Lecture 1: Course overview, analyzing text using frequencies
What is this course about?
Big Data

We’re now collecting data on virtually every human endeavor.

How do we turn these data into actionable insights?
Two Types of Data
Structured Data

Well-defined elements, relationships between elements

Patients Table

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>First Name</th>
<th>Last Name</th>
<th>Middle Initial</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doctors Table

<table>
<thead>
<tr>
<th>Doctor ID</th>
<th>First Name</th>
<th>Last Name</th>
<th>Middle Initial</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appointments Table

<table>
<thead>
<tr>
<th>Appointment ID</th>
<th>Patient ID</th>
<th>Doctor ID</th>
<th>Start time</th>
<th>End time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Can be labor-intensive to collect/curate structured data
Unstructured Data

No pre-defined model—elements and relationships ambiguous

Common examples:

- Text
- Images
- Videos
- Audio

Often: Want to use heterogeneous data to make decisions

Of course, there is structure in this data but the structure is not neatly spelled out for us

We have to extract what elements matter and figure out how they are related!

Just because something can be stored as any of these doesn’t mean that it must be unstructured!
Example 1: Health Care

Forecast whether a patient is at risk for getting a disease?

Data

- Chart measurements (e.g., weight, blood pressure)
- Lab measurements (e.g., draw blood and send to lab)
- Doctor’s notes
- Patient’s medical history
- Family history
- Medical images
Example 2: Electrification

Where should we install cost-effective solar panels in developing countries?

Data

- Power distribution data for existing grid infrastructure
- Survey of electricity needs for different populations
- Labor costs
- Raw materials costs (e.g., solar panels, batteries, inverters)
- Satellite images
Example 3: Online Education

What parts of an online course are most confusing and need refinement?

Data

• Clickstream info through course website
• Video statistics
• Course forum posts
• Assignment submissions
Unstructured Data Analysis

Question
- The dead body
- This is provided by a practitioner

Data
- The evidence
- Some times you have to collect more evidence!

Finding Structure
- Puzzle solving, careful analysis
- Exploratory data analysis

Insights
- Perpetrator catchable?
- Answer original question

There isn’t always a follow-up prediction problem to solve!

UDA involves lots of data → write computer programs to assist analysis
95-865

Prereq: Python programming

Part I: Exploratory data analysis

Part II: Predictive data analysis
95-865

Part I: Exploratory data analysis

Identify structure present in “unstructured” data

- Frequency and co-occurrence analysis
- Visualizing high-dimensional data/dimensionality reduction
- Clustering
- Topic modeling

Part II: Predictive data analysis

Make predictions using known structure in data

- Classical classification methods
- Neural nets and deep learning for analyzing images and text
Course Goals

By the end of this course, you should have:

• Lots of hands-on programming experience with exploratory and predictive data analysis

• A high-level understanding of what methods are out there and which methods are appropriate for different problems

• A very high-level understanding of how these methods work and what their limitations are

• The ability to apply and interpret the methods taught to solve problems faced by organizations

I want you to leave the course with **practically useful** skills solving real-world problems with unstructured data analytics!
Course Textbook

No existing textbook matches the course… =(

Main source of material: lectures slides
We’ll post complimentary reading as we progress

Check course webpage
http://www.andrew.cmu.edu/user/georgech/95-865/

Assignments will be posted and submitted on canvas

Please post questions to piazza (link is within canvas)
Deliverables & Grading

All assignments involve coding in Python (popular amongst machine learning/computer science community)

HW3 uses Google Colab for cloud computing (many real datasets too large to either fit or process on personal machine)

Letter grades are assigned based on a curve

20% for Homework
40% for Quiz 1
40% for Quiz 2

Graded on a mix of effort/accuracy

Graded on accuracy

Slight bonus (up to 5% of Quiz 2) for Piazza participation (getting instructor-endorsed answers to questions)
Collaboration & Academic Integrity

• If you are having trouble, ask for help!
 • We will answer questions on Piazza and will also expect students to help answer questions!

