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Abstract

Distributed Stochastic Gradient Descent
(SGD) when run in a synchronous manner,
suffers from delays in waiting for the slow-
est learners (stragglers). Asynchronous meth-
ods can alleviate stragglers, but cause gradi-
ent staleness that can adversely affect con-
vergence. In this work we present the first
theoretical characterization of the speed-up of-
fered by asynchronous methods by analyzing
the trade-off between the error in the trained
model and the actual training runtime (wall-
clock time). The novelty in our work is that
our runtime analysis considers random strag-
gler delays, which helps us design and com-
pare distributed SGD algorithms that strike
a balance between stragglers and staleness.
We also present a new convergence analysis of
asynchronous SGD variants without bounded
or exponential delay assumptions, and a novel
learning rate schedule to compensate for gra-
dient staleness.

1 INTRODUCTION

Stochastic gradient descent (SGD) is the backbone
of most state-of-the-art machine learning algorithms.
Thus, improving the stability and convergence rate of
SGD algorithms is critical for making machine learning
algorithms fast and efficient.

Traditionally SGD is run serially at a single node. How-
ever, for massive datasets, running SGD serially at a
single server can be prohibitively slow. A solution that
has proved successful in recent years is to parallelize
the training across many learners (processing units).
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Figure 1: SGD variants span the error-runtime trade-
off between fully Sync-SGD and fully Async-SGD. K is
the number of learners or mini-batches the PS waits for
before updating the model parameters, as we elaborate
in Section 2.

This method was first used at a large-scale in Google’s
DistBelief [Dean et al., 2012] which used a central pa-
rameter server (PS) to aggregate gradients computed by
learner nodes. While parallelism dramatically speeds
up training, distributed machine learning frameworks
face several challenges such as:

Straggling Learners. In synchronous SGD, the PS
waits for all learners to push gradients before it updates
the model parameters. Random delays in computation
(referred to as straggling) are common in today’s dis-
tributed systems [Dean and Barroso, 2013]. Waiting for
slow and straggling learners can diminish the speed-up
offered by parallelizing the training.

Gradient Staleness. To alleviate the problem of
stragglers, SGD can be run in an asynchronous man-
ner, where the central parameters are updated without
waiting for all learners. However, learners may return
stale gradients that were evaluated at an older version
of the model, and this can make the algorithm unstable.

The key contributions of this work are listed below.

1. Most SGD algorithms optimize the trade-off be-
tween training error, and the number of iterations
or epochs. However, the wallclock time per iteration
is a random variable that depends on the gradient
aggregation algorithm. We present the first rigor-
ous analysis of the trade-off between error and the
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actual runtime (instead of iterations). This analysis
is then used to compare different SGD variants such
as K-sync SGD, K-async SGD and K-batch-async
SGD, as illustrated in Figure 1.

2. We present a new convergence analysis of asyn-
chronous SGD and its variants, where we relax sev-
eral commonly made assumptions such as bounded
delays and gradients, exponential service times, and
independence of the staleness process.

3. We propose a novel learning rate schedule to com-
pensate for gradient staleness, and improve the sta-
bility and convergence of asynchronous SGD, while
preserving its fast runtime.

1.1 RELATED WORKS

Single Node SGD: Analysis of gradient descent dates
back to classical works [Boyd and Vandenberghe, 2004]
in the optimization community. The problem of interest
is the minimization of empirical risk of the form:

min
w

{
F (w)

def
=

1

N

N∑
n=1

f(w, ξn)

}
. (1)

Here, ξn denotes the n−th data point and its label
where n = 1, 2, . . . , N , and f(w, ξn) denotes the com-
posite loss function. Gradient descent is a way to
iteratively minimize this objective function by updat-
ing the parameter w in the opposite direction of the
gradient of F (w) at every iteration, as given by:

wj+1 = wj − η∇F (wj) = wj −
η

N

N∑
n=1

∇f(wj , ξn).

The computation of
∑N
n=1∇f(wj , ξn) over the entire

dataset is expensive. Thus, stochastic gradient de-
scent [Robbins and Monro, 1951] with mini-batching is
generally used in practice, where the gradient is evalu-
ated over small, randomly chosen subsets of the data.
Smaller mini-batches result in higher variance of the
gradients, which affects convergence and error floor
[Bottou et al., 2016, Dekel et al., 2012, Li et al., 2014].
Algorithms such as AdaGrad [Duchi et al., 2011] and
Adam [Kingma and Ba, 2015] gradually reduce learning
rate to achieve a lower error floor. Another class of
algorithms includes stochastic variation reduction tech-
niques that include SVRG [Johnson and Zhang, 2013],
SAGA [Roux et al., 2012] and their variants listed
out in [Nguyen et al., 2017]. For a detailed survey of
different SGD variants, refer to [Ruder, 2016].

Synchronous SGD and Stragglers: To process
large datasets, SGD is parallelized across multiple learn-
ers with a central PS. Each learner processes one mini-
batch, and the PS aggregates all the gradients. The

convergence of synchronous SGD is same as mini-batch
SGD, with a P -fold larger mini-batch, where P is the
number of learners. However, the time per iteration
grows with the number of learners, because some strag-
gling learners that slow down randomly [Dean and
Barroso, 2013]. Thus, it is important to juxtapose
the error reduction per iteration with the runtime per
iteration to understand the true convergence speed of
distributed SGD.

To deal with stragglers and speed up machine learning,
system designers have proposed several straggler miti-
gation techniques such as [Harlap et al., 2016] that try
to detect and avoid stragglers. An alternate direction
of work is to use redundancy techniques as proposed in
[Dutta et al., 2016, Lee et al., 2017, Tandon et al., 2017,
Wang et al., 2015] to ignore the stragglers altogether.

Asynchronous SGD and Staleness: A complemen-
tary approach to deal with the issue of straggling is
to use asynchronous SGD. In asynchronous SGD, any
learner can evaluate the gradient and update the cen-
tral PS without waiting for the other learners. Asyn-
chronous variants of existing SGD algorithms have
also been proposed and implemented in systems [Cipar
et al., 2013, Dean et al., 2012, Gupta et al., 2016].

In general, analyzing the convergence of asynchronous
SGD with the number of iterations is difficult in it-
self because of the randomness of gradient staleness.
There are only a few pioneering works such as [Chat-
urapruek et al., 2015, Lian et al., 2015, Mania et al.,
2017, Mitliagkas et al., 2016, Recht et al., 2011, Tsit-
siklis et al., 1986] in this direction. In [Tsitsiklis et al.,
1986], a fully decentralized analysis was proposed that
considers no central PS. In [Recht et al., 2011], a new
asynchronous algorithm called Hogwild was proposed
and analyzed under bounded gradient assumption that
has been followed upon by several works such as [Lian
et al., 2015, Mania et al., 2017]. In Hogwild, every
learner only updates a part of the central parame-
ter vector w and is thus essentially different in spirit
from conventional asynchronous SGD [Lian et al., 2015]
where every learner operates on the entire w.

1.2 OUR CONTRIBUTIONS

Existing machine learning algorithms mostly try to
optimize the trade-off of error with the number of itera-
tions, epochs or “work complexity” [Bottou et al., 2016].
Time to complete a task has traditionally been calcu-
lated in terms of work complexity measures [Sedgewick
and Wayne, 2011], where the time taken to complete a
task is a deterministic function of the size of the task
(number of operations). However, due to straggling
and synchronization bottle-necks in the system, the
same task can often take different time to compute
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across different learners or iterations. To the best of
our knowledge, the theoretical trade-off of error with
runtime modelling runtimes as random variables has
not been studied. We bring statistical perspective to
the traditional work complexity analysis that incor-
porates the randomness introduced due to straggling.
In this paper, we provide a systematic approach to
analyze the error with runtime for both synchronous
and asynchronous SGD, and some variants like K-sync,
K-batch-sync, K-async and K-batch-async SGD.

We also propose a new error convergence analysis for
Async and K-async SGD that holds for strongly con-
vex objectives and can also be extended to non-convex
formulations. In this analysis we relax the bounded
delay assumption in [Chaturapruek et al., 2015, Lian
et al., 2015] and the bounded gradient assumption in
[Recht et al., 2011]. We also remove the assumption of
exponential computation time and the staleness process
being independent of the parameter values [Mitliagkas
et al., 2016] as we will elaborate in Section 3.2. Inter-
estingly, our analysis also brings out the regimes where
asynchrony can be better or worse than synchrony in
terms of speed of convergence. Further, we propose a
new learning rate schedule to compensate for staleness,
and stabilize asynchronous SGD.

