)

SODEN 0.6063
(0.0079)

0.1960
(0.0012)

2.5890
(0.3426)

0.0081
(0.0007)

0.0069
(0.0006)

0.6063
(0.0079)

0.1960
(0.0012)

2.5890
(0.3426)

0.0081
(0.0007)

0.0069
(0.0006)

SODENG (R&P) 0.6096
(0.0093)

0.2118
(0.0126)

1.8446
(0.4881)

0.0052
(0.0014)

0.0048
(0.0010)

0.6094
(0.0095)

0.2128
(0.0094)

1.7577
(0.2762)

0.0043
(0.0007)

0.0042
(0.0007)

DRO-SODEN
0.5802

(0.0148)
0.2054

(0.0094)
1.5585

(0.6516)
0.0035

(0.0022)
0.0034

(0.0017)
0.5782

(0.0147)
0.2082

(0.0088)
1.5376

(0.6779)
0.0026

(0.0019)
0.0027

(0.0014)

SUPPORT
(gender)

SODEN 0.6063
(0.0079)

0.1960
(0.0012)

1.7492
(0.1505)

0.0081
(0.0007)

0.0081
(0.0007)

0.6063
(0.0079)

0.1960
(0.0012)

1.7492
(0.1505)

0.0081
(0.0007)

0.0081
(0.0007)

SODENG (R&P) 0.6066
(0.0084)

0.2002
(0.0089)

1.5665
(0.2379)

0.0069
(0.0018)

0.0071
(0.0017)

0.6094
(0.0074)

0.2156
(0.0106)

1.2016
(0.1398)

0.0043
(0.0007)

0.0046
(0.0007)

DRO-SODEN
0.5898

(0.0207)
0.2034

(0.0089)
1.5474

(0.2314)
0.0049

(0.0033)
0.0050

(0.0031)
0.5782

(0.0147)
0.2082

(0.0088)
1.5092

(0.2431)
0.0026

(0.0019)
0.0029

(0.0017)

SUPPORT
(race)

SODEN 0.6063
(0.0079)

0.1960
(0.0012)

1.6812
(0.1965)

0.0081
(0.0007)

0.0097
(0.0009)

0.6063
(0.0079)

0.1960
(0.0012)

1.6812
(0.1965)

0.0081
(0.0007)

0.0097
(0.0009)

SODENG (R&P) 0.6084
(0.0064)

0.2058
(0.0124)

1.6585
(0.2304)

0.0054
(0.0016)

0.0069
(0.0017)

0.6094
(0.0074)

0.2156
(0.0106)

1.7536
(0.4094)

0.0043
(0.0007)

0.0056
(0.0008)

DRO-SODEN
0.5964

(0.0123)
0.1968

(0.0026)
1.4009

(0.3518)
0.0059

(0.0015)
0.0072

(0.0018)
0.5782

(0.0147)
0.2082

(0.0088)
0.7343

(0.5887)
0.0026

(0.0019)
0.0036

(0.0021)

SEER
(age)

SODEN 0.7132
(0.0017)

0.1550
(0.0009)

0.8531
(0.0940)

0.0280
(0.0014)

0.0141
(0.0011)

0.7132
(0.0017)

0.1550
(0.0009)

0.8531
(0.0940)

0.0280
(0.0014)

0.0141
(0.0011)

SODENG (R&P) 0.7131
(0.0017)

0.1556
(0.0011)

0.8541
(0.1562)

0.0277
(0.0011)

0.0140
(0.0010)

0.7122
(0.0009)

0.1561
(0.0012)

0.9110
(0.0948)

0.0276
(0.0013)

0.0134
(0.0008)

DRO-SODEN
0.7026

(0.0116)
0.1757

(0.0293)
1.1275

(0.3644)
0.0227

(0.0054)
0.0142

(0.0014)
0.6980

(0.0108)
0.2008

(0.0367)
1.4280

(0.5242)
0.0161

(0.0095)
0.0103

(0.0043)

SEER
(race)

SODEN 0.7132
(0.0017)

0.1550
(0.0009)

2.4948
(0.1341)

0.0280
(0.0014)

0.0399
(0.0019)

0.7132
(0.0017)

0.1550
(0.0009)

2.4948
(0.1341)

0.0280
(0.0014)

0.0399
(0.0019)

SODENG (R&P) 0.7124
(0.0016)

0.1558
(0.0011)

2.4390
(0.1775)

0.0273
(0.0013)

0.0386
(0.0017)

0.7123
(0.0016)

0.1561
(0.0013)

2.4747
(0.1869)

0.0271
(0.0013)

0.0382
(0.0018)

DRO-SODEN
0.6913

(0.0109)
0.2079

(0.0373)
1.6398

(0.4948)
0.0167

(0.0057)
0.0265

(0.0070)
0.6893

(0.0055)
0.2191

(0.0269)
1.7676

(0.4458)
0.0126

(0.0059)
0.0204

(0.0092)

SODEN We conduct experiments to compare the accuracy and fairness of SODEN and SODENG(R&P) to
DRO-SODEN. Our experimental results are reported in Table 4.6 (CI-based hyperparameter tuning
and FCG-based hyperparameter tuning). From these results, we have the following observations:
• When tuning hyperparameters based on CI, it is clear that DRO-SODEN outperforms the other

methods on the CI fairness metric for FLC and SUPPORT datasets. Meanwhile, FCI and FCG
are also reduced by using DRO-SODEN while accuracy scores become a little lower than those
of SODEN. However, we find DRO-SODEN can achieve a slightly higher Ctd scores on the FLC
dataset.

• When tuning hyperparameters based on FCG, we find DRO-SODEN also can achieve better per-
formance on FCG than the corresponding values that are from the CI-based tuning since we tune
hyperparameters based on this metric. In addition, DRO-SODEN can obtain the best FCG and FCI
scores compared to the baselines.

4.6 Accuracy Fairness Tradeoff Comparison Across DRO Variants of Different
Survival Models

We can compare the tradeoff between accuracy and tradeoff across different DRO variants. Specif-
ically, for the DEEP DRO-COX, DEEP DRO-COX (SPLIT), DRO-DEEPHIT, DRO-DEEPHIT (SPLIT), and
DRO-SODEN models, we test them under the nonlinear setting on FLC, SUPPORT, and SEER datasets.
We evaluate the FCI , FCG, and Ctd scores of all methods using different values of α from 0.1 to 1.0
and then plot accuracy vs fairness curves for each dataset, as shown in Figure 2. Note that in each
plot, being closer to the lower right is considered better, corresponding to a model having an α value
that achieves as low of a fairness metric score (either FCI or FCG) as possible (which is considered
more fair) and as high of a Ctd score as possible. From the figure, we find that the DRO-DEEPHIT
method outperforms the other methods.
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Figure 2: Comparison of all proposed fairness methods in terms of FCI (first row) and FCG (second
row) with Ctd on FLC, SUPPORT, and SEER2 datasets. Each line is drawn based on the various
values of α (from 0.1 to 1.0). In each subfigure, the closer the curve is to the lower right corner, the
better the performance.

