Unstructured Data Analytics

Lecture 3: Finding possibly related entities

George Chen
(Flashback) Co-Occurrences

For example: count # news articles that have different named entities co-occur

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>10</td>
<td>15</td>
<td>300</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>500</td>
<td>10000</td>
<td>500</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>200</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

Big values ➔ possibly related named entities

How to downweight “Mark Zuckerberg” if there are just way more articles that mention him?
Key idea: what would happen if people and companies were independent?
<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>10</td>
<td>15</td>
<td>300</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>500</td>
<td>10000</td>
<td>500</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>200</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

Probability of drawing “Elon Musk, Apple”?

Probability of drawing a card that says “Apple” on it?

- 10 of these cards: Elon Musk, Apple
- 15 of these cards: Elon Musk, Facebook
- 300 of these cards: Elon Musk, Tesla
- 10 of these cards: Tim Cook, Tesla

Place into bag
Co-occurrence table

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>10</td>
<td>15</td>
<td>300</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>500</td>
<td>10000</td>
<td>500</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>200</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

Total: 11565
<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>10/11565</td>
<td>15/11565</td>
<td>300/11565</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>500/11565</td>
<td>10000/11565</td>
<td>500/11565</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>200/11565</td>
<td>30/11565</td>
<td>10/11565</td>
</tr>
</tbody>
</table>

Total: 11565

Joint probability table

sum to get $P(Elon$ Musk)
Joint probability table

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>0.00086</td>
<td>0.00130</td>
<td>0.02594</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>0.04323</td>
<td>0.86468</td>
<td>0.04323</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>0.01729</td>
<td>0.00259</td>
<td>0.00086</td>
</tr>
<tr>
<td>Total</td>
<td>0.06139</td>
<td>0.86857</td>
<td>0.07004</td>
</tr>
</tbody>
</table>

Recall: if events A and B are independent, $P(A, B) = P(A)P(B)$
Joint probability table if people and companies were independent

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>0.00173</td>
<td>0.02441</td>
<td>0.00197</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>0.05839</td>
<td>0.82614</td>
<td>0.06662</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>0.00127</td>
<td>0.01802</td>
<td>0.00145</td>
</tr>
</tbody>
</table>

0.06139 0.86857 0.07004

Recall: if events A and B are independent, $P(A, B) = P(A)P(B)$
What we actually observe

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>0.00086</td>
<td>0.00130</td>
<td>0.02594</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>0.04323</td>
<td>0.86468</td>
<td>0.04323</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>0.01729</td>
<td>0.00259</td>
<td>0.00086</td>
</tr>
</tbody>
</table>

What should be the case if people are independent

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>0.00173</td>
<td>0.02441</td>
<td>0.00197</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>0.05839</td>
<td>0.82614</td>
<td>0.06662</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>0.00127</td>
<td>0.01802</td>
<td>0.00145</td>
</tr>
</tbody>
</table>
Pointwise Mutual Information (PMI)

Probability of A and B co-occurring

\[
\frac{P(A, B)}{P(A)P(B)}
\]

if equal to 1

\[\Rightarrow\] A, B are indep.

Probability of A and B co-occurring \textit{if they were independent}

PMI\((A, B)\) is defined as the log of the above ratio

PMI measures (the log of) a ratio that says how far A and B are from being independent

Reminder: this is what log looks like!
Recap: Use PMI to Rank Specific Person/Company Pairs

\[PMI(A, B) = \log \frac{P(A, B)}{P(A) \cdot P(B)} \]

- More positive value means a specific pair appears much more likely than if they were independent.
- More negative value means a specific pair appears much less likely than if they were independent.
- In practice: need to be careful with named entities that extremely rarely occur.
- Sometimes people consider only pairs with positive PMI values to be interesting (called positive PMI or PPMI).
What about figuring out if people (as a whole)/companies (as a whole) is an “interesting” relationship?

For example, perhaps we want to understand how different entity types are related (e.g., people/companies, people/locations, people/dates, companies/locations, etc)

There can be many such pairings, and we may only want to focus on a few
Looking at All Pairs of Outcomes

• PMI measures how $P(A, B)$ differs from $P(A)P(B)$ using a log ratio.

• Log ratio isn’t the only way to compare!

• Another way to compare:

$$\sum_{A, B} \frac{[P(A, B) - P(A)P(B)]^2}{P(A)P(B)}$$

Phi-squared = $\sum_{A, B} \frac{[P(A, B) - P(A)P(B)]^2}{P(A)P(B)}$

Chi-squared = $N \times$ Phi-square

$N =$ sum of all co-occurrence counts

Phi-squared is between 0 and $\min(#\text{rows, #cols})-1$

0 \rightarrow pairs are all indep.

Measures how close all pairs of outcomes are close to being indep.

There’s also a variant of these that is always between 0 and 1:

Cramér’s $V = \sqrt{\frac{\text{Phi-squared}}{\min(#\text{rows, #cols})-1}}$
Phi-Squared/Chi-Squared/Cramér’s V Calculation

Demo
Co-occurrence Analysis Applications

- If you're an online store/retailer: anticipate *when* certain products are likely to be purchased/rented/consumed more
 - Products & dates
- If you have a bunch of physical stores: anticipate *where* certain products are likely to be purchased/rented/consumed more
 - Products & locations
- If you're the police department: create "heat map" of where different criminal activity occurs
 - Crime reports & locations
Co-occurrence Analysis Applications

- If you're an online store/retailer:
 anticipate when certain products are likely to be purchased/rented/consumed more
- Products & locations
- Products & dates

- If you have a bunch of physical stores:
 anticipate where certain products are likely to be purchased/rented/consumed more
- Crime reports & locations

Examples of data to take advantage of:
- data collected by your organization
- social networks
- news websites
- blogs

Web scraping frameworks can be helpful:
- Scrapy
- Selenium (great with JavaScript-heavy pages)
- Crime reports & locations
Continuous Measurements

- So far, looked at relationships between discrete outcomes
- For pair of continuous outcomes, use a scatter plot

Of course, not all trends look like a line (so don’t just do linear regression!)

Image source: https://plot.ly/~MattSundquist/5405.png
The Importance of Staring at Data

In general: not obvious what curve to fit (if any)

Not enough data => might think there's a pattern when it's just noise

In general: not obvious if some points are outliers and should be excluded
Correlation

Negatively correlated Not really correlated Positively correlated

Beware: Just because two variables appear correlated doesn't mean that one can predict the other
Correlation ≠ Causation

Moreover, just because we find correlation in data doesn't mean it has predictive value!

Important: At this point in the course, we are finding possible relationships between two entities.

We are not yet making statements about prediction (we'll see prediction later in the course).

We are not making statements about causality (beyond the scope of this course).