The rest of the paper is organized as follows. Section 2
describes our problem formulation introducing the sys-
tem model and assumptions. Section 3 provides the
main results of the paper – analytical characterization
of runtime, new convergence analysis for Async and
K-async SGD and the proposed learning rate schedule
to compensate for staleness. The analysis of runtime
is elaborated further in Section 4. Proofs and detailed
discussions are presented in the Supplement.

2 PROBLEM FORMULATION

Our objective is to minimize the risk function of the
parameter vector w as mentioned in (1) given N train-
ing samples. Let S denote the total set of N training
samples, i.e., a collection of some data points with their
corresponding labels or values. We use the notation ξ
to denote a random seed ∈ S which consists of either
a single data and its label or a single mini-batch (m
samples) of data and their labels.

2.1 SYSTEM MODEL

We assume that there is a central parameter server
(PS) with P parallel learners as shown in Figure 2.
The learners fetch the current parameter vector wj

from the PS as and when instructed in the algorithm.
Then they compute gradients using one mini-batch
and push their gradients back to the PS as and when

Learner 1

Parameter Server
w’ = w – η�f(w)

Learner 2 Learner 3

w �f(w)

w0 = w � ⌘rF (w)

rF (w)

Figure 2: Parameter Server Model

instructed in the algorithm. At each iteration, the
PS aggregates the gradients computed by the learners
and updates the parameter w. Based on how these
gradients are fetched and aggregated, we have different
variants of synchronous or asynchronous SGD.

The time taken by a learner to compute gradient of
one mini-batch is denoted by random variable Xi for
i = 1, 2, . . . , P . We assume that the Xis are i.i.d. across
mini-batches and learners.

2.2 PERFORMANCE METRICS

There are two metrics of interest: Runtime and Error

Definition 1 (Runtime). The runtime of J iterations
is the expected time to perform a total of J iterations.

Definition 2 (Error). The Error after j iterations is
defined as E [F (wj)− F ∗], the expected gap of the risk
function from its optimal value.

Our aim is to determine the trade-off between the
error (measures the accuracy of the algorithm) and the
runtime for the different SGD variants.

2.3 VARIANTS OF SGD

We now describe the SGD variants considered in this
paper. Please refer to Figure 3 and Figure 4 for a
pictorial illustration.

L1 

L2 

L3 

PS 

w0 w1 w2 

L1 

L2 

L3 

PS 

w0 w1 w2 

Fully Sync-SGD K-sync SGD 

L1 

L2 

L3 

PS 

K-batch-sync SGD 
w0 w1 w2 

Figure 3: For K = 2 and P = 3, we illustrate the
K-sync and K-batch-sync SGD in comparison with
fully synchronous SGD. Lightly shaded arrows indicate
straggling gradient computations that are cancelled.

K-sync SGD: This is a generalized form of syn-
chronous SGD, also suggested in [Chen et al., 2016,
Gupta et al., 2016] to offer some resilience to straggling
as the PS does not wait for all the learners to finish.
The PS only waits for the first K out of P learners to
push their gradients. Once it receives K gradients, it
updates wj and cancels the remaining learners. The
updated parameter vector wj+1 is sent to all P learners
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L2 
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PS 
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Figure 4: For K = 2 and P = 3, we illustrate the
K-async and K-batch-async algorithms in comparison
with fully asynchronous SGD.

for the next iteration. The update rule is given by:

wj+1 = wj −
η

K

K∑
l=1

g(wj , ξl,j). (2)

Here ξl,j denotes the mini-batch of m samples used by
the l-th learner at the j-th iteration and g(wj , ξl,j) =
1
m

∑
ξ∈ξl,j ∇f(wj , ξ) denotes the average gradient of

the loss function evaluated over the mini-batch ξl,j of
size m. For K = P , the algorithm is exactly equivalent
to a fully synchronous SGD with P learners.

K-batch-sync: In K-batch-sync, all the P learners
start computing gradients with the samewj . Whenever
any learner finishes, it pushes its update to the PS and
evaluates the gradient on the next mini-batch at the
same wj . The PS updates using the first K mini-
batches that finish and cancels the remaining learners.
Theoretically, the update rule is still the same as (2)
but here l now denotes the index of the mini-batch
instead of the learner. However K-batch-sync will offer
advantages over K-sync in runtime as no learner is idle.

K-async SGD: This is a generalized version of asyn-
chronous SGD, also suggested in [Gupta et al., 2016].
In K-async SGD, all the P learners compute their re-
spective gradients on a single mini-batch. The PS waits
for the first K out of P that finish first, but it does not
cancel the remaining learners. As a result, for every
update the gradients returned by each learner might
be computed at a stale or older value of the parameter
w. The update rule is thus given by:

wj+1 = wj −
η

K

K∑
l=1

g(wτ(l,j), ξl,j). (3)

Here ξl,j is one mini-batch of m samples used by
the l-th learner at the j-th iteration and τ(l, j) de-
notes the iteration index when the l-th learner last
read from the central PS where τ(l, j) ≤ j. Also,
g(wτ(l,j), ξl,j) = 1

m

∑
ξ∈ξl,j ∇f(wτ(l,j), ξl,j) is the av-

erage gradient of the loss function evaluated over the
mini-batch ξl,j based on the stale value of the parameter
wτ(l,j). For K = 1, the algorithm is exactly equivalent
to fully asynchronous SGD, and the update rule can
be simplified as:

wj+1 = wj − ηg(wτ(j), ξj). (4)

Here ξj denotes the set of samples used by the learner
that updates at the j-th iteration such that |ξj | =
m and τ(l, j) denotes the iteration index when that
particular learner last read from the central PS. Note
that τ(j) ≤ j.
K-batch-async: Observe in Figure 4 that K-async
also suffers from some learners being idle while others
are still working on their gradients until any K finish.
In K-batch-async (proposed in [Lian et al., 2015]), the
PS waits for K mini-batches before updating itself
but irrespective of which learner they come from. So
wherever any learner finishes, it pushes its gradient
to the PS, fetches current parameter at PS and starts
computing gradient on the next mini-batch based on
the current value of the PS. Surprisingly, the update
rule is again similar to (3) theoretically except that now
l denotes the indices of the K mini-batches that finish
first instead of the learners and wτ(l,j) denotes the
version of the parameter when the learner computing
the l−th mini-batch last read from the PS. While the
error convergence of K-batch-async is similar to K-
async, it reduces runtime as no learner is idle.

2.4 ASSUMPTIONS

Closely following [Bottou et al., 2016], we also make
the following assumptions:

1. F (w) is an L− smooth function. Thus,

||∇F (w1)−∇F (w2)||2 ≤ L||w1 −w2||2. (5)

2. F (w) is strongly convex with parameter c. Thus,

2c(F (w)− F ∗) ≤ ||∇F (w)||22 ∀ w. (6)

Refer to supplement for discussion on strong con-
vexity and extension to non-convex objectives.

3. The stochastic gradient is an unbiased estimate of
the true gradient:

Eξj |wk [g(wk, ξj)] = ∇F (wk) ∀ k ≤ j. (7)

Observe that this is slightly different from the as-
sumption stated in [Bottou et al., 2016] which says
Eξj [g(w, ξj)] = ∇F (w) for all w. Observe that all
wj for j > k is actually not independent of the data
ξj . We thus make the assumption more rigorous
by conditioning on wk for k ≤ j. Our requirement
k ≤ j means that wk is the value of the parameter
at the PS before the data ξj was accessed and can
thus be assumed to be independent of the data ξj .

4. Similar to the previous assumption, we also assume
that the variance of the stochastic update given wk
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Table 1: List of Notations

Mini-batch Size m
Total Iterations J
Number of learners (Processors) P
Number of learners to wait for K
Learning rate η
Lipschitz Constant L
Strong-convexity parameter c
Runtime of a learner for one mini-batch Xi

Total runtime T

at iteration k before the data point was accessed is
also bounded as follows:

Eξj |wk
[
||g(wk, ξj)−∇F (wk)||22

]
≤ σ2

m
+
MG

m
||∇F (wk)||22 ∀ k ≤ j. (8)

3 MAIN RESULTS

3.1 RUNTIME ANALYSIS

We compare the theoretical wall clock runtime of the
different SGD variants to illustrate the speed-up of-
fered by different asynchronous and batch variants. A
detailed discussion is provided in Section 4.

Theorem 1. Let the wall clock time of each learner to
process a single mini-batch be i.i.d. random variables
X1, X2, . . . , XP . Then the ratio of the expected time of
synchronous to asynchronous SGD is

E [TSync]

E [TAsync]
= P

E [XP :P ]

E [X]

where X(P :P ) is the P th order statistic of P i.i.d. ran-
dom variables X1, X2, . . . , XP .

