95-865 Unstructured Data Analytics

Week 5: Intro to predictive data analytics, neural nets, and deep learning

George Chen
Quiz 1

Fall 2019 95-865 Quiz 1 Histogram

Mean: 33.3, std dev: 23.6, max achieved: 87
Quiz 1 Regrade Requests

• How regrades work:

1. Study solutions (already posted in Canvas under “Files”) very carefully

2. If you think there’s a mistake, send me an email and be very specific about what was incorrectly graded and how many points are at stake

3. We will regrade your whole quiz 1 (the version that you submitted to Canvas on the quiz day)

4. Your score can go up, go down, or stay the same, and the regraded result is final

• Due this Friday 11:59pm Pittsburgh time
Disclaimer: unfortunately “k” means many things
What if we have labels?
Example: MNIST handwritten digits have known labels
If the labels are known...
If the labels are known…

And we assume data generated by GMM…

What are the model parameters?
Flashback: Learning a GMM

Step 0: Pick k

Step 1: Pick guesses for cluster probabilities, means, and covariances (often done using k-means)

Repeat until convergence:

Step 2: Compute probability of each point belonging to each of the k clusters

Step 3: Update cluster probabilities, means, and covariances carefully accounting for probabilities of each point belonging to each of the clusters

We don’t need to repeat until convergence
If the labels are known…

And we assume data generated by GMM…

What are the model parameters?

\[k = \# \text{ of colors} \]

We can directly estimate cluster means, covariances
What should the label of this new point be?

Whichever cluster has higher probability!
We just created a **classifier**
(a procedure that given a new data point tells us what “class” it belongs to)

This classifier we’ve created assumes a **generative model**

What should the label of this new point be?

Whichever cluster has higher probability!
You’ve seen a prediction model that is partly a generative model

Linear regression!
Model parameters: slope m, intercept b

Label (1D in this case)

Feature vector (1D in this case)
For specific value of x, assume y drawn from Gaussian with mean $mx+b$, standard dev σ.
Predictive Data Analysis

Training data

\[(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\]

Goal: Given new feature vector \(x\), predict label \(y\)

- \(y\) is discrete (such as colors red and blue) ➔ prediction method is called a classifier

- \(y\) is continuous (such as a real number) ➔ prediction method is called a regressor

A giant zoo of methods

- Generative models (like what we just described)

- Discriminative methods (just care about learning prediction rule without assuming generative model)
Example of a Discriminative Method: k-NN Classification
Example: k-NN Classification

What should the label of this new point be?
Example: *k*-NN Classification

What should the label of this new point be?

1-NN classifier prediction
Example: \textit{k-NN} Classification

What should the label of this new point be?

2-NN classifier prediction

Randomly break tie
Example: *k*-NN Classification

What should the label of this new point be?

We just saw: $k = 1, k = 2, k = 3$

What happens if $k = n$?
How do we choose k?

What I’ll describe next can be used to select hyperparameter(s) for any prediction method.

First: How do we assess how good a prediction method is?
Hyperparameters vs. Parameters

- We fit a model’s parameters to training data (terminology: we “learn” the parameters)
- We pick values of hyperparameters and they do not get fit to training data
- Example: Gaussian mixture model
 - Hyperparameter: number of clusters k
 - Parameters: cluster probabilities, means, covariances
- Example: k-NN classification
 - Hyperparameter: number of nearest neighbors k
 - Parameters: N/A
Training data

Example: Each data point is an email and we know whether it is spam/ham

Want to classify these points correctly

Example: future emails to classify as spam/ham
Train method on data in gray

Predict on data in orange

Compute prediction error

Simple data splitting (commonly called train/test split)

In this example: we did a 80%-20% split
Train method on data in gray

Predict on data in orange

Compute prediction error

0% 50%
Train method on data in gray

Predict on data in orange

Compute prediction error

50% 0% 50%
Train method on data in gray

Predict on data in orange

Compute prediction error

0% 50% 0% 50%
Train method on data in gray

Predict on data in orange

Compute prediction error

0% 0% 50% 0% 50%

Average error: \(\frac{0+0+50+0+50}{5} = 20\% \)
1. Shuffle data and put them into “folds” (5 folds in this example)

2. For each fold (which consists of its own train/validation sets):
 (a) Train on fold’s training data, test on fold’s validation data
 (b) Compute prediction error

3. Compute average prediction error across the folds
1. Shuffle data and put them into “folds” ($k=5$ folds in this example)