5 Conclusion

We have shown a general strategy for converting a wide class of survival models into DRO variants
that encourage fairness. The key idea is to write the overall loss in terms of individual losses,
which in turn could be used in a DRO framework. When there is coupling so that an individual
loss technically is not “individual” as it depends on multiple data points, we introduced a sample
splitting approach that is compliant with DRO theory at the expense of approximating the loss
that we aim to minimize. We also showed that the heuristic approach that ignores this coupling
problem and naively runs an existing DRO algorithm (that assumes that there is no coupling) works
in practice about as well as the sample splitting version. When a survival model used does not have
this coupling issue (such as SODEN), then existing DRO machinery directly works; there is no need
to use any sample splitting.

There are a number of open questions that remain. When the coupling issue arises, it would
be interesting to determine if a theoretically sound DRO variant can be derived that does not re-
quire sample splitting. Next, in using DRO, tuning the subpopulation probability threshold α can
significantly impact the results. In our experiments, we tuned α using one of two different fairness
metrics (CI or FCG) on a validation set. While DRO (whether heuristic or using sample splitting)
itself does not require the user to specify which features to treat as sensitive in the training loss, we
are effectively using some information about which features to treat as sensitive as it shows up in
computing the validation set fairness metric. A open question thus arises of whether we could tune
α in some other way in practice that either does not use a validation set or which does not require
using a validation set fairness metric that knows which features to treat as sensitive. Lastly, we
point out that it would be interesting to empirically study how converting a survival model into its
DRO variant impacts other metrics aside from the accuracy or fairness metrics we considered, such
as calibration metrics [Haider et al., 2020, Goldstein et al., 2020]. Ultimately, we suspect that DRO
variants of survival models potentially have interesting properties that make them useful beyond
encouraging fairness.

19



Acknowledgments This work was supported by NSF CAREER award #2047981. The authors
would like to thank Tatsunori Hashimoto and the anonymous reviewers for very helpful feedback.

A More Details on Cox Models

A.1 Estimating the Baseline Hazard and Conditional Survival Function

After learning the log partial hazard function f (·; θ) (or, equivalently, learning the parameters θ),
a standard approach to estimating the baseline hazard function h0 is to use the so-called Breslow
method [Breslow, 1972]. In what follows, we use θ̂ to denote the learned estimate of θ.

The Breslow method estimates a discretized version of h0. Specifically, let t1 < t2 < · · · <
tm denote the unique times when critical event happened in the training data. Let dj denote the
number of critical events that occurred at time tj for j ∈ [m]. Then we compute the following
estimate of h0 at the j-th time step:

ĥ0,j ≜
dj

∑i∈[n] s.t. Yi≥tj
exp( f (xi; θ̂))

for j ∈ [m].

After estimating the baseline hazard function, estimating the survival function is straightforward.
Recall that S(t|x) = exp

(
−
∫ t

0 h(u|x)du
)
. Then combining this equation with the proportional

hazards assumption (i.e., the factorization in equation (2.3)), we get

S(t|x) = exp
(
−
∫ t

0
h0(u) exp( f (x; θ))du

)
= exp

([
−
∫ t

0
h0(u)du︸ ︷︷ ︸

abbreviate as H0(t)

]
exp( f (x; θ))

)
. (A.1)

We can estimate H0(t) via a summation in place of an integration:

Ĥ0(t) ≜ ∑
j∈[m] s.t. tj≤t

ĥ0,j for t ≥ 0.

Thus, by plugging in Ĥ0 in place of H0 and θ̂ in place of θ in equation (A.1), we obtain the condi-
tional survival function estimate Ŝ(t|x) ≜ exp(−Ĥ0(t) exp( f (x; θ̂))).

A.2 The Proportional Hazards Assumption and the Shape of the Conditional
Survival Function

The proportional hazards assumption constrains the shape of the conditional survival function.
Recall that for any two real numbers a, b ∈ R, we have exp(a · b) = (exp(a))b. Then equation (A.1)
(which was derived using the proportional hazard assumption) is equal to

S(t|x) = exp
(

H0(t) exp( f (x; θ))
)
= [exp(H0(t))︸ ︷︷ ︸

≜S0(t)

]exp( f (x;θ)).

In other words, under the proportional hazards assumption, the conditional survival function
S(·|x) must necessarily be a power of the so-called baseline survival function S0(·).

B Fairness Metrics

In this paper, we use the individual, group, and intersectional fairness metrics defined by Keya et al.
[2021], the concordance imparity (CI) metric by Zhang and Weiss [2022], and also censoring-based
individual and censoring-based group fairness metrics by Rahman and Purushotham [2022]. In
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what follows, since we are focusing on Cox proportional hazards models, we can take the predicted
outcome for a feature vector x to be the so-called partial hazard h̃(x) ≜ exp( f (x; θ)); this is the same
as the hazard function given in equation (2.3) except where we exclude the baseline hazard factor
h0(t). Note that once we exclude h0(t), then h̃ no longer depends on time t. We state the fairness
metrics in terms of a collection of Ntest test patients with data (Xtest

1 , Ytest
1 , δtest

1 ), . . . , (Xtest
Ntest

, Ytest
Ntest

, δtest
Ntest

).
Note that the fairness metrics by Keya et al. [2021] only use the test feature vectors Xtest

1 , . . . , Xtest
Ntest

and ignores the test patients’ observed times and event indicators. Also, at the end of this section,
we point out that the individual and group fairness metrics by Keya et al. [2021] are sensitive to the
scale of the log partial hazard f (·; θ).

Individual fairness Roughly, Keya et al. [2021] consider a model to be fair across individuals
(patients) if similar individuals have similar predicted outcomes. To operationalize this notion of
fairness in the context of Cox models, Keya et al. define the individual fairness metric

FI ≜
Ntest

∑
i=1

Ntest

∑
j=i+1

[
|h̃(Xtest

i )− h̃(Xtest
j )| − γ∥Xtest

i − Xtest
j ∥

]
+

,

where γ is a predefined scale factor (0.01 in our experiments). As a reminder, [ · ]+ is the ReLU
function (so that [a]+ = max{0, a} for any a ∈ R).

Note that this individual fairness metric is actually just penalizing h̃ for not being Lipschitz
continuous (as empirically evaluated over the test data). Specifically, h̃ is defined to be γ-Lipschitz
continuous if

|h̃(x)− h̃(x′)| ≤ γ∥x− x′∥ for all x, x′ ∈ X .

Meanwhile, when FI is equal to 0, then it means that

|h̃(Xtest
i )− h̃(Xtest

j )| ≤ γ∥Xtest
i − Xtest

j ∥ for all i, j ∈ {1, . . . , Ntest}.