This is the first result that analytically characterizes
the speed-up offered by asynchronous SGD. To prove
this result, we use ideas from renewal theory as we
discuss in Section 4. In the following corollary, we high-
light this speed-up for the special case of exponential
computation time.

Corollary 1. Let the wall clock time of each learner to
process a single mini-batch be i.i.d. exponential random
variables X1, X2, . . . , XP ∼ exp(µ). Then the ratio of
the expected time of synchronous to asynchronous is
approximately given by P logP .

Thus, the speed-up scales with P and can diverge to
infinity for large P . We illustrate the speed-up for
different distributions in Figure 5.

Figure 5: Plot of the speed-up using asynchronous
over synchronous: log

E[TSync]
E[TAsync]

with P for different
distributions - exp(1), 1 + exp(1) and Pareto(2, 1).

Processors to wait for (K)
0 5 10 15 20

E
[T

]

102

103

104

105
K-sync
K-async
K-batch-async

Processors to wait for(K)
0 5 10 15 20

E
[T

]

102

103

104

105
K-sync
K-async
K-batch-async

Figure 6: Plot of runtime E [T ] for 2000 iterations:
(Left) Pareto distribution Pareto(2, 1) and (Right)
Shifted exponential distribution 1 + exp(1).

The next result illustrates the advantages offered by
K-batch-sync and async over their corresponding coun-
terparts K-sync and K-async respectively.

Theorem 2. Let the wall clock time of each learner to
process a single mini-batch be i.i.d. exponential random
variables X1, X2, . . . , XP ∼ exp(µ). Then the ratio of
the expected time of K-async (or sync) SGD to K-
batch-async (or sync) SGD is given by

E [TK−async]
E [TK−batch−async]

=
PE [XK:P ]

KE [X]
≈
P log P

P−K
K

where XK:P is the Kth order statistic of i.i.d. random
variables X1, X2, . . . , XP .

To prove this, we derive an exact expression for the
runtime of K-batch-async SGD, for any given distri-
bution X, not necessarily exponential. The runtime is
given by JKE[X]

P as we derive in Section 4 (Lemma 4)
using ideas from renewal theory.

Theorem 2 shows that as K
P increases, the speed-up

using K-batch-async increases and can be upto logP
times higher. For non-exponential distributions, we
simulate the behaviour of E [T ] in Figure 6 for K-sync,
K-async and K-batch-async respectively for Pareto
and Shifted Exponential.
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3.2 ERROR ANALYSIS UNDER FIXED
LEARNING RATE

Theorem 3 below gives a convergence analysis of K-
async SGD for fixed η, relaxing the following assump-
tions in existing literature.

• [Mitliagkas et al., 2016] assumes that Xi’s are ex-
ponentially distributed. Our analysis holds for any
general service time Xi.

• [Mitliagkas et al., 2016] also assumes that the stale-
ness process is independent of w. While this assump-
tion simplifies the analysis greatly, it is not true in
practice. For instance, for a two learner case, the pa-
rameter w2 after 2 iterations depends on whether the
update from w1 to w2 was based on a stale gradient
at w0 or the current gradient at w1, depending on
which learner finished first. In this work, we remove
this independence assumption.

• Instead of the bounded delay assumption in [Lian
et al., 2015], we use a general staleness bound
E
[
||∇F (wj)−∇F (wτ(l,j))||22

]
≤ γE

[
||∇F (wj)||22

]
,

which allows for large, but rare delays.

• In [Recht et al., 2011], the norm of the gradient is
assumed to be bounded. However, if we assume that
||∇F (w)||22 ≤ M for some constant M , then using
(6) we obtain ||w − w∗||22 ≤ 2

c (F (w) − F ∗) ≤ M
c2

implying that w itself is bounded which is a very
strong and restrictive assumption, that we relax in
this result.

Theorem 3. Suppose the objective F (w) is c-
strongly convex and the learning rate η ≤ 1

2L(
MG
Km+ 1

K )
.

Also assume that E
[
||∇F (wj)−∇F (wτ(l,j))||22

]
≤

γE
[
||∇F (wj)||22

]
, for some γ ≤ 1. Then, the error

of K-async SGD after J iterations is,

E [F (wJ)]− F ∗ ≤ ηLσ2

2cγ′Km
+

(1− ηcγ′)J(E [F (w0)]− F ∗ − ηLσ2

2cγ′Km
) (9)

where γ′ = 1− γ + p0
2 and p0 is a lower bound on the

conditional probability that τ(l, j) = j, given all the
past delays and parameters.

Here, γ is a measure of staleness of the gradients re-
turned by learners; smaller γ indicates a less staleness.

We use the following lemma to prove Theorem 3. The
proof is given in the Supplement.

Lemma 1. Suppose that p(l,j)
0 is the conditional prob-

ability that τ(l, j) = j given all the past delays and all
the previous w, and p0 ≤ p(j)

0 for all j. Then,

E
[
||∇F (wτ(l,j))||22

]
≥ p0E

[
||∇F (wj)||22

]
. (10)

Synchronous 

Asynchronous 

Time 

Lo
g 

lo
ss

 

Figure 7: Theoretical error-runtime trade-off for Sync
and Async-SGD with same η. Async-SGD has faster
decay with time but a higher error floor.

Proof. By the law of total expectation,

E
[
||∇F (wτ(l,j))||22

]
= p

(l,j)
0 E

[
||∇F (wτ(l,j))||22|τ(j) = j

]
+ (1− p(l,j)

0 )E
[
||∇F (wτ(l,j))||22|τ(j) 6= j

]
≥ p0E

[
||∇F (wj)||22

]
.

For the exponential distribution, p0 is invariant of j and
is equal to 1

P as we discuss in Supplement. Thus, p0

can be taken as 1
P . For non-exponential distributions,

it is a constant in [0, 1]. For some special classes of
distributions like new-longer-than-used Definition 3
(new-shorter-than-used) we can show that p0 lies in
[0, 1

P ] ([ 1
P , 1]) respectively as discussed in Supplement.

For K-batch-async, the update rule is same as K-async
except that the index l denotes the index of the mini-
batch. Thus, the error analysis will be exactly similar.
Our analysis can also be extended to non-convex F (w)
as we show in the Supplement.

Now let us compare with K-sync SGD. We observe
that the analysis of K-sync SGD is same as serial SGD
with mini-batch size Km. Thus,
Lemma 2 (Error of K-sync). [Bottou et al., 2016]
Suppose that the objective F (w) is c-strongly convex
and learning rate η ≤ 1

2L(
MG
Km+1)

. Then, the error after

J iterations of K-sync SGD is

E [F (wJ)− F ∗] ≤ ηLσ2

2c(Km)
+

(1− ηc)J
(
F (w0)− F ∗ − ηLσ2

2c(Km)

)
.

Can stale gradients win the race? For the same η,
observe that the error given by Theorem 3 decays at the
rate (1− ηc(1−γ+ p0

2 )) for K-async or K-batch-async
SGD while for K-sync, the decay rate with number of
iterations is (1− ηc). Thus, depending on the values
of γ and p0, the decay rate of K-async or K-batch-
async SGD can be faster or slower than K-sync SGD.
The decay rate of K-async or K-batch-async SGD is
faster if p0

2 > γ. As an example, one might consider
an exponential or new-shorter-than-used service time
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Figure 8: Error-runtime trade-off comparison of dif-
ferent SGD variants for logistic regression on MNIST,
with Xi ∼ exp(1), P = 8, K = 4, η = 0.01 and
m = 1. K-batch-async gives intermediate performance,
between Async and sync-SGD.

where p0 ≥ 1
P and γ can be made smaller by increasing

K. It might be noted that asynchronous SGD can still
be faster than synchronous SGD with respect to wall
clock time even if its decay rate with respect to number
of iterations is lower as every iteration is much faster
in asynchronous SGD (Roughly P logP times faster
for exponential service times).

The maximum allowable learning rate for syn-
chronous SGD is max{ 1

c ,
1

2L(
MG
Pm+1)

} which can be

much higher than that for asynchronous SGD,i.e.,
max{ 1

c(1−γ+
p0
2 )
, 1

2L(
MG
m +1)

}. Similarly the error-floor

for synchronous is ηLσ2

2cPm as compared to asynchronous
whose error floor is ηLσ2

2c(1−γ+
p0
2 )m

.

In Figure 7, we compare the theoretical trade-offs be-
tween synchronous (K = P in Lemma 2) and asyn-
chronous SGD (K = 1 in Theorem 3). Async-SGD
converges very quickly, but to a higher floor. Figure 8
shows the same comparison on the MNIST dataset,
along with K-batch-async SGD.