2. For each fold (which consists of its own train/validation sets):
 (a) Train on fold’s training data, test on fold’s validation data
 (b) Compute prediction error

3. Compute average prediction error across the folds
k-fold Cross Validation

1. Shuffle data and put them into “folds” \((k=5\) folds in this example)\)

2. For each fold (which consists of its own train/validation sets):
 a. Train on fold’s training data, test on fold’s validation data
 b. Compute some sort of prediction score

3. Compute average prediction score across the folds “cross validation score”

not the same \(k\) as in \(k\)-means or \(k\)-NN classification
Choosing k in k-NN Classification

Note: k-NN classifier has a single hyperparameter k

For each $k = 1, 2, 3, \ldots$, the maximum k you are willing to try:

Compute 5-fold cross validation score using k-NN classifier as prediction method

Use whichever k has the best cross validation score
Automatic Hyperparameter Selection

Suppose the prediction algorithm you’re using has hyperparameters \(\theta \)

For each hyperparameter setting \(\theta \) you are willing to try:

- Compute 5-fold cross validation score using your algorithm with hyperparameters \(\theta \)

Use whichever \(\theta \) has the best cross validation score

Why 5?

People have found using 10 folds or 5 folds to work well in practice but it’s just empirical — there’s no deep reason
Important: the errors from simple data splitting and cross-validation are estimates of the true error on test data!

Example: earlier, we got a cross validation score of 20% error

This is a guess for the error we will get on test data

This guess is **not** always accurate!

Example: future emails to classify as spam/ham
Cross-Validation Remarks

• k-fold cross-validation is a randomized procedure
 • Re-running CV results in different cross-validation scores!
• Suppose there are n training data points and k folds
 • If we are trying 10 different hyperparameter settings, how many times do we do model fitting? $10k$
 • If this number is similar in size to n, CV can overfit!
 • How many training data are used in each model fit during cross-validation? $[(k-1)/k]n$
 • Smaller # folds typically means faster training
• If $k = n$, would re-running cross-validation result in different cross-validation scores? What about $k = 2$?
 • For deterministic training procedure: same CV result for $k = n$ (since shuffling doesn’t matter), different for $k = 2$
Different Ways to Measure Accuracy

Simplest way:

- **Raw error rate**: fraction of predicted labels that are wrong (this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) when 1 label is considered “positive” and the other “negative”:
Different Ways to Measure Accuracy

Simplest way:

- **Raw error rate**: fraction of predicted labels that are wrong (this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) when 1 label is considered “positive” and the other “negative”:
Different Ways to Measure Accuracy

Simplest way:

- **Raw error rate**: fraction of predicted labels that are wrong (this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) when 1 label is considered “positive” and the other “negative”:

```
  True label: −  True label: +
     [●●●●●●●]  [●●●●●●●]
```
Different Ways to Measure Accuracy

Simplest way:

• **Raw error rate**: fraction of predicted labels that are wrong (this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) when 1 label is considered “positive” and the other “negative”:

- **Recall/True Positive Rate**: fraction of dotted line in true label +
- **Precision**: fraction of + in dotted line
• **Raw error rate:** fraction of predicted labels that are wrong (this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) when 1 label is considered “positive” and the other “negative”:

- **True label:** –
- **True label:** +

Outlined in dotted black: predicted label + (all other points predicted to be –)

Recall/True Positive Rate: fraction of dotted line in true label +

Precision: fraction of + in dotted line

F1 score: \[
\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}
\]

<table>
<thead>
<tr>
<th>False Positive Rate:</th>
<th>Fraction of dotted line in true label –</th>
<th>= 3/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall/True Positive Rate:</td>
<td>Fraction of dotted line in true label +</td>
<td>= 2/3</td>
</tr>
<tr>
<td>Precision:</td>
<td>Fraction of + in dotted line</td>
<td>= 2/5</td>
</tr>
<tr>
<td>F1 score:</td>
<td>fraction of predicted labels that are wrong</td>
<td>= 1/2</td>
</tr>
</tbody>
</table>
Prediction and Model Validation

Demo
Deep Learning
2011: Traditional computer vision achieves accuracy ~74%
2012: Initial deep neural network approach accuracy ~84%
2015 onwards: Deep learning achieves accuracy 96%+

Deep Learning Takeover

Academia:

- Top computer vision conferences (CVPR, ICCV, ECCV) are now nearly all about deep learning
- Top machine learning conferences (ICML, NeurIPS) have heavily been taken over by deep learning

Extremely useful in practice:

- Near human level image classification (including handwritten digit recognition)
- Near human level speech recognition
- Improvements in machine translation, text-to-speech
- Self-driving cars
- Better than humans at playing Go

Heavily dominated by industry now!
Google DeepMind’s AlphaGo vs Lee Sedol, 2016
DeepMind’s StarCraft 2 AI is now better than 99.8 percent of all human players

AlphaStar is now grandmaster level in the real-time strategy game

By Nick Statt | @nickstatt | Oct 30, 2019, 2:00pm EDT
Is it all hype?

