Unstructured Data Analytics

Lecture 3: Finding possibly related entities

George Chen
Co-Occurrences

For example: count # news articles that have different named entities co-occur

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>10</td>
<td>15</td>
<td>300</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>500</td>
<td>10000</td>
<td>500</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>200</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

Big values ➔ *possibly* related named entities

How to downweight “Mark Zuckerberg” if there are just way more articles that mention him?
Key idea: what would happen if people and companies were independent?
<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>10</td>
<td>15</td>
<td>300</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>500</td>
<td>10000</td>
<td>500</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>200</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

- **Probability of drawing “Elon Musk, Apple”?**
- **Probability of drawing a card that says “Apple” on it?**

10 of these cards:

- Elon Musk, Apple

15 of these cards:

- Elon Musk, Facebook

300 of these cards:

- Elon Musk, Tesla

10 of these cards:

- Tim Cook, Tesla

Place into bag
Co-occurrence table

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>10</td>
<td>15</td>
<td>300</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>500</td>
<td>10000</td>
<td>500</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>200</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

Total: 11565
Joint probability table

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>10/11565</td>
<td>15/11565</td>
<td>300/11565</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>500/11565</td>
<td>10000/11565</td>
<td>500/11565</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>200/11565</td>
<td>30/11565</td>
<td>10/11565</td>
</tr>
</tbody>
</table>

Total: 11565

sum to get $P(\text{Elon Musk})$
Joint probability table

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>0.00086</td>
<td>0.00130</td>
<td>0.02594</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>0.04323</td>
<td>0.86468</td>
<td>0.04323</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>0.01729</td>
<td>0.00259</td>
<td>0.00086</td>
</tr>
</tbody>
</table>

| | 0.06139 | 0.86857 | 0.07004 |

Recall: if events A and B are independent, $P(A, B) = P(A)P(B)$
Joint probability table if people and companies were independent

Recall: if events A and B are independent, \(P(A, B) = P(A)P(B) \)
<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>0.00086</td>
<td>0.00130</td>
<td>0.02594</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>0.04323</td>
<td>0.86468</td>
<td>0.04323</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>0.01729</td>
<td>0.00259</td>
<td>0.00086</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Facebook</th>
<th>Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elon Musk</td>
<td>0.00173</td>
<td>0.02441</td>
<td>0.00197</td>
</tr>
<tr>
<td>Mark Zuckerberg</td>
<td>0.05839</td>
<td>0.82614</td>
<td>0.06662</td>
</tr>
<tr>
<td>Tim Cook</td>
<td>0.00127</td>
<td>0.01802</td>
<td>0.00145</td>
</tr>
</tbody>
</table>

What we actually observe

What should be the case if people are companies were independent
Pointwise Mutual Information (PMI)

Probability of A and B co-occurring

\[
\frac{P(A, B)}{P(A)P(B)}
\]

if equal to 1
⇒ A, B are indep.

Probability of A and B co-occurring if they were independent

PMI(A, B) is defined as the log of the above ratio

PMI measures (the log of) a ratio that says how far A and B are from being independent
Looking at All Pairs of Outcomes

- PMI measures how $P(A, B)$ differs from $P(A)P(B)$ using a log ratio.
- Log ratio isn’t the only way to compare!
- Another way to compare:

$$\Phi^2 = \sum_{A, B} \frac{[P(A, B) - P(A)P(B)]^2}{P(A)P(B)}$$

Chi-square $= N \times \Phi^2$

N = sum of all co-occurrence counts

Phi-square is between 0 and \(\min(\#\text{rows}, \#\text{cols})-1\).

0 \rightarrow pairs are all indep.

Measures how close all pairs of outcomes are close to being indep.
PMI/Phi-Square/Chi-Square Calculation

Demo
Co-occurrence Analysis Applications

• If you're an online store/retailer: anticipate *when* certain products are likely to be purchased/rented/consumed more
 • Products & dates
• If you have a bunch of physical stores: anticipate *where* certain products are likely to be purchased/rented/consumed more
 • Products & locations
• If you're the police department: create "heat map" of where different criminal activity occurs
 • Crime reports & locations
Co-occurrence Analysis Applications

- If you're an online store/retailer:
 anticipate when certain products are likely to be purchased/rented/consumed more

- If you have a bunch of physical stores:
 anticipate where certain products are likely to be purchased/rented/consumed more

- If you're the police department:
 create "heat map" of where different criminal activity occurs

Examples of data to take advantage of:
- data collected by your organization
- social networks
- news websites
- blogs

Web scraping frameworks can be helpful:
- Scrapy
- Selenium (great with JavaScript-heavy pages)

- Crime reports & locations
Continuous Measurements

- So far, looked at relationships between *discrete* outcomes
- For pair of *continuous* outcomes, use a **scatter plot**

Of course, not all trends look like a line
(so don’t just do linear regression!)

Image source: https://plot.ly/~MattSundquist/5405.png
The Importance of Staring at Data

In general: not obvious what curve to fit (if any)

Not enough data => might think there's a pattern when it's just noise

In general: not obvious if some points are outliers and should be excluded
Correlation

Negatively correlated Not really correlated Positively correlated

Beware: Just because two variables appear correlated doesn't mean that one can predict the other
Correlation ≠ Causation

Moreover, just because we find correlation in data doesn't mean it has predictive value!

Blue: Scaled sunspot number (inverted after Reagan's 2nd term)

Red: Number of Republican senators