3.3 VARIABLE LEARNING RATE FOR
STALENESS COMPENSATION

The staleness of the gradient is random, and can vary
across iterations. Intuitively, if the gradient is less stale,
we want to weigh it more while updating the parameter
w, and if it is more stale we want to scale down its
contribution to the update. With this motivation, we
propose the following condition on the learning rate at
different iterations.

ηjE
[
||wj −wτ(j)||22

]
≤ C (11)

for a constant C. This condition is also inspired from
our error analysis in Theorem 3, because it helps re-
move the assumption E

[
||∇F (wj)−∇F (wτ(j))||22

]
≤

γE
[
||∇F (wj)||22

]
. Using (11), we obtain the following

convergence result.
Theorem 4. Suppose the learning rate in the j-th itera-
tion ηj ≤ 1/2L(MG

m +1), and ηjE
[
||wj −wτ(j)||22

]
≤ C
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Figure 9: Async-SGD on CIFAR10 dataset, with X ∼
exp 20 and P = 40 learners. We compare fixed η = 0.01,
and the variable schedule given in (13) for ηmax =
0.01 and C = 0.005ηmax. Observe that the proposed
schedule can give fast convergence, and also maintain
stability, while the fixed η algorithm becomes unstable.

for some constant C. Then, we have

E [F (wJ)]− F ∗ ≤ ∆ + (E [F (w0)]− F ∗)
J∏
j=1

(1− ρj)

where ρj = ηj(1 + p0
2 )c, and the error floor ∆ = ∆J +

(1 − ρJ)∆J−1 + · · · + ∏J
j=1(1 − ρj)∆0, where ∆j =

η2jLσ
2

2m + CL2

2 .

The proof is provided in the Supplement. In our
analysis of Asynchronous SGD, we observe that the
term η

2E
[
||∇F (wj)−∇F (wτ(j))||22

]
is the most dif-

ficult to bound. For fixed learning rate, we had as-
sumed that E

[
||∇F (wj)−∇F (wτ(j))||22

]
is bounded

by γ||∇F (wj)||22. However, if we impose the condition
(11) on η, we do not require this assumption. Our
proposed condition actually provides a bound for the
staleness term as follows:

ηj
2
E
[
||∇F (wj)−∇F (wτ(j))||22

]
≤ ηjL

2

2
E
[
||wj −wτ(j)||22

]
≤ CL2

2
. (12)

Proposed Algorithmic Modification Inspired by
this analysis, we propose the learning rate schedule,

ηj = min

{
C

||wj −wτ(j)||22
, ηmax

}
, (13)

where ηmax is a suitably large ceiling on learning rate.
It ensures stability when the first term in (13) becomes
large due to the staleness ||wj −wτ(j)||2 being small.
The C is chosen of the same order as the desired error
floor. To implement this schedule, the PS needs to
store the last read model parameters for every learner.
In Figure 9 we illustrate how this schedule can stabilize
asynchronous SGD.

4 RUNTIME ANALYSIS

In this section, we provide our analysis of the runtime
of different variants of SGD. These lemmas are used in
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the proofs of Theorem 1 and Theorem 2.

4.1 RUNTIME OF K-SYNC SGD

Lemma 3 (Runtime of K-sync SGD). The expected
time taken by K-sync SGD to complete J iterations is,

E [T ] = JE [XK:P ] (14)

where XK:P is the Kth order statistic of P i.i.d. random
variables X1, X2, . . . , XP .

Comment: For Xi ∼ exp(µ), the runtime for J iter-

ations is E [T ] = J
µ

∑P
i=P−K+1

1
i ≈ J

µ

( log P
P−K
µ

)
[Shel-

don, 2002]. Refer to supplement for justifications.

The runtime of K-batch-sync SGD is not tractable in
general, but for Xi ∼ exp(µ), the time per iteration is
distributed as Erlang(K,Pµ). Thus, E [T ] = J K

Pµ .

4.2 RUNTIME OF K-BATCH-ASYNC SGD

Lemma 4 (Runtime of K-batch-async SGD). The
expected time taken by K-batch-async SGD for J itera-
tions is given by:

E [T ] = J
KE [X]

P
. (15)

To prove the result we use ideas from renewal theory.
Refer to Supplement for discussion.

Proof of Lemma 4. For the i-th learner, let {Ni(t), t >
0} be the number of times the i-th learner pushes its
gradient to the PS over in time t. The time between two
pushes is an independent realization of Xi. Thus, the
inter-arrival times X(1)

i , X
(2)
i , . . . are i.i.d. with mean

inter-arrival time E [Xi]. Using the elementary renewal
theorem [Gallager, 2013, Chapter 5] we have,

lim
t→∞

E [Ni(t)]

t
=

1

E [Xi]
. (16)

Thus, the rate of gradient pushes by the i-th learner is
1/E [Xi]. As there are P learners, the rate of gradient
pushes to the PS is

lim
t→∞

P∑
i=1

E [Ni(t)]

t
=

P∑
i=1

1

E [Xi]
=

P

E [X]
. (17)

Every K pushes are one iteration. Thus, the time to
complete J iterations or effectively JK pushes is given
by E [T ] = JKE[X]

P .

For K = 1, K-batch-async reduces to asynchronous
SGD, and its runtime E [T ] = J E[X]

P .

Proof of Theorem 1. By taking the ratio of the run-
times in Lemma 3 with K = P and Lemma 4 with
K = 1, we get the result in Theorem 1.

Corollary 1 also follows by substituting in Theorem 1
that for Xi ∼ exp(µ), E [XP :P ] =

∑P
i=1

1
iµ ≈

logP
µ .

4.3 RUNTIME OF K-ASYNC SGD

The runtime of K-async SGD is not tractable for non-
exponential Xi, but we obtain an upper bound on it for
“new-longer-than-used” distributions, defined below.
Definition 3 (New-longer-than-used). A random vari-
able is said to have a new-longer-than-used distribution
if the following holds for all t, u ≥ 0:

Pr(U > u+ t|U > t) ≤ Pr(U > u)

Most of the continuous distributions we encounter like
normal, exponential, gamma, beta are new-longer-than-
used. Alternately, the hyper exponential distribution is
new-shorter-than-used and it satisfies Pr(U > u+t|U >
t) ≥ Pr(U > u) for all t, u ≥ 0.
Lemma 5 (Runtime of K-async SGD). Suppose that
each Xi has a new longer than used distribution. Then,
the expected time taken to complete J iterations by
K-async is upper-bounded as

E [T ] ≤ JE [XK:P ] (18)

where XK:P is the Kth order statistic of P i.i.d. random
variables X1, X2, . . . , XP .

Proof of Theorem 2. For the exponential Xi, equality
holds in (18) in Lemma 5, as we justify in the Supple-
ment. The expectation can be derived as E [XK:P ] =∑P
i=P−K+1

1
iµ ≈

log (P/P−K)
µ . And for exponential

computation times, the runtime of K-batch-async is
given by E [T ] = J KE[X]

P = J K
µP from Lemma 4.

5 CONCLUSIONS

The speed of distributed SGD depends on the error
reduction per iteration, as well as the runtime per itera-
tion. To the best of our knowledge, this paper presents
the first runtime analysis of synchronous and asyn-
chronous SGD, and their variants. When juxtaposed
with the error analysis, we get error-runtime trade-offs
that can be used to compare different SGD algorithms.
We also give a new analysis of asynchronous SGD by
relaxing some commonly made assumptions, and a
novel learning rate schedule to compensate for gradient
staleness. In the future we plan to explore methods to
gradually increase synchrony, so that we can achieve
fast convergence as well as low error floor.
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6 STRONG CONVEXITY
DISCUSSION

Definition 4 (Strong-Convexity). A function h(u) is
defined to be c-strongly convex, if the following holds
for all u1 and u2 in the domain:

h(u2) ≥ h(u1) + [∇h(u1)]T (u2 − u1) +
c

2
||u2 − u1||22

For strongly convex functions, the following result holds
for all u in the domain of h(.).

2c(h(u)− h∗) ≤ ||∇h(u)||22 (19)

The proof is derived in [Bottou et al., 2016]. For com-
pleteness, we give the sketch here.