As a technical remark, in the definition of FI and also γ-Lipschitz continuity, the metric used to
measure distances between feature vectors does not have to be Euclidean. For example, we can
replace ∥Xtest

i − Xtest
j ∥ with ρ(Xtest

i , Xtest
j ), where ρ : X ×X → [0, ∞) is a user-specified metric.

Group fairness Next, Keya et al. [2021] consider a model is fair across a user-specified set of
groups if these different groups have similar predicted outcomes. Keya et al. define the group
fairness metric FG to look at the maximum deviation of a group’s average predicted outcome to
the overall population’s average predicted outcome. Specifically, let G be the user-specified set of
groups to consider (for example, there could be two groups: everyone with age at most 65 years,
and everyone older than 65 years), where each group g ∈ G is a subset of the test set indices
{1, . . . , Ntest} (so that using this notation, group g has size |g|); the different groups should form a
partition of the test set (so that the groups are disjoint and their union is the entire test set). Then

FG ≜ max
g∈G

∣∣∣∣ 1
|g| ∑i∈g

h̃(Xtest
i )︸ ︷︷ ︸

average predicted
outcome of group g

− 1
Ntest

Ntest

∑
i=1

h̃(Xtest
i )︸ ︷︷ ︸

average predicted
outcome of population

∣∣∣∣.

Intersectional fairness Keya et al. [2021] consider a notion of intersectional fairness that accounts
for multiple sensitive attributes. For example, in the FLC dataset, we have 2 different sensitive
attributes, age and gender. For each of these sensitive attributes, we can partition the test set into
groups. Specifically, let G1 be a partition of the test set into different age groups (for example,
two groups: at most 65 years old and over 65 years old), and let G2 be a partition of the test set
into different gender groups (for example, two groups: female and male). Then intersectional
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fairness looks at every intersection of age/gender groups (continuing from the previous examples,
we would have four intersectional subgroups: at most 65 years old and female, at most 65 years
and male, over 65 years old and female, over 65 years old and male).

The notation here is a bit more involved. The set of all intersectional subgroups of G1 and G2
is given by the Cartesian product G1 × G2. Note that s ∈ G1 × G2 means that s = (s1, s2), where
s1 ∈ G1 and s2 ∈ G2. More generally, if there are J sensitive attributes, corresponding to groupings
G1,G2, . . . ,GJ , then the set of all intersectional subgroups would be S ≜ G1 × G2 × · · · GJ . Now
s ∈ S is a list consisting of J different subsets of test patients (i.e., s = (s1, s2, . . . , sJ), where s1 ∈ G1,
. . . , sJ ∈ GJ). The intersection of these J subsets (i.e., ∩J

j=1sj ⊂ {1, . . . , Ntest}) is precisely the set
of test patients that intersectional subgroup s corresponds to. Then the average predicted outcome
for intersectional subgroup s is

h̃(s) ≜
1

| ∩J
j=1 sj|

∑
i∈∩J

j=1sj

h̃(Xtest
i ).

Then the intersection fairness metric F∩ by Keya et al. [2021] is the worst-case log ratio of expected
predicted outcomes between two intersectional subgroups:

F∩ ≜ max
s,s′∈S

∣∣∣ log
h̃(s)
h̃(s′)

∣∣∣.
Concordance imparity We now describe an alternative metric for group fairness called concor-
dance imparity (CI) that asks that a survival analysis model achieves similar prediction accuracy
for different groups. For ease of exposition, we only state the CI metric by Zhang and Weiss [2022]
in terms of a single sensitive attribute that has already been discretized (e.g., the attribute is al-
ready discrete or we have a pre-specified discretization rule); this special case is sufficient for our
experiments. We denote the set of possible discretized values of this sensitive attribute as A. For
example, A could correspond to age and we could have A = {“age ≤ 65”, “age > 65”}, i.e., A
consists of the different groups to consider. We refer the reader to the Zhang and Weiss’s original
paper for their more general definition of CI that can handle a continuous sensitive attribute via an
automatic discretization strategy that they propose.

Assuming that the sensitive attribute has already been discretized into the set A, the CI metric
looks at a variant of the standard survival analysis accuracy metric of concordance index [Harrell
et al., 1982] that Zhang and Weiss call the concordance fraction (CF), which is specific to each sensitive
attribute value a ∈ A. The CI metric is then defined to be the worst-case difference between the
CF scores of any two a, a′ ∈ A where a ̸= a′. The pseudocode can be found in Algorithm 3; note
that to keep the notation from getting clunky, we drop the superscript “test” from the test feature
vectors, observed times, and event indicators in the pseudocode but we still use Ntest to denote
the number of test patients. Also, in the pseudocode, we let Ai ∈ A denote the sensitive attribute
value for the i-th test patient, where we assume that Ai can directly be computed based on the i-th
test patient’s feature vector. For example, when age (which is not discretized) is one of the features
and A consists of the two age groups previously stated (≤ 65 or > 65), then since we know the
discretization rule used, we can readily determine which age group in A that any test patient is in.

Importantly, to calculate the CI metric, a way to calculate a risk score is required to compute the
CF scores. How to define a risk score differs across models. For Cox models, we can take the risk
score to be the log partial hazard function f (·; θ). For DeepHit and SODEN models, we take the
risk score to be the estimated survival probability Ŝ(t|x) and therefore we need to replace f (·; θ)

with Ŝ(t|x) before using Algorithm 3. Since different values of time t can have different estimated
Ŝ(t|x) values, we would obtain different value of the CI fairness metric for different t. We test three
different values of t (the 25th, 50th, and 75th percentile of the observed times in the test data) and
use the average value for the final CI score.
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Censoring-based individual fairness Individual fairness FI does not consider censoring infor-
mation that is available. Rahman and Purushotham [2022] defined a censoring-based individual
fairness metric as follows:

FCI ≜
1

|Nc| × |Nuc| ∑
i∈Nc ,j∈Nuc

s.t. Yj≥Yi

[
|h̃(Xtest

i )− h̃(Xtest
j )| − γ∥Xtest

i − Xtest
j ∥

]
+

,

where Nc and Nuc are the index sets of censored and uncensored data. Similar to in FI , the scale
factor γ is a predefined (0.01 in our experiments). This fairness metric ensures that censored patient
and uncensored patients who have similar features should also have similar predictions whenever
the observed time from the uncensored patient is larger than that of the censored patient.

When using DeepHit and SODEN models, since these do not use a proportional hazards as-
sumption, we slightly modify the above definition and instead use

FCI(t) ≜
1

|Nc| × |Nuc| ∑
i∈Nc ,j∈Nuc

s.t. Yj≥Yi

[
|Ŝ(t|Xtest

i )− Ŝ(t|Xtest
j )| − γ∥Xtest

i − Xtest
j ∥

]
+

,

where Ŝ(t|X) is the estimated survival probability at time t for patient X. Similar to the CI fairness
metric and following the settings in Rahman and Purushotham [2022], we test three different t
values (25th, 50th, 75th percentile of the observed times in the test data) and use their average value
to calculate the final FCI score.

