Unstructured Data Analysis

Lecture 13: Time series analysis with recurrent neural nets

George Chen
Sequence Data

What we’ve seen so far are “feedforward” NNs
Sequence Data

What we’ve seen so far are “feedforward” NNs

What if we had a video?
Recurrent Neural Nets

Feedforward NN’s: treat each video frame separately
Recurred Neural Nets

Feedforward NN’s: treat each video frame separately

RNNs: feed output at previous time step as input to RNN layer at current time step

In PyTorch, different RNN options: RNN (vanilla), LSTM, GRU
Recurrent Neural Nets

Feedforward NN’s: treat each video frame separately

RNNs: feed output at previous time step as input to RNN layer at current time step

In PyTorch, different RNN options: RNN (vanilla), LSTM, GRU
Vanilla ReLU RNN

memory stored in current_state variable!

```python
current_state = np.zeros(num_nodes)

for input in input_sequence:
    linear = np.dot(input, W) \ 
             + np.dot(current_state, U) \ 
             + b

output = np.maximum(0, linear)  # ReLU

current_state = output
```

Parameters: weight matrices \(W \) & \(U \), and bias vector \(b \)

Key idea: it’s like a linear layer in a for loop with some memory!
Recurrent Neural Nets

- Recurrent Neural Nets (RNNs) are like a linear layer that has memory and readily chains together with other neural net layers.
- Feedforward Neural Networks (NNs) treat each video frame separately.
- RNNs feed output at previous time step as input to RNN layer at current time step.
- In PyTorch, different RNN options: RNN (vanilla), LSTM, GRU.
Recurrent Neural Nets

- Like a linear layer that has memory
- Readily chains together with other neural net layers

Feedforward NN’s:
- Treat each video frame separately

RNNs:
- Feed output at previous time step as input to RNN layer at current time step

In PyTorch, different RNN options:
- RNN (vanilla), LSTM, GRU
Recurrent Neural Nets

- RNN layer
 - readily chains together with other neural net layers
 - like a linear layer that has memory

Feedforward NN’s:
- treat each video frame separately

RNNs:
- feed output at previous time step as input to RNN layer at current time step

In PyTorch, different RNN options:
- RNN (vanilla), LSTM, GRU
Recurrent Neural Nets

Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)

Common first step for text: turn words into vector representations that are semantically meaningful

Text → RNN layer → Classifier → Positive/negative sentiment
(Flashback) Do Data Actually Live on Manifolds?

Recurrent Neural Nets

Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)

Common first step for text: turn words into vector representations that are semantically meaningful

In PyTorch, use the Embedding layer

Linear layer (2 nodes), Softmax activation
Sentiment Analysis with IMDb Reviews

Step 1: Tokenize & build vocabulary

<table>
<thead>
<tr>
<th>Word index</th>
<th>Word</th>
<th>2D Embedding</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>this</td>
<td>[-0.57, 0.44]</td>
</tr>
<tr>
<td>1</td>
<td>movie</td>
<td>[0.38, 0.15]</td>
</tr>
<tr>
<td>2</td>
<td>rocks</td>
<td>[-0.85, 0.70]</td>
</tr>
<tr>
<td>3</td>
<td>sucks</td>
<td>[-0.26, 0.66]</td>
</tr>
</tbody>
</table>

Step 2: Encode each review as a sequence of word indices into the vocab

“this movie rocks” → 0 1 2
“this movie sucks” → 0 1 3
“this sucks” → 0 3

Step 3: Use word embeddings to represent each word
Sentiment Analysis with IMDb Reviews

Step 1: Tokenize & build vocabulary

<table>
<thead>
<tr>
<th>Word index</th>
<th>Word</th>
<th>2D Embedding</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>this</td>
<td>[-0.57, 0.44]</td>
</tr>
<tr>
<td>1</td>
<td>movie</td>
<td>[0.38, 0.15]</td>
</tr>
<tr>
<td>2</td>
<td>rocks</td>
<td>[-0.85, 0.70]</td>
</tr>
<tr>
<td>3</td>
<td>sucks</td>
<td>[-0.26, 0.66]</td>
</tr>
</tbody>
</table>

Step 2: Encode each review as a sequence of word indices into the vocab

“this movie sucks” → 0 1 3

Step 3: Use word embeddings to represent each word

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]
Sentiment Analysis with IMDb Reviews

“this movie sucks”

0 1 3

Embedding

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]
Sentiment Analysis with IMDb Reviews

“this movie sucks”

Embedding

0 → [-0.57, 0.44]

Embedding

1 → [0.38, 0.15]

Embedding

3 → [-0.26, 0.66]
Sentiment Analysis with IMDb Reviews

```
0 → Embedding → [-0.57, 0.44] → Logistic Regression
```

```
1 → Embedding → [0.38, 0.15] → Logistic Regression
```

```
3 → Embedding → [-0.26, 0.66] → Logistic Regression
```

“this movie sucks”
Sentiment Analysis with IMDb Reviews

RNN’s work with variable-length inputs

Note: Typically in text analysis, the word embeddings are treated as fixed, so we do not update them during training
Sentiment Analysis with IMDb Reviews

Demo
RNNs: a little bit more detail
(Flashback) Vanilla ReLU RNN

memory stored in current_state variable!

current_state = np.zeros(num_nodes)

for input in input_sequence:
 linear = np.dot(input, W) \
 + np.dot(current_state, U) \
 + b

 output = np.maximum(0, linear) # ReLU

 current_state = output

Parameters: weight matrices W & U, and bias vector b

Key idea: it’s like a linear layer in a for loop with some memory!
(Flashback) Vanilla ReLU RNN

```
memory stored in current_state variable!

current_state = np.zeros(num_nodes)

outputs = []

for input in input_sequence:
    linear = np.dot(input, W) \
             + np.dot(current_state, U) \
             + b

    output = np.maximum(0, linear)  # ReLU

    outputs.append(output)

    current_state = output
```
Time series \rightarrow \text{RNN layer} \rightarrow \text{output prediction}
Vanilla RNN tends to forget things quickly.

\[
\text{outputs}[t] = \text{np.maximum}(\text{np.dot}(\text{input_sequence}[t], W) + \text{np.dot}(\text{outputs}[t-1], U) + b, 0)
\]
Add explicit long-term memory!

But need some way to update long-term memory!
Time $t - 1$

Add explicit long-term memory!

But need some way to update long-term memory!

Long-term memory

Time t

output $t - 1$

output t
Add explicit long-term memory! But need some way to update long-term memory!
Add explicit long-term memory!

But need some way to update long-term memory!

Called a “long short-term memory” (LSTM) RNN

Remembers things longer than vanilla RNN
Recurrent Neural Nets

- Neatly handles time series, remembering things over time

- An RNN layer by itself doesn’t take advantage of image/text structure!
 - For images: combine with CNN basic building block (convolutional layer + pooling)
 - For text: combine with embedding layer (use pre-trained word embedding like GloVe, word2vec)
Analyzing Times Series with CNNs

- Think about an image with 1 column, and where the rows index time steps: this is a time series!

- Think about a 2D image where rows index time steps, and the columns index features: this is a multivariate time series (feature vector that changes over time!)

- CNNs can be used to analyze time series but inherently the size of the filters used say how far back in time we look

- If your time series does not have long-range dependencies that require long-term memory, CNNs can do well already!

 - If you need long-term memory, use RNNs