Proof. Given a particular u, let us define the quadratic
function as follows:

q(u′) = h(u) +∇h(u)T (u′ − u) +
c

2
||u′ − u||22

Now, q(u′) is minimized at u′ = u− 1
c∇h(u) and the

value is h(u)− 1
2c ||∇h(u)||22. Thus, from the definition

of strong convexity we now have,

h∗ ≥ h(u) +∇h(u)T (u′ − u) +
c

2
||u′ − u||22

≥ h(u)− 1

2c
||∇h(u)||22 [minimum value of q(u′)]

7 RUNTIME ANALYSIS PROOFS

Here we provide proofs for all results in Section 4.

7.1 Runtime of K-sync SGD

Proof of Lemma 3. We assume that the P learners
have an i.i.d. computation times. When all the learners

start together, and we wait for the first K out of P
i.i.d. random variables to finish, the expected compu-
tation time for that iteration is E [XK:P ], where XK:P

denotes the K-th statistic of P i.i.d. random variables
X1, X2, . . . , XP . Thus, for J iterations, the runtime is
given by JE [XK:P ].

K-th statistic of exponential distributions Here
we give a sketch of why the K-th order statistic of P
exponentials scales as log(P/P −K). A detailed deriva-
tion can be obtained in [Sheldon, 2002]. Consider P
i.i.d. exponential distributions with parameter µ. The
minimum X1:P of P independent exponential random
variables with parameter µ is exponential with parame-
ter Pµ. Conditional on X1:P , the second smallest value
X2:P is distributed like the sum of X1:P and an inde-
pendent exponential random variable with parameter
(P − 1)µ. And so on, until the K-th smallest value
XK:P which is distributed like the sum of X(K−1):P

and an independent exponential random variable with
parameter (P −K + 1)µ. Thus,

XK:P = YP + YP−1 + · · ·+ YP−K+1

where the random variables Yis are independent and
exponential with parameter iµ. Thus,

E [XK:P ] =

P∑
i=P−K+1

1

iµ
=
HP −HP−K

µ
≈

log P
P−K
µ

.

Here HP and HP−K denote the P -th and (P −K)-th
harmonic numbers respectively.

For the case where K = P , the expectation is given by,

E [XP :P ] =
1

µ

P∑
i=1

1

i
=

1

µ
HP ≈

1

µ
logP.

7.2 Runtime of K-batch-async SGD

The proof of Lemma 4, which gives the runtime of
K-batch-async SGD is already provided in the main
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paper in Section 4 using ideas from renewal theory.
Here we include a discussion on renewal processes for
completeness.

Definition 5 (Renewal Process). A renewal process
is an arrival process where the inter-arrival intervals
are positive, independent and identically distributed
random variables.

Lemma 6 (Elementary Renewal Theorem). [Gallager,
2013, Chapter 5] Let {N(t), t > 0} be a renewal count-
ing process denoting the number of renewals in time t.
Let E [Z] be the mean inter-arrival time. Then,

lim
t→∞

E [N(t)]

t
=

1

E [Z]
(20)

Observe that for asynchronous SGD or K-batch-async
SGD, every gradient push by a learner to the PS can be
thought of as an arrival process. The time between two
consecutive pushes by a learner follows the distribution
of Xi and is independent as computation time has been
assumed to be independent across learners and mini-
batches. Thus the inter-arrival intervals are positive,
independent and identically distributed and hence, the
gradient pushes are a renewal process.

7.3 Runtime of K-async SGD

Proof of Lemma 5. For new-longer-than-used distribu-
tions observe that the following holds:

Pr(Xi > u+ t|Xi > t) ≤ Pr(Xi > u) (21)

Thus the random variable Xi− t|Xi > t is thus stochas-
tically dominated by Xi. Now let us assume we want
to compute the expected computation time of one it-
eration of K-async starting at time instant t0. Let us
also assume that the learners last read their parameter
values at time instants t1, t2, . . . tP respectively where
any K of these t1, t2, . . . tP are equal to t0 as K out of
P learners were updated at time t0 and the remaining
(P−K) of these t1, t2, . . . tP are < t0. Let Y1, Y2, . . . YP
be the random variables denoting the computation time
of the P learners starting from time t0. Thus,

Yi = Xi−(t0−ti)|Xi > (t0−ti) ∀ i = 1, 2, . . . , P (22)

Now each of the Yi s are independent and are stochas-
tically dominated by Xi s.

Pr(Yi > u) ≤ Pr(Xi > u) ∀ i, j = 1, 2, . . . , P (23)

The expectation of the K-th statistic of
{Y1, Y2, . . . , YP } is the runtime of the iteration.
Let us denote hK(x1, x2, . . . , xP ) as the K-th statistic

of P numbers (x1, x2, . . . , xP ). And let us us denote
gK,s(x) as the K-th statistic of P numbers where
P −1 of them are given as s1×(P−1) and x is the P−th
number. Thus

gK,s(x) = hK(x, s(1), s(2), . . . , s(P − 1))

First observe that gK,s(x) is an increasing function of
x since given the other P − 1 values, the K-th order
statistic will either stay the same or increase with x.
Now we use the property that if Yi is stochastically
dominated by Xi, then for any increasing function g(.),
we have

EY1 [g(Y1)] ≤ EX1 [g(X1)] .

This result is derived in [Kreps, 1990] .

This implies that for a given s,

EY1
[gK,s(Y1)] ≤ EX1

[gK,s(X1)]

This leads to,

EY1|Y2=s(1),Y3=s(2)...YP=s(P−1) [hK(Y1, Y2, . . . YP )]

≤ EX1|Y2=s(1),Y3=s(2)...YP=s(P−1) [hK(X1, Y2, . . . YP )]
(24)

From this,

E [hK(Y1, Y2, . . . YP )]

= EY2,...,YP

[
EY1|Y2,Y3...YP [hK(Y1, Y2, . . . YP )]

]
≤ EY2,...,YP

[
EX1|Y2,Y3...YP [hK(X1, Y2, . . . YP )]

]
= E [hK(X1, Y2, . . . YP )] (25)

This step proceeds inductively. Thus, similarly

E [hK(X1, Y2, . . . YP )]

= EX1,Y3,...,YP

[
EY2|X1,Y3...YP [hK(X1, Y2, . . . YP )]

]
≤ EX1,Y3,...,YP

[
EX2|X1,Y3...YP [hK(X1, X2, Y3, . . . YP )]

]
= E [hK(X1, X2, Y3 . . . YP )] (26)

Thus, finally combining, we have,

E [hK(Y1, Y2, . . . YP )]

≤ E [hK(X1, Y2, . . . YP )]

≤ E [hK(X1, X2, Y3 . . . YP )] ≤ . . .
≤ E [hK(X1, X2, X3 . . . XP )] (27)

Exponential Computation time: For exponential
distributions, the inequality in Lemma 5 holds with
equality. This follows from the memoryless property of
exponentials. Let us consider the scenario of the proof
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of Lemma 5 where we similarly define Yi = Xi − (t0 −
ti)|Xi > (t0 − ti). From the memoryless property of
exponentials [Sheldon, 2002], if Xi ∼ exp(µ), then Yi ∼
exp(µ). Thus, the expectation of the K-th statistic
of Yis can be easily derived as all the Yis are now
i.i.d. with distribution exp(µ). Thus, the runtime for
J iterations is given by,

E [T ] = JE [YK:P ] =
J

µ

P∑
i=P−K+1

1

i
≈ J

µ
log

P

P −K .

Comparison of K-async and K-batch-async
SGD: We compare the error runtime trade-off of K-
async with K-batch-async SGD in Figure 10 as follows.
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K-batch-async 

K-async 

Figure 10: Accuracy Runtime Trade-off on MNIST
Dataset: Comparison of K-async with K-batch-async
under exponential computation time with Xi ∼ exp(1).
As derived theoretically, the K-batch-async has a
sharper fall with time as compared to K-async even
though the error attained is similar.

8 ASYNC-SGD ANALYSIS PROOFS

8.1 Async-SGD with Fixed learning rate

In this section, we provide a proof of the error conver-
gence of asynchronous SGD. While this is actually a
corollary of the more general Theorem 3, we prove this
first for the ease of understanding and simplicity as
compared to Theorem 3.
Corollary 2. Suppose that the objective function
F (w) is strongly convex with parameter c and the
learning rate η ≤ 1

2L(
MG
m +1)

. Also assume that

E
[
||∇F (wj)−∇F (wτ(j))||22

]
≤ γE

[
||∇F (wj)||22

]
for

some constant γ ≤ 1. Then, the error after J iterations
of Async SGD is given by,

E [F (wJ)]− F ∗ ≤ ηLσ2

2cγ′m
+

(1− ηcγ′)J(E [F (w0)]− F ∗ − ηLσ2

2cγ′m
)

where γ′ = 1− γ + p0
2 and p0 is a non-negative lower

bound on the conditional probability that τ(j) = j given
all the past delays and parameters.