Censoring-based group fairness Rahman and Purushotham [2022] also modified the FG metric
by Keya et al. [2021] to account for censoring information. Reusing notation from the definition of
FG, we now define the censoring-based group fairness metric

FCG ≜
1

|Nc| × |Nuc| ∑
g∈G

∑
i∈Nc,g ,j∈Nuc,g

s.t. Yj≥Yi

[
|h̃(Xtest

i )− h̃(Xtest
j )| − γ∥Xtest

i − Xtest
j ∥

]
+

,

where Nc,g and Nuc,g are again the index sets of censored and uncensored in group g, respectively.
Furthermore, we replace h̃(x) with Ŝ(t|x) to define a censoring-based group fairness metric for

DeepHit and SODEN models. Specifically, we have

FCG(t) ≜
1

|Nc| × |Nuc| ∑
g∈G

∑
i∈Nc,g ,j∈Nuc,g

s.t. Yj≥Yi

[
|Ŝ(t|Xtest

i )− Ŝ(t|Xtest
j )| − γ∥Xtest

i − Xtest
j ∥

]
+

.

Similar to the setting in censoring-based individual fairness, we use three different t to test the
value of FCG and use their average performance for the final reported score.

Scale Issues with FI , FG, FCI , and FCG

We point out that the FI , FG, FCI , and FCG fairness metrics are sensitive to the scale of the log partial
hazard function f (·; θ), and thus also the scale of the partial hazard h̃(x) = exp( f (x; θ)) if they are
calculated by using h̃(x). For instance, consider a standard linear Cox model with f (x; θ) = θTx,
where the parameters θ have already been learned. Then one way to make the model appear
fairer according to the FI , FG, FCI , and FCG metrics is to just scale all values in θ by any positive
constant smaller than 1; doing so, the standard accuracy metric of concordance index [Harrell et al.,
1982] would actually remain unchanged for the model as it only depends on the ranking of the
different individuals’ (log) partial hazard values. However, an accuracy score that considers each
individual’s survival function estimate (e.g., integrated IPCW Brier Score [Graf et al., 1999]) would
be affected.
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Algorithm 3: Concordance Imparity (CI) with a discrete sensitive attribute

Input: Test dataset {(Xi , Yi , δi)}Ntest
i=1 , risk score f (·; θ) (from an already trained model), set of sensitive attribute

values A (so that each a ∈ A corresponds to a different group), A1, . . . , ANtest ∈ A says which sensitive
attribute value each test patient has

Output: CI score
1 for a ∈ A do
2 Initialize the numerator count N(a)← 0 and denominator count D(a)← 0.
3 end
4 for i = 1, . . . , Ntest do
5 for j = 1, . . . , Ntest s.t. j ̸= i do
6 if (Yi < Yj and δi == 0) or (Yj < Yi and δj == 0) or (Yi == Yj and δi == 0 and δj == 0) then
7 continue
8 else
9 Set D(Ai)← D(Ai) + 1.

10 end
11 if Yi < Yj then
12 if f (Xi ; θ) > f (Xj; θ) then
13 Set N(Ai)← N(Ai) + 1.
14 else if f (Xi ; θ) == f (Xj; θ) then
15 Set N(Ai)← N(Ai) + 0.5.
16 end
17 else if Yi > Yj then
18 if f (Xi ; θ) < f (Xj; θ) then
19 Set N(Ai)← N(Ai) + 1.
20 else if f (Xi ; θ) == f (Xj; θ) then
21 Set N(Ai)← N(Ai) + 0.5.
22 end
23 else if Yi == Yj then
24 if δi == 1 and δj == 1 then
25 if f (Xi ; θ)== f (Xj; θ) then
26 Set N(Ai)← N(Ai) + 1.
27 else
28 Set N(Ai)← N(Ai) + 0.5.
29 end
30 else if δi==0 and δj==1 and f (Xi ; θ)< f (Xj; θ) then
31 Set N(Ai)← N(Ai) + 1.
32 else if δi==1 and δj==0 and f (Xi ; θ)> f (Xj; θ) then
33 Set N(Ai)← N(Ai) + 1.
34 else
35 Set N(Ai)← N(Ai) + 0.5.
36 end
37 end
38 end
39 end
40 for a ∈ A do
41 Set the concordance fraction of a: CF(a)← N(a)

D(a) .

42 end
43 return CI← maxa,a′∈A s.t. a ̸=a′ |CF(a)−CF(a′)|
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C Hyperparameter Tuning and Compute Environment Details

Hyperparameters Cox models: for nonlinear Cox models, we always use a two-layer MLP with
ReLU as the activation function and 24 as the number of hidden units. All models (linear and
nonlinear) are trained using Adam [Kingma and Ba, 2014] in PyTorch 1.7.1 in a batch setting for
500 iterations, only using a CPU and no GPU.

DeepHit models: we use three-layer MLP with ReLU activation, batch normalization, and dropout
(in 0.1). The number of hidden units is 32. The original DeepHit and DRO-DEEPHIT models are
trained using Adam in PyTorch 1.7.1 in a mini-batch 256 setting for 500 epochs. However, the
DRO-DEEPHIT (SPLIT) model is trained using a batch setting for 500 iterations.

SODEN models: for the FLC dataset, we use an MLP with 4 layers and 16 hidden units. For
SUPPORT and SEER datasets, we use an MLP with 2 layers and 26 hidden units. In addition,
RMSprop [Tieleman and Hinton, 2012] in 128 batch size with a maximum 100 epochs is used to
train all models.

We tune on the following hyperparameter grid:
• To find the optimal learning rate for each Cox model, we conducted a sweep over values of 0.01,

0.001, and 0.0001. For DeepHit models, a fixed learning rate of 0.01 was used. In the case of
SODEN models, the learning rates applied were 0.01, 0.002, and 0.002 for the FLC, SUPPORT,
and SEER datasets, respectively.

• λ (only used for baselines; a hyperparameter that controls the tradeoff between the original Cox
loss and fairness regularization term): 1, 0.7, 0.4

• α: 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 for DRO-COX/DRO-COX (SPLIT) variants. 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0 for DRO-DEEPHIT/DRO-DEEPHIT (SPLIT) variants and DRO-SODEN.

In addition, for DRO-COX (SPLIT) and DRO-DEEPHIT (SPLIT), we choose n1 = n2 = n/2 (rounding
as needed when n is odd, so that n1 might not equal n2).

Compute environment All models are implemented with Python 3.8.3, and they are trained and
tested on identical compute instances, each with an Intel Core i9-10900K CPU (3.70GHz with 64 GB
RAM) and a Quadro RTX 4000 GPU.