Should you as a human be afraid of robots taking your job?!?
American robots lose jobs to Asian robots as Adidas shifts manufacturing

By Reuters

November 11, 2019 | 9:13am | Updated
panda
~58% confidence

adversarial
noise

=

gibbon
~99% confidence

Fooling Neural Networks in the Physical World with 3D Adversarial Objects

31 Oct 2017 · 3 min read — shared on Hacker News, Lobsters, Reddit, Twitter

We’ve developed an approach to generate 3D adversarial objects that reliably fool neural networks in the real world, no matter how the objects are looked at.

Neural network based classifiers reach near-human performance in many tasks, and they’re used in high risk, real world systems. Yet, these same neural networks are particularly vulnerable to adversarial examples, carefully perturbed inputs that cause
a cat is sitting on a toilet in a bathroom.

Source: Gizmodo article “This Neural Network’s Hilariously Bad Image Descriptions Are Still Advanced AI”. September 16, 2015. (They’re using the NeuralTalk image-to-caption software.)
cow is not among top objects found!

Source: Pietro Perona
elephant is not among top objects found!

Source: David Lopez-Paz
Another AI Winter?

~1970’s: First AI winter over symbolic AI

~1980’s: Second AI winter over “expert systems”

Every time: Lots of hype, explosion in funding, then bubble bursts
Artificial Intelligence—The Revolution Hasn’t Happened Yet

Artificial Intelligence (AI) is the mantra of the current era. The phrase is intoned by technologists, academicians, journalists and venture capitalists.
What is deep learning?
Basic Idea

Brain/Machine

→

“clown fish”
Object Recognition

Feature extractors

Edges
Texture
Colors

Segments
Parts

“clown fish”

Classifier

Slide by Phillip Isola
Object Recognition

Feature extractors

<table>
<thead>
<tr>
<th>Edges</th>
<th>Texture</th>
<th>Colors</th>
</tr>
</thead>
</table>

Classifier

Learned

“clown fish”

Slide by Phillip Isola
Neural Network

“clown fish”

Learned

Slide by Phillip Isola
Neural Network

Learned

“clown fish”
Deep Neural Network

Learned

“clown fish”
Crumpled Paper Analogy

binary classification: 2 crumpled sheets of paper corresponding to the different classes

deep learning: series ("layers") of simple unfolding operations to try to disentangle the 2 sheets

Analogy: Francois Chollet, photo: George Chen
Representation Learning

Each layer’s output is another way we could represent the input data

Visualize (e.g., t-SNE)

Learned

“clown fish”
Representation Learning

Each layer’s output is *another way we could represent the input data*

Visualize (e.g., t-SNE)

Learned

“clown fish”
Why Does Deep Learning Work?

Actually the ideas behind deep learning are old (~1980’s)

- Big data
 - [Logos of Amazon, Twitter, Facebook, Lyft, Netflix, Fitbit, Google, UPMC]
- Better hardware
 - [Logos of Intel, AMD, TPU’s, GPU’s]
- Better algorithms

- [Star Wars and NVIDIA TITAN Xp images]
Structure Present in Data Matters

Neural nets aren’t doing black magic

- **Image analysis**: convolutional neural networks (convnets) neatly incorporates basic image processing structure

- **Time series analysis**: recurrent neural networks (RNNs) incorporates ability to remember and forget things over time

 - Note: text is a time series

 - Note: video is a time series
Handwritten Digit Recognition Example

Walkthrough of building a 1-layer and then a 2-layer neural net
Handwritten Digit Recognition

28x28 image

len 784 vector
(784 input neurons)

flatten &
treat as 1D vector

weighted sums
(parameterized
by a weight
matrix W and
a bias b)

activation
(can be thought of as post-processing)

“dense” layer
with 10 numbers

“dense” layer final output

single “dense” layer with 10 neurons
Handwritten Digit Recognition

length 784 vector
(784 input neurons)

weighted sums
(parameterized by a weight
matrix W and
a bias b)