To prove the result, we will use the following lemma.

Lemma 7. Let us denote vj = g(wτ(j), ξj), and as-
sume that Eξj |w [g(w, ξj)] = ∇F (w). Then,

E
[
||∇F (wj)− vj ||22

]
≤ E

[
||vj ||22

]
−

E
[
||∇F (wτ(j))||22

]
+ E

[
||∇F (wj)−∇F (wτ(j))||22

]
Proof of Lemma 7. Observe that,

E
[
||∇F (wj)− vj ||22

]
= E

[
||∇F (wj)−∇F (wτ(j)) +∇F (wτ(j))− vj ||22

]
= E

[
||∇F (wj)−∇F (wτ(j))||22

]
+ E

[
||vj −∇F (wτ(j))||22

]
(28)

The last line holds since the cross term is 0 as derived
below.

E
[
(∇F (wj)−∇F (wτ(j))

T (vj −∇F (wτ(j)))
]

= Ewτ(j),wj [(∇F (wj)−∇F (wτ(j))
T

Eξj |wτ(j),wj
[
(vj −∇F (wτ(j)))

]
]

= Ewτ(j),wj [(∇F (wj)−∇F (wτ(j))
T

(Eξj |wτ(j) [vj ]−∇F (wτ(j)))] = 0

Here again the last line follows from Assumption 2 in
Section 2 which states that

Eξj |wτ(j) [vj ] = ∇F (wτ(j))).

Returning to (28), observe that the second term can
be further decomposed as,

E
[
||vj −∇F (wτ(j))||22

]
= Ewτ(j)

[
Eξj |wτ(j)

[
||vj −∇F (wτ(j))||22

]]
= Ewτ(j)

[
Eξj |wτ(j)

[
||vj ||22

]]
− 2Ewτ(j)

[
Eξj |wτ(j)

[
vTj ∇F (wτ(j))

]]
+ Ewτ(j)

[
Eξj |wτ(j)

[
||∇F (wτ(j))||22

]]
= E

[
||vj ||22

]
− 2E

[
||∇F (wτ(j))||22

]
+ E

[
||∇F (wτ(j))||22

]
= E

[
||vj ||22

]
− E

[
||∇F (wτ(j))||22

]

We also prove a K-learner version of this lemma in the
Appendix to prove Theorem 3. Now we proceed to
provide the proof of Corollary 2.
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Proof of Corollary 2.

F (wj+1) ≤ F (wj) + (wj+1 −wj)
T∇F (wj)

+
L

2
||wj+1 −wj ||22

=F (wj) + (−ηvj)T∇F (wj) +
Lη2

2
||vj ||22

=F (wj)−
η

2
||∇F (wj)||22 −

η

2
||vj ||22

+
η

2
||∇F (wj)− vj ||22 +

Lη2

2
||vj ||22 (29)

Here the last line follows from 2aT b = ||a||22 + ||b||22 −
||a− b||22. Taking expectation,

E [F (wj+1)] ≤ E [F (wj)]−
η

2
E
[
||∇F (wj)||22

]
− η

2
E
[
||vj ||22

]
+
η

2
E
[
||∇F (wj)− vj ||22

]
+
Lη2

2
E
[
||vj ||22

]
(a)

≤ E [F (wj)]−
η

2
E
[
||∇F (wj)||22

]
− η

2
E
[
||vj ||22

]
+
η

2
E
[
||vj ||22

]
− η

2
E
[
||∇F (wτ(j))||22

]
+
η

2
E
[
||∇F (wj)−∇F (wτ(j))||22

]
+
Lη2

2
E
[
||vj ||22

]
(30)

Here, (a) follows from Lemma 7 that we just derived.
Now, again bounding from (30), we have

E [F (wj+1)] (31)
(b)

≤ E [F (wj)]−
η

2
E
[
||∇F (wj)||22

]
− η

2
E
[
||∇F (wτ(j))||22

]
+
η

2
γE
[
||∇F (wj)||22

]
+
Lη2

2
E
[
||vj ||22

]
(c)

≤ E [F (wj)]−
η

2
(1− γ)E

[
||∇F (wj)||22

]
+
Lη2σ2

2m

− η

2

(
1− Lη(

MG

m
+ 1)

)
E
[
||∇F (wτ(j))||22

]
(d)

≤ E [F (wj)]−
η

2
(1− γ)E

[
||∇F (wj)||22

]
+
Lη2σ2

2m

− η

4
E
[
||∇F (wτ(j))||22

]
(e)

≤ E [F (wj)]−
η

2
(1− γ)E

[
||∇F (wj)||22

]
+
Lη2σ2

2m

− η

4
p0E

[
||∇F (wj)||22

]
(32)

Here (b) follows from the statement of the theorem
that

E
[
||∇F (wj)−∇F (wτ(j))||22

]
≤ γE

[
||∇F (wj)||22

]

for some constant γ ≤ 1. The next step (c) follows
from Assumption 4 in Section 2 which lead to

E
[
||vj ||22

]
≤ σ2

m
+

(
MG

m
+ 1

)
E
[
||∇F (wτ(j))||22

]
.

Step (d) follows from choosing η < 1

2L(
MG
m +1)

and

finally (e) follows from Lemma 1.

Now one might recall that the function F (w) was de-
fined to be strongly convex with parameter c. Using
the standard result of strong-convexity (6) in (32), we
obtain the following result.

E [F (wj+1)]− F ∗ ≤ η2Lσ2

2m

+ (1− ηc(1− γ +
p0

2
))(E [F (wj)]− F ∗)

Let us denote γ′ = (1− γ+ p0
2 ). Then, using the above

recursion, we thus have,

E [F (wJ)]− F ∗ ≤ ηLσ2

2cγ′m
+

(1− ηγ′c)J(E [F (w0)]− F ∗ − ηLσ2

2cγ′m
)

Discussion on range of p0: Let us denote the condi-
tional probability of τ(j) = j given all the past delays
and parameters as p(j)

0 . Now p0 ≤ p
(j)
0 ∀j. Clearly

the value of p(j)
0 will differ for different distributions

and accordingly the value of p0 will differ. Here we
include a brief discussion on the possible values of p0

for different distributions. These also hold for K-async
and K-batch-async SGD.

Lemma 8 (Bounds of p0). Define p0 = infj p
(j)
0 , i.e.

the largest constant such that p0 ≤ p(j)
0 ∀ j.

• For exponential computation times, p(j)
0 = 1

P for
all j and is thus invariant of j and p0 = 1

P .

• For new-longer-than-used (See Definition 3) com-
putation times, p(j)

0 ≤ 1
P and thus p0 ≤ 1

P .

• For new-shorter-than-used computation times,
p

(j)
0 ≥ 1

P and thus p0 ≥ 1
P .

Proof of Lemma 8. Let t0 be the time when the j-th
iteration occurs, and suppose that learner i′ pushed
its gradient in the j-th iteration. Now similar to the
proof of Lemma 5, let us also assume that the learn-
ers last read their parameter values at time instants
t1, t2, . . . tP respectively where t′i = t0 and the remain-
ing (P − 1) of these tis are < t0. Let Y1, Y2, . . . YP
be the random variables denoting the computation
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time of the P learners starting from time t0. Thus,
Yi = Xi − (t0 − ti)|Xi > (t0 − ti). For exponentials,
from the memoryless property, all these Yi s become
i.i.d. and thus from symmetry the probability of i′
finishing before all the others is equal, i.e. 1

P . Thus,
p

(j)
0 = p0 = 1

P . For new-longer-than-used distributions,
as we have discussed before all the Yis with i 6= i′ will
be stochastically dominated by Yi′ = Xi′ . Thus, prob-
ability of is with i 6= i′ finishing first is higher than i′.
Thus, p(j)

0 ≤ 1
P and so is p0. Similarly, for new-shorter-

than-used distributions, Yi′ is stochastically dominated
by all the Yis and thus probability of i′ finishing first
is more. So, p(j)

0 ≥ 1
P and so is p0.

8.2 K-async SGD under fixed learning rate

In this subsection, we provide a proof of Theorem 3.

Before we proceed to the proof of this theorem, we first
extend our Assumption 4 from the variance of a single
stochastic gradient to sum of stochastic gradients in
the following Lemma.