D Additional Experiments

Using other sensitive attributes in evaluating CI and FCG in Cox models In the main paper, we
only showed test set performance metrics for FLC, SUPPORT, and SEER using age, gender, race,
and race respectively in evaluating FCG, and CI in Cox model settings. We now provide results
using gender for FLC (Table D.1), age and separately race for SUPPORT (Tables D.2 and D.3), and
age for SEER (Table D.4). Our main findings still hold for these additional results.

Effect of changing n1 (or n2) for DRO-COX (SPLIT) In the above experiments, we set n1 = n2 =
n/2 (rounding as needed). To evaluate the sensitivity of this setting, we test the model performance
using DRO-COX (SPLIT) under the linear and nonlinear settings, where we set n2 = 0.1n, 0.2n, 0.3n, 0.4n, 0.5n
(corresponding to n1 = 0.9n, 0.8n, 0.7n, 0.6n, 0.5n). We report the test set performance metrics for
the FLC dataset (using age for evaluation) in Table D.5. From the table, we find that per metric,
different settings for n1 and n2 lead to results that, while slightly different, are not dramatically
different, i.e., the performance of DRO-COX (SPLIT) does not appear very sensitive w.r.t. the choice
of n1 and n2.

The effect of using two losses for DRO-COX (SPLIT) rather than only one Recall that DRO-
COX (SPLIT) minimizes the sum of two losses Lsplit

DRO(θ, η,D1 | D2) and Lsplit
DRO(θ, η,D2 | D1). To-

wards the end of Section 3.2, we said that an approach that only minimizes one of these losses
would not use the data as effectively compared to minimizing the sum of these losses. We con-
ducted an experiment to verify this claim, where we refer to the version of DRO-COX (SPLIT)
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Table D.1: Cox model test set scores on the FLC (gender) dataset, in the same format as Table 4.2.

Methods
CI-based Tuning FCG -based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓

Li
ne

ar

Cox 0.8032
(0.0002)

0.1739
(0.0004)

0.8610
(0.0197)

0.3608
(0.0045)

0.1809
(0.0023)

0.8032
(0.0002)

0.1739
(0.0004)

0.8610
(0.0197)

0.3608
(0.0045)

0.1809
(0.0023)

CoxI (Keya et al.) 0.7932
(0.0083)

0.1368
(0.0052)

1.6750
(0.7969)

0.0786
(0.0266)

0.0401
(0.0138)

0.7859
(0.0220)

0.1334
(0.0034)

1.0098
(1.3509)

0.0546
(0.0050)

0.0277
(0.0027)

CoxI (R&P) 0.8028
(0.0012)

0.1588
(0.0029)

0.8050
(0.0978)

0.1888
(0.0249)

0.0954
(0.0127)

0.8012
(0.0011)

0.1563
(0.0006)

0.4385
(0.2718)

0.1680
(0.0040)

0.0850
(0.0020)

CoxG (Keya et al.) 0.8011
(0.0015)

0.1619
(0.0077)

0.7020
(0.1081)

0.2265
(0.0861)

0.1141
(0.0427)

0.8003
(0.0004)

0.1567
(0.0004)

0.4025
(0.2326)

0.1699
(0.0022)

0.0860
(0.0011)

CoxG (R&P) 0.8023
(0.0009)

0.1646
(0.0026)

0.7850
(0.0826)

0.2410
(0.0248)

0.1216
(0.0124)

0.8011
(0.0004)

0.1613
(0.0005)

0.4604
(0.2519)

0.2088
(0.0042)

0.1056
(0.0021)

Cox∩ (Keya et al.) 0.7868
(0.0018)

0.1400
(0.0005)

0.4830
(0.1020)

0.0616
(0.0015)

0.0312
(0.0007)

0.7868
(0.0018)

0.1400
(0.0005)

0.2723
(0.2227)

0.0616
(0.0015)

0.0312
(0.0007)

DRO-COX 0.7605
(0.0096)

0.1350
(0.0003)

0.3040
(0.1569)

0.0218
(0.0040)

0.0112
(0.0020)

0.7958
(0.0049)

0.1330
(0.0002)

0.5390
(0.5415)

0.0000
(0.0000)

0.0000
(0.0000)

DRO-COX (SPLIT) 0.7964
(0.0045)

0.1389
(0.0008)

0.5060
(0.5152)

0.0000
(0.0000)

0.0000
(0.0000)

0.7964
(0.0045)

0.1389
(0.0008)

0.5060
(0.5152)

0.0000
(0.0000)

0.0000
(0.0000)

N
on

lin
ea

r

DeepSurv 0.8070
(0.0014)

0.1767
(0.0018)

1.0760
(0.1702)

0.5788
(0.2493)

0.2909
(0.1253)

0.8070
(0.0014)

0.1767
(0.0018)

0.8274
(0.3277)

0.5788
(0.2493)

0.2909
(0.1253)

DeepSurvI (Keya et al.) 0.7916
(0.0121)

0.1548
(0.0176)

1.4610
(0.7342)

0.0187
(0.0224)

0.0095
(0.0113)

0.7994
(0.0069)

0.1673
(0.0051)

0.7330
(0.9461)

0.0001
(0.0002)

0.0000
(0.0001)

DeepSurvI (R&P) 0.8067
(0.0041)

0.1729
(0.0093)

1.0640
(0.1408)

0.0174
(0.0303)

0.0088
(0.0150)

0.8084
(0.0021)

0.1757
(0.0029)

0.5402
(0.5501)

0.0004
(0.0002)

0.0003
(0.0001)

DeepSurvG (Keya et al.) 0.7964
(0.0117)

0.1576
(0.0196)

0.9420
(0.2229)

0.0962
(0.0862)

0.0482
(0.0431)

0.8017
(0.0114)

0.1655
(0.0182)

0.5413
(0.5104)

0.0516
(0.0092)

0.0260
(0.0046)

DeepSurvG (R&P) 0.8059
(0.0045)

0.1699
(0.0118)

1.0750
(0.1204)

0.0386
(0.0438)

0.0194
(0.0217)

0.8095
(0.0014)

0.1764
(0.0024)

0.5816
(0.5826)

0.0021
(0.0006)

0.0011
(0.0003)

DeepSurv∩ (Keya et al.) 0.7804
(0.0119)

0.1399
(0.0086)

0.8440
(0.2581)

0.0969
(0.1208)

0.0497
(0.0622)

0.7751
(0.0018)

0.1357
(0.0002)

0.3897
(0.3535)

0.0394
(0.0010)

0.0197
(0.0005)

Deep DRO-COX 0.7699
(0.0147)

0.1336
(0.0004)

0.4870
(0.2540)

0.0138
(0.0066)

0.0071
(0.0033)

0.7781
(0.0091)

0.1331
(0.0002)

0.4552
(0.4801)

0.0054
(0.0012)

0.0029
(0.0006)

Deep DRO-COX (SPLIT) 0.7784
(0.0092)

0.1647
(0.0037)

0.5277
(0.5752)

0.0054
(0.0013)

0.0029
(0.0007)

0.7784
(0.0092)

0.1647
(0.0037)

0.5277
(0.5752)

0.0054
(0.0013)

0.0029
(0.0007)

that only minimizes Lsplit
DRO(θ, η,D1 | D2) as DRO-COX (SPLIT, ONE SIDE). Specifically, we compare

DRO-COX (SPLIT, ONE SIDE) and DRO-COX (SPLIT) under linear and nonlinear settings on the FLC
dataset using age for evaluation. We report the resulting test set performance metrics in Table D.6.
From the table, we find that DRO-COX (SPLIT) outperforms DRO-COX (SPLIT, ONE SIDE) on most
metrics. This experimental finding supports our hypothesis that DRO-COX (SPLIT, ONE SIDE) uses
data less effectively.
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Table D.2: Cox model test set scores on the SUPPORT (age) dataset, in the same format as Table 4.2.