(2D numpy array
of dimensions
784-by-10)

(1D numpy array
with 10 entries)

“dense” layer
with 10 numbers

(1D numpy array
with 10 entries)

input
(1D numpy array with 784 entries)

dense

W, b
Handwritten Digit Recognition

Input
- 784 vector of input neurons

Dense
- "dense" layer with 10 numbers
 - (1D numpy array with 10 entries)

Parameters
- W (2D numpy array of dimensions 784-by-10)
- b (1D numpy array with 10 entries)

Computations
- $\text{dense}[0] = \text{np.dot}(\text{input}, W[:, 0]) + b[0]$
- $\text{dense}[1] = \text{np.dot}(\text{input}, W[:, 1]) + b[1]$
- \vdots
- $\text{dense}[j] = \sum_{i=0}^{783} \text{input}[i] \times W[i, j] + b[j]$
Handwritten Digit Recognition

length 784 vector (784 input neurons)

weighted sums (parameterized by a weight matrix W and a bias b)

“dense” layer with 10 numbers
Handwritten Digit Recognition

28x28 image

- Flatten & treat as 1D vector
- Length 784 vector (784 input neurons)

- Weighted sums (parameterized by a weight matrix W and a bias b)
- "Dense" layer with 10 numbers

- Activation (can be thought of as post-processing)
- "Dense" layer final output

Single "Dense" layer with 10 neurons
Handwritten Digit Recognition

Many different activation functions possible

Example: **Rectified linear unit (ReLU)**
zeros out entries that are negative

dense_final = np.maximum(0, dense)
Many different activation functions possible

Example: **softmax** turns the entries in the dense layer (prior to activation) into a probability distribution (using the “softmax” transformation)

```python
dense_exp = np.exp(dense)
dense_exp /= np.sum(dense_exp)
dense_final = dense_exp
```

“dense” layer with 10 numbers

```
dense
```

“dense” layer final output

```
dense_final
```
Handwritten Digit Recognition

28x28 image

- Flatten & treat as 1D vector
- Length 784 vector (784 input neurons)

- Weighted sums (parameterized by a weight matrix W and a bias b)

- Softmax (can be thought of as post-processing)

- Single "dense" layer with 10 neurons

- Output

Pr(digit 0)
Pr(digit 1)
Pr(digit 2)
Pr(digit 3)
Pr(digit 4)
Pr(digit 5)
Pr(digit 6)
Pr(digit 7)
Pr(digit 8)
Pr(digit 9)
Handwritten Digit Recognition

28x28 image

flatten & treat as 1D vector

length 784 vector (784 input neurons)

We want the output of the dense layer to encode probabilities for whether the input image is a 0, 1, 2, …, 9 but as of now we aren’t providing any sort of information to enforce this dense layer with 10 neurons, softmax activation, parameters W, b
Handwritten Digit Recognition

Demo part 1
Handwritten Digit Recognition

28x28 image

- flatten & treat as 1D vector
- length 784 vector (784 input neurons)

Dense layer with
- 10 neurons,
- softmax activation,
- parameters W, b
Handwritten Digit Recognition

Training label: 6

28x28 image

Learning this neural net means learning W and b

flatten & treat as 1D vector

length 784 vector (784 input neurons)

Loss/“error”

Error is averaged across training examples

Popular loss function for classification (> 2 classes): categorical cross entropy

$\text{log} \frac{1}{\Pr(\text{digit 6})}$

dense layer with 10 neurons, softmax activation, parameters W, b
Handwritten Digit Recognition

Demo part 2
Handwritten Digit Recognition

Training label: 6

28x28 image

flaten & treat as 1D vector

length 784 vector (784 input neurons)

Loss/“error”

Error is averaged across training examples

Popular loss function for classification (> 2 classes):
categorical cross entropy

Learning this neural net means learning W and b

Error = $-\sum \log \frac{1}{Pr(\text{digit 6})}$

Learning this neural net means learning W and b.
Handwritten Digit Recognition

Training label: 6

28x28 image
length 784 vector (784 input neurons)

Learning this neural net means learning parameters of both dense layers!

dense layer with 512 neurons, ReLU activation

dense layer with 10 neurons, softmax activation

Loss/“error”

Error is averaged across training examples

Popular loss function for classification (> 2 classes): **categorical cross entropy**

\[
\log \frac{1}{\Pr(\text{digit 6})}
\]
Handwritten Digit Recognition

Demo part 3