Lemma 9. If the variance of the stochastic updates is
bounded as Eξj |wτl,j

[
||g(wτ(l,j), ξl,j)−∇F (wτ(l,j))||22

]
≤ σ2

m + MG

m ||∇F (wτ(l,j))||22 ∀ τ(l, j) ≤ j , then for K-
async, the variance of the sum of stochastic updates
given all the parameter values wτ(l,j) is also bounded
as follows:

Eξ1,j ,...,ξK,j |wτ(1,j)...wτ(K,j)

[
||

K∑
l=1

g(wl,j , ξl,j)||22

]

≤ Kσ2

m
+ (

MG

m
+K)||

K∑
l=1

∇F (wτ(l,j))||22 (33)

Proof. First let us consider the expectation of any cross
term such that l 6= l′. For the ease of writing, let
Ω = {wτ(1,j) . . .wτ(K,j)}. Now observe the conditional
expectation of the cross term as follows.

Eξ1,j ,...,ξK,j |Ω[(g(wl,j , ξl,j)−∇F (wτ(l,j)))
T

((g(wl′,j , ξl′,j)−∇F (wτ(l′,j)))]

= Eξl,j ,ξl′,j |Ω[(g(wl,j , ξl,j)−∇F (wτ(l,j)))
T

((g(wl′,j , ξl′,j)−∇F (wτ(l′,j)))]

= Eξl′,j |Ω[Eξl,j |ξl′,j ,Ω[(g(wl,j , ξl,j)−∇F (wτ(l,j)))
T ]

(g(wl′,j , ξl′,j)−∇F (wτ(l′,j))]

= Eξl′,j |Ω[0T (g(wl′,j , ξl′,j)−∇F (wτ(l′,j))] = 0 (34)

Thus the cross terms are all 0. So the expression

simplifies as,

Eξ1,j ,...,ξK,j |Ω

[
||

K∑
l=1

g(wl,j , ξl,j)− F (wτ(l,j))||22

]
(a)
=

K∑
l=1

Eξ1,j ,...,ξK,j |Ω
[
||g(wl,j , ξl,j)− F (wτ(l,j))||22

]
≤

K∑
l=1

σ2

m
+
MG

m
||∇F (wτ(l,j))||22 (35)

Thus,

Eξ1,j ,...,ξK,j |Ω

[
||

K∑
l=1

g(wl,j , ξl,j)||22

]

= Eξ1,j ,...,ξK,j |Ω

[
||

K∑
l=1

g(wl,j , ξl,j)− F (wτ(l,j))||22

]

+ Eξ1,j ,...,ξK,j |Ω

[
||

K∑
l=1

F (wτ(l,j))||22

]

≤ Kσ2

m
+

K∑
l=1

MG

m
||F (wτ(l,j))||22 + ||

K∑
l=1

F (wτ(l,j))||22

≤ Kσ2

m
+

K∑
l=1

MG

m
||F (wτ(l,j))||22 +

K∑
l=1

K||F (wτ(l,j))||22

(36)
Now we return to the proof of the theorem.

Proof of Theorem 3. Let vj = 1
K

∑K
l=1 g(wl,j , ξl,j).

Following steps similar to the Async-SGD proof, from
Lipschitz continuity we have the following.

F (wj+1) ≤ F (wj) + (wj+1 −wj)
T∇F (wj)

+
L

2
||wj+1 −wj ||22

=F (wj)−
η

K

K∑
l=1

g(wl,j , ξl,j)
T∇F (wj) +

L

2
||ηvj ||22

(a)
=F (wj)−

η

2K

K∑
l=1

||∇F (wj)||22 −
η

2K

K∑
l=1

||g(wl,j , ξl,j)||22

+
η

2K

K∑
l=1

||g(wl,j , ξl,j)||22 −
η

2K

K∑
l=1

||∇F (wj)||22

+
Lη2

2
||vj ||22

=F (wj)−
η

2
||∇F (wj)||22 −

η

2K

K∑
l=1

||g(wl,j , ξl,j)||22

+
η

2K

K∑
l=1

||g(wl,j , ξl,j)−∇F (wj)||22

+
Lη2

2
||vj ||22 (37)
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Here (a) follows from 2aT b = ||a||22 + ||b||22 − ||a− b||22.
Taking expectation,

E [F (wj+1)] ≤ E [F (wj)]−
η

2
E
[
||∇F (wj)||22

]
− η

2K

K∑
l=1

E
[
||g(wl,j , ξl,j)||22

]
+

η

2K

K∑
l=1

E
[
||∇F (wj)− g(wl,j , ξl,j)||22

]
+
Lη2

2
E
[
||vj ||22

]
(a)

≤ E [F (wj)]−
η

2
E
[
||∇F (wj)||22

]
− η

2K

K∑
l=1

E
[
||g(wl,j , ξl,j)||22

]
+

η

2K

K∑
l=1

E
[
||g(wl,j , ξl,j)||22

]
− η

2K

K∑
l=1

E
[
||∇F (wτ(l,j))||22

]
+

η

2K

K∑
l=1

E
[
||∇F (wj)−∇F (wτ(l,j))||22

]
+
Lη2

2
E
[
||vj ||22

]
(38)

(b)

≤ E [F (wj)]−
η

2
E
[
||∇F (wj)||22

]
− η

2K

K∑
l=1

E
[
||∇F (wτ(l,j))||22

]
+
η

2
γE
[
||∇F (wj)||22

]
+
Lη2

2
E
[
||vj ||22

]
(c)

≤ E [F (wj)]−
η

2
(1− γ)E

[
||∇F (wj)||22

]
+
Lη2σ2

2Km

− η

2K

K∑
l=1

(
1− Lη(

MG

Km
+

1

K
)

)
E
[
||∇F (wτ(l,j))||22

]
(d)

≤ E [F (wj)]−
η

2
(1− γ)E

[
||∇F (wj)||22

]
+
Lη2σ2

2Km

− η

4K

K∑
l=1

E
[
||∇F (wτ(l,j))||22

]
(e)

≤ E [F (wj)]−
η

2
(1− γ)E

[
||∇F (wj)||22

]
+
Lη2σ2

2Km

− η

4
p0E

[
||∇F (wj)||22

]
(39)

Here step (a) follows from Lemma 7 and
step (b) follows from the assumption that
E
[
||∇F (wj)−∇F (wτ(l,j))||22

]
≤ γE

[
||∇F (wj)||22

]
for some constant γ ≤ 1. The next step (c) fol-
lows from the Lemma 9 that bounds the variance
of the sum of stochastic gradients. Step (d) fol-

lows from choosing η < 1

2L(
MG
Km+ 1

K )
and finally

(e) follows from Lemma 1 in Section 3 that says
E
[
||∇F (wτ(l,j))||22

]
≥ p0E

[
||∇F (wj)||22

]
for some

non-negative constant p0 which is a lower bound on
the conditional probability that τ(l, j) = j given all
past delays and parameter values.

Finally, since F (w) is strongly convex, using the in-
equality 2c(F (w)−F ∗) ≤ ||∇F (w)||22 in (39), we finally
obtain the desired result.

Extension to Non-Convex case The analysis can be
extended to provide weaker guarantees for non-convex
objectives. Let γ′ = 1− γ + p0

2

For non-convex objectives, we have the following result.

Theorem 5. For non-convex objective function, we
have the following ergodic convergence result given by:

1

J + 1

J∑
j=0

E
[
||∇F (wj)||22

]
≤ 2(F (w0)− F ∗)

(J + 1)ηγ′
+
Lησ2

Kmγ′

where F ∗ = minw F (w).

Proof. Recall the recursion derived in the last proof in
(39). After re-arrangement, we obtain the following:

E
[
||∇F (wj)||22

]
≤ 2(E [F (wj)]− E [F (wj+1]))

ηγ′
+
Lησ2

Kmγ′
(40)

Taking summation from j = 0 to j = J , we get,

1

J + 1

J∑
j=0

E
[
||∇F (wj)||22

]
≤ 2(E [F (w0)]− E [F (wJ)])

(J + 1)ηγ′
+

Lησ2

Kmγ′

(a)

≤ 2(F (w0)− F ∗)
(J + 1)ηγ′

+
Lησ2

Kmγ′
(41)

Here (a) follows since we assume w0 to be known and
also from E [F (wJ)] ≥ F ∗.