Methods
CI-based Tuning FCG -based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓

Li
ne

ar
Cox 0.6025

(0.0005)
0.2304

(0.0015)
2.2240

(0.1078)
0.0207

(0.0008)
0.0090

(0.0005)
0.6025

(0.0005)
0.2304

(0.0015)
2.2240

(0.1078)
0.0207

(0.0008)
0.0090

(0.0005)

CoxI (Keya et al.) 0.5820
(0.0116)

0.2153
(0.0076)

1.3120
(0.7623)

0.0007
(0.0018)

0.0003
(0.0007)

0.5829
(0.0099)

0.2147
(0.0063)

0.6800
(0.9091)

0.0000
(0.0000)

0.0000
(0.0000)

CoxI (R&P) 0.6020
(0.0010)

0.2285
(0.0014)

2.1120
(0.2653)

0.0182
(0.0013)

0.0080
(0.0006)

0.6018
(0.0015)

0.2276
(0.0012)

1.1235
(1.1232)

0.0170
(0.0006)

0.0075
(0.0002)

CoxG (Keya et al.) 0.5875
(0.0013)

0.2315
(0.0014)

2.2030
(0.0986)

0.0184
(0.0007)

0.0094
(0.0004)

0.5862
(0.0009)

0.2292
(0.0010)

1.1115
(1.0976)

0.0160
(0.0004)

0.0082
(0.0002)

CoxG (R&P) 0.6018
(0.0008)

0.2296
(0.0013)

2.1210
(0.2863)

0.0201
(0.0010)

0.0086
(0.0005)

0.6014
(0.0013)

0.2291
(0.0012)

1.1278
(1.1267)

0.0195
(0.0007)

0.0082
(0.0003)

Cox∩ (Keya et al.) 0.5664
(0.0061)

0.2273
(0.0016)

2.8030
(0.2551)

0.0129
(0.0011)

0.0066
(0.0006)

0.5631
(0.0070)

0.2264
(0.0017)

1.4233
(1.4227)

0.0117
(0.0012)

0.0060
(0.0006)

DRO-COX 0.5722
(0.0031)

0.2210
(0.0010)

1.8310
(0.2546)

0.0025
(0.0009)

0.0013
(0.0004)

0.5641
(0.0105)

0.2211
(0.0010)

0.9255
(1.0171)

0.0019
(0.0012)

0.0010
(0.0006)

DRO-COX (SPLIT) 0.5701
(0.0056)

0.4569
(0.1314)

0.8631
(0.9061)

0.0023
(0.0011)

0.0011
(0.0006)

0.5701
(0.0056)

0.4570
(0.1314)

0.8616
(0.9042)

0.0023
(0.0011)

0.0011
(0.0006)

N
on

lin
ea

r

DeepSurv 0.6108
(0.0029)

0.2417
(0.0016)

2.1170
(0.2107)

0.0453
(0.0041)

0.0212
(0.0020)

0.6108
(0.0029)

0.2417
(0.0016)

2.1170
(0.2107)

0.0453
(0.0041)

0.0212
(0.0020)

DeepSurvI (Keya et al.) 0.5950
(0.0116)

0.2316
(0.0188)

1.6330
(0.5036)

0.0016
(0.0020)

0.0007
(0.0009)

0.6031
(0.0059)

0.2459
(0.0102)

0.9475
(1.0522)

0.0000
(0.0000)

0.0000
(0.0000)

DeepSurvI (R&P) 0.6036
(0.0075)

0.2323
(0.0083)

2.1030
(0.2650)

0.0075
(0.0061)

0.0032
(0.0027)

0.6124
(0.0048)

0.2448
(0.0043)

0.9620
(0.9920)

0.0000
(0.0000)

0.0000
(0.0000)

DeepSurvG (Keya et al.) 0.5869
(0.0122)

0.2372
(0.0131)

1.6760
(0.4326)

0.0072
(0.0069)

0.0037
(0.0036)

0.5966
(0.0048)

0.2543
(0.0032)

0.9856
(1.0355)

0.0001
(0.0002)

0.0000
(0.0001)

DeepSurvG (R&P) 0.6039
(0.0089)

0.2322
(0.0075)

2.1660
(0.3318)

0.0095
(0.0064)

0.0040
(0.0027)

0.6117
(0.0056)

0.2440
(0.0043)

1.0331
(1.0749)

0.0002
(0.0001)

0.0001
(0.0001)

DeepSurv∩ (Keya et al.) 0.5979
(0.0063)

0.2345
(0.0036)

2.4300
(0.2338)

0.0220
(0.0039)

0.0113
(0.0020)

0.5912
(0.0012)

0.2309
(0.0011)

1.2466
(1.2342)

0.0182
(0.0008)

0.0093
(0.0004)

Deep DRO-COX 0.5833
(0.0088)

0.2231
(0.0015)

0.7590
(0.3395)

0.0077
(0.0018)

0.0038
(0.0009)

0.5754
(0.0120)

0.2227
(0.0011)

0.4152
(0.4798)

0.0065
(0.0023)

0.0032
(0.0011)

Deep DRO-COX (SPLIT) 0.5772
(0.0093)

0.6387
(0.0007)

0.4364
(0.4875)

0.0069
(0.0021)

0.0034
(0.0010)

0.5772
(0.0093)

0.6387
(0.0007)

0.4364
(0.4875)

0.0069
(0.0021)

0.0034
(0.0010)

Table D.3: Cox model test set scores on the SUPPORT (race) dataset, in the same format as Table 4.2.