• Do not post your candidate solutions on Piazza

• For code: post smallest snippet, how you know it’s wrong (error message/etc), & what you’ve tried to resolve the issue

• In the real world, you will unlikely be working alone
 • We encourage discussing concepts
 • Please acknowledge classmates you talked to or resources you consulted (e.g., stackoverflow)

• Do not share your code with classmates (instant message, email, Box, Dropbox, AWS, etc)

Penalties for cheating are severe: 0 on assignment, F in course =(
Pittsburgh/Adelaide Weirdness

- Piazza is shared across Pittsburgh and Adelaide sections
- Homework due dates are *almost* identical across sections
- CMU Pittsburgh campus has break days on April 5, 15, 16
 - Adelaide Wed/Fri sections unaffected by these dates
 - Pittsburgh sections will have a lecture on April 2 during the recitation slot to keep up with the pace
- CMU Adelaide finishes 1 week earlier and has their final exam period during CMU Pittsburgh’s last week of class…
The Two Quizzes

Format:

• **You produce a Jupyter notebook** that answers a series of questions
• Each quiz is 80 minutes
• Open notes, open internet, **closed to collaboration**
• You are responsible for making sure your laptop has a compute environment set up appropriately and has working internet
• Late exams will *not* be accepted
• **Quiz 1:** Friday April 23, 3:10pm-4:30pm (recitation slot)
• **Quiz 2:** Thursday May 13, 1pm-2:20pm
Late Homework Policy

• You are allotted 2 late days
 • If you use up a late day on an assignment, you can submit up to 24 hours late with no penalty
 • If you use up both late days on the same assignment, you can submit up to 48 hours late with no penalty

• Late days are not fractional

• This policy is in place precisely to account for various emergencies (health issues, etc) and you will not be given additional late days

• There is no need to tell us if you’re using a late day or not (we’ll figure it out from submission timestamps)
Zoom Etiquette

• I will **not** require that you have your video on if you don’t want to have it on

• However, please have your Zoom account show a photo of you

 • There’s only so much I can do to make this more like a real classroom experience

• If you have questions, or want to answer a question I asked, you can either raise your hand in Zoom to ask or type your question in Zoom chat
Course Staff

Teaching Assistants
Jingbo Jiang Erick Rodriguez Xuejian Wang

Instructor
George Chen

Office hours:
Check course webpage
http://www.andrew.cmu.edu/user/georgech/95-865/
Part 1.
Exploratory Data Analysis

Play with data and make lots of visualizations to probe what structure is present in the data!
Basic text analysis: how do we represent text documents?
The **opioid epidemic** or **opioid crisis** is the rapid increase in the use of prescription and non-prescription opioid drugs in the United States and Canada in the 2010s. Opioids are a diverse class of very strong painkillers, including oxycodone (commonly sold under the trade names OxyContin and Percocet), hydrocodone (Vicodin), and fentanyl, which are synthesized to resemble opiates such as opium-derived morphine and heroin. The potency and availability of these substances, despite their high risk of addiction and overdose, have made them popular both as formal medical treatments and as recreational drugs. Due to their sedative effects on the part of the brain which regulates breathing, opioids in high doses present the potential for respiratory depression, and may cause respiratory failure and death.\(^2\)
The opioid epidemic or opioid crisis is the rapid increase in the use of prescription and non-prescription opioid drugs in the United States and Canada in the 2010s.
The epidemic or opioid crisis is the rapid increase in the use of prescription and non-prescription opioid drugs in the United States and Canada in the 2010s.
increase the drugs opioid in The States or prescription opioid and of is rapid in opioid crisis the use non-prescription Canada 2010s. in United and the epidemic the
increase the drugs opioid in The States or prescription opioid and of is rapid in opioid crisis the use non-prescription Canada 2010s. in United and the epidemic the
Bag of Words Model

Ordering of words doesn’t matter

What is the probability of drawing the word “opioid” from the bag?