8.3 Variable Learning Rate Schedule

We propose a new heuristic for learning rate sched-
ule that is more stable than fixed learning rate
for asynchronous SGD. Our learning rate sched-
ule is ηj = min

{
C

||wj−wτ(j)||22
, ηmax

}
, where ηmax

is a suitably large value of learning rate beyond
which the convergence diverges. This heuristic is in-
spired from the assumption in Theorem 4 given by
ηjE

[
||wj −wτ(j)||22

]
≤ C. In this section, we derive

the accuracy trade-off mentioned in Theorem 4 based
on this assumption.
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Proof of Theorem 4. Following steps similar to (29),
we first obtain the following:

F (wj+1) ≤ F (wj)−
ηj
2
||∇F (wj)||22 −

ηj
2
||vj ||22

+
ηj
2
||∇F (wj)− vt||22 +

Lη2
j

2
||vj ||22 (42)

Now taking expectation, we obtain the following result.
E [F (wj+1)]

(a)

≤ E [F (wj)]−
ηj
2
E
[
||∇F (wj)||22

]
− ηj

2
E
[
||vj ||22

]
+
ηj
2
E
[
||vj ||22

]
− ηj

2
E
[
||∇F (wτ(j))||22

]
+
ηj
2
E
[
||∇F (wj)−∇F (wτ(j))||22

]
+
Lη2

j

2
E
[
||vj ||22

]
(b)

≤ E [F (wj)]−
ηj
2
E
[
||∇F (wj)||22

]
− ηj

2
E
[
||∇F (wτ(j))||22

]
+
CL2

2
+
Lη2

j

2
E
[
||vj ||22

]
(c)

≤ E [F (wj)]−
ηj
2
E
[
||∇F (wj)||22

]
+
CL2

2
+
Lη2

jσ
2

2m

− ηj
2

(
1− Lηj(

MG

m
+ 1)

)
E
[
||∇F (wτ(j))||22

]
(e)

≤ E [F (wj)]−
ηj
2
E
[
||∇F (wj)||22

]
+
CL2

2
+
η2
jLσ

2

2m
− ηj

4
E
[
||∇F (wτ(j))||22

]
(43)

Here (a) follows from (30), (b) follows from (12), (c)
follows from Assumption 4 and (d) follows as ηj ≤

1

2L(
MG
m +1)

. Let us define ∆j = CL2

2 +
η2jLσ

2

2m . Thus, the

recursion can be written as,

E [F (wj+1)] ≤ E [F (wj)]−
ηj
2
E
[
||∇F (wj)||22

]
− ηj

4
E
[
||∇F (wτ(j))||22

]
+ ∆j

(e)

≤ E [F (wj)]−
ηj
2

(1 +
p0

2
)E
[
||∇F (wj)||22

]
+ ∆j

(44)

Here (e) follows from Lemma 1. If the loss function
F (w) is strongly convex with parameter c, then for all
w, we have 2c(F (w) − F ∗) ≤ ||∇F (w)||22. Using this
result, we obtain

E [F (wj+1)]− F ∗ ≤ (1− ηj(1 +
p0

2
)c)(E [F (wj)]− F ∗)

+ ∆j

≤ (1− ηj(1 +
p0

2
)c)(1− ηj−1(1 +

p0

2
)c)(E [F (wj−1)]− F ∗)

+ (1− ηj(1 +
p0

2
)c)∆j−1 + ∆j

≤ (1− ρj)(1− ρj−1) . . . (1− ρ0)(E [F (w0)]− F ∗) + ∆
(45)

where ρj = ηj(1 + p0
2 )c and ∆ = ∆j + (1− ρj)∆j−1 +

· · ·+ (1− ρj)(1− ρj−1) . . . (1− ρ1)∆0.

9 SIMULATION SETUP DETAILS

MNIST [LeCun, 1998]: For the simulations on MNIST
dataset, we first convert the 28× 28 images into single
vectors of length 784. We use a single layer of neurons
followed by soft-max cross entropy with logits loss
function. Thus effectively the parameters consist of a
weight matrix W of size 784 × 10 and a bias vector
b of size 1 × 10. We use a regularizer of value 0.01,
mini-batch size m = 1, and learning rate η = 0.01.
For implementation we used Tensorflow with Python3.
Thus, the model is as follows:

X=tf.placeholder(tf.float32,[None,784])
Y=tf.placeholder(tf.float32,[None,10])
W=tf.Variable(tf.random_normal(shape=[784,10],

stddev=0.01), name="weights")
b=tf.Variable(tf.random_normal(shape=[1,10],

stddev=0.01), name="bias")

logits=tf.matmul(X,W) + b
entropy=tf.nn.softmax_cross_entropy_with

_logits(logits=logits,labels=Y) +
lamda*tf.square(tf.norm(W))

loss=tf.reduce_mean( entropy)

For the run-time simulations, we generate random vari-
ables from the respective distributions in python to
represent the computation times.

CIFAR10 [Krizhevsky and Hinton, 2009]: For the CI-
FAR10 simulations, similar to MNIST, we convert the
images into vectors of length 1024. We combine the
three colour variants in the ratio [0.2989, 0.5870, 0.114]
to generate a single vector of length 1024 for every im-
age. We use a single layer of neurons again followed by
soft-max cross entropy with logits in tensorflow. Thus,
the parameters consist of a weight matrix W of size
1024× 10 and a bias vector b of size 1× 10. We use a
mini-batch size of 250, regularizer of 0.05.

We use a similar model as follows:

X=tf.placeholder(tf.float32,[None,1024])
Y=tf.placeholder(tf.float32,[None,10])
W=tf.Variable(tf.random_normal(shape=[1024,10],

stddev= 0.01),name="weights")
b=tf.Variable(tf.random_normal(shape=[1,10],

stddev = 0.01),name="bias")

logits=tf.matmul(X,W) + b
entropy=tf.nn.softmax_cross_entropy_with

_logits(logits=logits,labels=Y) +
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Figure 11: Error-Iterations tradeoff on MNIST dataset:
Simulation of K-sync SGD for different values of K.
Observe that accuracy improves with increasing K
which means increasing effective batch size (η = 0.05).
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Figure 12: Error Runtime tradeoff on MNIST dataset:
Simulation of K-sync SGD for different values of K
(η = 0.05).

lamda*tf.square(tf.norm(W))
loss=tf.reduce_mean(entropy)

The computation time as each learner is generated from
exponential distribution.

10 CHOICE OF
HYPERPARAMETERS

Our analysis techniques can also inform the choice of
hyperparameters synchronous and K-sync SGD.

10.1 Varying K in K-sync

We first perform some simulations of K-sync SGD
applied on the MNIST dataset. For the simulation set-
up, we consider 8 parallel learners with fixed mini-batch
size m = 1 and fixed learning rate 0.05. The number
of learners to wait for in K-sync, i.e. K is varied and
the error runtime trade-off is observed. The runtimes
are generated from a shifted exponential distribution
given by Xi ∼ m+ expµ.

Observe that in the plot of error with the number of
iterations in Figure 11, the error improves with increas-
ing K, which means increasing the effective mini-batch
and reducing the variability in the gradient. However,
if we look at the same error plotted against runtime

(See Figure 12) instead of the number of iterations,
observe that increasing K naively does not always lead
to a better trade-off. As K increases, the central PS
has to wait for more learners to finish at every iteration,
thus suffering from increased straggler effect. The best
error runtime trade-off is obtained at an intermediate
K = 4. Thus, the current analysis informs the optimal
choice of K to achieve a good error runtime trade-off.

10.2 Varying mini-batch m

We consider the training of Alexnet on ImageNet
dataset [Krizhevsky et al., 2012] using P = 4 learn-
ers. For this simulation, we perform fully synchronous
SGD, i.e. K-sync with K = P = 4. We fix the learn-
ing rate and vary the mini-batch used for training.
The runtimes are generated from a shifted exponential
distribution given by Xi ∼ m + expµ, that depends
on the mini-batch size. Intuitively, this distribution
makes sense since to compute one mini-batch, a proces-
sor would atleast need a time m (Work Complexity).
However, due to delays, it has the additional exponen-
tial tail. The error runtime trade-offs are observed in
Figure 13 and Figure 14.
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Figure 13: Error-Iterations tradeoff on IMAGENET
dataset: Simulation of fully synchronous SGD (K =
P = 4) for different values of mini-batch m. Observe
that accuracy improves with increasing m which means
increasing effective batch size.
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Figure 14: Error Runtime tradeoff on IMAGENET
dataset: Same simulation of fully synchronous SGD
(K = P = 4) for different values of mini-batch m
plotted against time. Observe that higher m does not
necessarily mean the best trade-off with runtime as
higher mini-batch also has longer time.
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Again, observe that the plot of error with the number
of iterations improves with the mini-batch size, as also
expected from theory. However, increasing the mini-
batch also changes the runtime distribution. Thus,
when we plot the same error against runtime, we again
observe that increasing the mini-batch size naively does
not necessarily lead to the best trade-off. Instead, the
best error runtime trade-off is observed with an inter-
mediate mini-batch value of 1024. Thus, our analysis
informs the choice of the optimal mini-batch.