Methods
CI-based Tuning FCG -based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓

Li
ne

ar

Cox 0.6025
(0.0005)

0.2304
(0.0015)

1.4160
(0.0696)

0.0207
(0.0008)

0.0129
(0.0005)

0.6025
(0.0005)

0.2304
(0.0015)

1.4160
(0.0696)

0.0207
(0.0008)

0.0129
(0.0005)

CoxI (Keya et al.) 0.5905
(0.0086)

0.2161
(0.0054)

1.1230
(0.6621)

0.0030
(0.0031)

0.0020
(0.0021)

0.5829
(0.0099)

0.2147
(0.0063)

0.5910
(0.6975)

0.0000
(0.0000)

0.0000
(0.0000)

CoxI (R&P) 0.6024
(0.0010)

0.2287
(0.0015)

1.3320
(0.1742)

0.0186
(0.0012)

0.0116
(0.0007)

0.6027
(0.0009)

0.2276
(0.0011)

0.6839
(0.6792)

0.0169
(0.0005)

0.0106
(0.0003)

CoxG (Keya et al.) 0.6013
(0.0008)

0.2282
(0.0017)

1.3610
(0.0647)

0.0184
(0.0009)

0.0115
(0.0006)

0.6011
(0.0006)

0.2279
(0.0009)

0.6895
(0.6730)

0.0181
(0.0003)

0.0113
(0.0002)

CoxG (R&P) 0.6024
(0.0010)

0.2294
(0.0013)

1.3350
(0.1889)

0.0194
(0.0010)

0.0121
(0.0006)

0.6027
(0.0008)

0.2285
(0.0012)

0.6856
(0.6810)

0.0182
(0.0005)

0.0114
(0.0003)

Cox∩ (Keya et al.) 0.5681
(0.0079)

0.2271
(0.0018)

1.4020
(0.1743)

0.0127
(0.0013)

0.0076
(0.0008)

0.5631
(0.0070)

0.2264
(0.0017)

0.6893
(0.6849)

0.0117
(0.0012)

0.0070
(0.0007)

DRO-COX 0.5735
(0.0018)

0.2210
(0.0010)

0.4640
(0.0790)

0.0028
(0.0001)

0.0017
(0.0001)

0.5641
(0.0105)

0.2211
(0.0010)

0.3340
(0.4021)

0.0019
(0.0012)

0.0012
(0.0007)

DRO-COX (SPLIT) 0.5701
(0.0056)

0.4569
(0.1314)

0.3236
(0.3939)

0.0023
(0.0011)

0.0014
(0.0007)

0.5701
(0.0056)

0.4570
(0.1314)

0.3231
(0.3938)

0.0023
(0.0011)

0.0014
(0.0007)

N
on

lin
ea

r

DeepSurv 0.6108
(0.0029)

0.2417
(0.0016)

1.7440
(0.2649)

0.0453
(0.0041)

0.0276
(0.0024)

0.6108
(0.0029)

0.2417
(0.0016)

0.8946
(0.8698)

0.0453
(0.0041)

0.0276
(0.0024)

DeepSurvI (Keya et al.) 0.5927
(0.0082)

0.2316
(0.0166)

1.0380
(0.5996)

0.0014
(0.0017)

0.0010
(0.0012)

0.6031
(0.0059)

0.2459
(0.0102)

0.6225
(0.8070)

0.0000
(0.0000)

0.0000
(0.0000)

DeepSurvI (R&P) 0.6078
(0.0067)

0.2374
(0.0090)

1.6470
(0.3917)

0.0050
(0.0053)

0.0031
(0.0033)

0.6124
(0.0048)

0.2448
(0.0043)

0.8250
(0.8705)

0.0000
(0.0000)

0.0000
(0.0000)

DeepSurvG (Keya et al.) 0.5941
(0.0145)

0.2369
(0.0117)

1.2780
(0.3894)

0.0104
(0.0089)

0.0065
(0.0055)

0.6056
(0.0044)

0.2485
(0.0023)

0.7256
(0.8039)

0.0022
(0.0006)

0.0014
(0.0003)

DeepSurvG (R&P) 0.6108
(0.0076)

0.2396
(0.0086)

1.5720
(0.2968)

0.0046
(0.0057)

0.0029
(0.0036)

0.6125
(0.0052)

0.2444
(0.0043)

0.7651
(0.8150)

0.0002
(0.0001)

0.0001
(0.0000)

DeepSurv∩ (Keya et al.) 0.5992
(0.0072)

0.2357
(0.0042)

1.4230
(0.4286)

0.0236
(0.0054)

0.0145
(0.0032)

0.5912
(0.0012)

0.2309
(0.0011)

0.5886
(0.5782)

0.0182
(0.0008)

0.0113
(0.0005)

Deep DRO-COX 0.5798
(0.0101)

0.2234
(0.0017)

0.7900
(0.4283)

0.0092
(0.0043)

0.0056
(0.0026)

0.5754
(0.0120)

0.2227
(0.0011)

0.3602
(0.4571)

0.0065
(0.0023)

0.0040
(0.0014)

Deep DRO-COX (SPLIT) 0.5772
(0.0093)

0.6387
(0.0007)

0.3584
(0.4688)

0.0069
(0.0021)

0.0042
(0.0013)

0.5772
(0.0093)

0.6387
(0.0007)

0.3584
(0.4688)

0.0069
(0.0021)

0.0042
(0.0013)
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Table D.4: Cox model test set scores on the SEER (age) dataset, in the same format as Table 4.2.

Methods
CI-based Tuning FCG -based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI ↓ FCG↓

Li
ne

ar

Cox 0.7025
(0.0003)

0.2128
(0.0009)

0.5555
(0.3870)

0.1690
(0.0053

0.0468
(0.0009)

0.7025
(0.0003)

0.2128
(0.0009)

0.5555
(0.3870)

0.1690
(0.0053

0.0468
(0.0009)

CoxI (Keya et al.) 0.6911
(0.0049)

0.1910
(0.0041)

0.3781
(0.4463)

0.0722
(0.0244)

0.0202
(0.0068)

0.6877
(0.0065)

0.1838
(0.0027)

0.3841
(0.4965)

0.0112
(0.0016)

0.0022
(0.0007)

CoxI (R&P) 0.7037
(0.0006)

0.2024
(0.0030)

0.5447
(0.4372)

0.1095
(0.0162)

0.0319
(0.0043)

0.7025
(0.0022)

0.1973
(0.0007)

0.5105
(0.4343)

0.0820
(0.0020)

0.0237
(0.0014)

CoxG (Keya et al.) 0.6517
(0.0023)

0.1986
(0.0005)

1.6654
(1.5826)

0.0838
(0.0015)

0.0431
(0.0008)

0.6517
(0.0023)

0.1986
(0.0005)

1.6654
(1.5826)

0.0838
(0.0015)

0.0431
(0.0008)

CoxG (R&P) 0.7028
(0.0007)

0.2086
(0.0037)

0.6010
(0.4591)

0.1450
(0.0193)

0.0382
(0.0043)

0.7007
(0.0023)

0.2043
(0.0012)

0.6109
(0.4911)

0.1229
(0.0066)

0.0283
(0.0007)

Cox∩ (Keya et al.) 0.6494
(0.0016)

0.1963
(0.0012)

1.1668
(1.0991)

0.0707
(0.0058

0.0361
(0.0030)

0.6494
(0.0016)

0.1963
(0.0012)

1.1668
(1.0991)

0.0707
(0.0058)

0.0361
(0.0030)

DRO-COX 0.6927
(0.0069)

0.1868
(0.0004)

0.3170
(0.3762)

0.0001
(0.0001)

0.0000
(0.0000)

0.6927
(0.0069)

0.1868
(0.0004)

0.3170
(0.3762)

0.0001
(0.0001)

0.0000
(0.0000)

DRO-COX (SPLIT) 0.6872
(0.0047)

0.1869
(0.0004)

0.2505
(0.3292)

0.0000
(0.0000)

0.0000
(0.0000)

0.6872
(0.0047)

0.1869
(0.0004)

0.2505
(0.3292)

0.0000
(0.0000)

0.0000
(0.0000)

N
on

lin
ea

r

DeepSurv 0.7095
(0.0014)

0.2200
(0.0012)

0.6717
(0.3402)

0.3635
(0.1116)

0.1177
(0.0354)

0.7095
(0.0014)

0.2200
(0.0012)

0.6717
(0.3402)

0.3635
(0.1116)

0.1177
(0.0354)

DeepSurvI (Keya et al.) 0.6985
(0.0041)

0.2123
(0.0035)

0.3850
(0.4457)

0.0000
(0.0000)

0.0000
(0.0000)

0.6982
(0.0045)

0.2127
(0.0032)

0.3820
(0.4512)

0.0000
(0.0000)

0.0000
(0.0000)

DeepSurvI (R&P) 0.7080
(0.0016)

0.2168
(0.0010)

0.4406
(0.4597)

0.0003
(0.0003)

0.0000
(0.0001)

0.7075
(0.0009)

0.2167
(0.0011)

0.4276
(0.4386)

0.0001
(0.0000)

0.0000
(0.0000)

DeepSurvG (Keya et al.) 0.7076
(0.0015)

0.2397
(0.0822)

0.4963
(0.4986)

0.0115
(0.0055)

0.0036
(0.0022)

0.7076
(0.0015)

0.2397
(0.0822)

0.4963
(0.4986)

0.0115
(0.0055)

0.0036
(0.0022)

DeepSurvG (R&P) 0.7070
(0.0020)

0.2168
(0.0011)

0.3980
(0.4415)

0.0049
(0.0018)

0.0010
(0.0004)

0.7069
(0.0020)

0.2168
(0.0011)

0.3933
(0.4365)

0.0046
(0.0016)

0.0009
(0.0003)

DeepSurv∩ (Keya et al.) 0.6537
(0.0054)

0.1998
(0.0008)

1.0407
(0.9759)

0.0694
(0.0143)

0.0371
(0.0078)

0.6537
(0.0054)

0.1998
(0.0008)

1.0407
(0.9759)

0.0694
(0.0143)

0.0371
(0.0078)

Deep DRO-COX 0.6830
(0.0050)

0.1869
(0.0004)

0.3628
(0.4352)

0.0006
(0.0004)

0.0002
(0.0001)

0.6830
(0.0050)

0.1869
(0.0004)

0.3628
(0.4352)

0.0006
(0.0004)

0.0002
(0.0001)

Deep DRO-COX (SPLIT) 0.6829
(0.0049)

0.1881
(0.0012)

0.3853
(0.4475)

0.0006
(0.0005)

0.0002
(0.0001)

0.6829
(0.0049)

0.1881
(0.0012)

0.3853
(0.4475)

0.0006
(0.0005)

0.0002
(0.0001)

Table D.5: Test set scores for DRO-COX (SPLIT) on the FLC (age) dataset using n2 = 0.1n, 0.2n, 0.3n, 0.4n, 0.5n
(corresponding to n1 = 0.9n, 0.8n, 0.7n, 0.6n, 0.5n). The format of this table is similar to that of Table 4.2 al-
though here we do not bold or highlight any cells, as our main finding here is that the scores are not dramati-
cally different for the different choices for n1 or n2.

n2
Accuracy Metrics Fairness Metrics

Ctd ↑ IBS↓ CI(%)↓ FCI↓ FCG↓

Li
ne

ar

0.1n 0.7822
(0.0183)

0.1410
(0.0056)

0.2336
(0.3584)

0.0002
(0.0003)

0.0000
(0.0000)

0.2n 0.7945
(0.0069)

0.1402
(0.0029)

0.1805
(0.2610)

0.0001
(0.0001)

0.0000
(0.0000)

0.3n 0.7970
(0.0037)

0.1397
(0.0025)

0.1280
(0.1689)

0.0000
(0.0001)

0.0000
(0.0000)

0.4n 0.7970
(0.0043)

0.1392
(0.0015)

0.1470
(0.1767)

0.0000
(0.0000)

0.0000
(0.0000)

0.5n 0.7964
(0.0045)

0.1389
(0.0008)

0.1175
(0.1482)

0.0000
(0.0000)

0.0000
(0.0000)

N
on

lin
ea

r

0.1n 0.7583
(0.0109)

0.1907
(0.0764)

1.0783
(1.3112)

0.0076
(0.0029)

0.0018
(0.0007)

0.2n 0.7712
(0.0107)

0.1622
(0.0095)

1.1352
(1.2528)

0.0065
(0.0017)

0.0014
(0.0003)

0.3n 0.7709
(0.0205)

0.1650
(0.0025)

1.1943
(1.2232)

0.0056
(0.0013)

0.0013
(0.0002)

0.4n 0.7731
(0.0178)

0.1633
(0.0057)

1.1958
(1.2023)

0.0056
(0.0014)

0.0012
(0.0003)

0.5n 0.7784
(0.0092)

0.1647
(0.0037)

1.1632
(1.1853)

0.0054
(0.0013)

0.0011
(0.0002)

Table D.6: Test set scores of DRO-COX (SPLIT, ONE SIDE) vs DRO-COX (SPLIT) on the FLC (age) dataset. The
format of this table is the same that of Table 4.2 except without any cells highlighted in green as we are not
comparing against baselines by previous authors.

Methods Accuracy Metrics Fairness Metrics
Ctd ↑ IBS↓ CI(%)↓ FCI↓ FCG↓

Li
ne

ar

DRO-COX
(SPLIT, ONE SIDE)

0.7810
(0.0109)

0.1330
(0.0002)

0.2030
(0.2859)

0.0000
(0.0001)

0.0000
(0.0000)

DRO-COX (SPLIT) 0.7964
(0.0045)

0.1389
(0.0008)

0.1175
(0.1482)

0.0000
(0.0000)

0.0000
(0.0000)

N
on

-
lin

ea
r DEEP DRO-COX

(SPLIT, ONE SIDE)
0.7554

(0.0231)
0.1332

(0.0002)
0.9530

(1.0637)
0.0060

(0.0019)
0.0015

(0.0005)

Deep DRO-COX (SPLIT) 0.7784
(0.0092)

0.1647
(0.0037)

1.1632
(1.1853)

0.0054
(0.0013)

0.0011
(0.0002)
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