
Synergy via Redundancy: Boosting Service Capacity
with Adaptive Replication

Gauri Joshi
IBM T. J. Watson Research Center

Yorktown Heights NY 10598
Email: gauri.joshi@ibm.com

ABSTRACT
The maximum possible throughput (rate of task comple-
tion) of a multi-server system is typically the sum of the
service rates of individual servers. Recent works show that
task replication can boost the throughput, in particular if
the service time has high variability (Cv > 1). Thus, re-
dundancy can be used to create synergy among servers such
that their overall throughput is greater than sum of individ-
ual servers. This paper seeks to find the fundamental limit
of this capacity boost achieved by task replication. The opti-
mal adaptive replication policy can be found using a Markov
Decision Process (MDP) framework, but the MDP is hard to
solve in general. We propose two myopic policies, MaxRate
and AdaRep that gradually add replicas only when needed.
To quantify the optimality gap of these policies, we also de-
rive an a upper bound on the service capacity.

1. INTRODUCTION
The large-scale sharing of resources in today’s cloud sys-

tems provides scalability and flexibility. An adverse effect
of resource sharing is that the response time of individual
servers in the cloud can be large and unpredictable. This
inherent variability in response time is the norm and not an
exception [1]. A solution is to replicate computing tasks at
multiple servers and wait for any one copy to finish. This
idea was first used at a large-scale in MapReduce and further
developed in several other systems works.

Although used in practical systems, only a few theoretical
works provide an understanding of when redundancy is most
beneficial in reducing latency. Works such as [2–7] study a
multi-server queueing system where incoming tasks can be
replicated at multiple queues, and as soon as any one replica
is served, its copies are canceled immediately. The objective
is to minimize the latency, which includes the service time
of a task and its waiting time in queue. Task replication
affects the latency in two opposite ways:

• Queue Diversity: Replicas provide diversity by help
finding the shortest among the queues that they join,
thus reducing the overall waiting time.

• Load due to Redundant Service: Multiple repli-
cas of a task may enter service at different servers,
potentially adding load to the system and increasing
the waiting time for subsequent tasks.

Copyright is held by author/owner(s).

abcd

X2

X1

XK

Each task assigned to
1 or more idle servers

Task Size Variability Y

Fig. 1. System of K servers where a task replicated at two
idle servers 1 and 2 takes time Y · min(X1, X2) to finish,
where the random variable Y captures the task-size vari-
ability and Xi captures the service time variability.

The effect of the redundant service of replicas is not well-
understood yet. Works like [2, 4, 7] identify surprising sce-
narios where replication in fact results in the rate of task
completion being higher than the sum of service rates of
individual servers.

This paper seeks to find the maximum possible through-
put or the service capacity of a multi-server system, and
the replication policy that achieves it. To the best of our
knowledge, this is the first paper to attempt finding the ser-
vice capacity with replication. Our system model accounts
for server heterogeneity, task size variability as well as de-
lays in cancellation of replicas. In Section 3 we analyze
‘upfront’ replication policies that launch all replicas at the
same time. An alternative is to add replicas adaptively, only
if the original task does not finish in reasonable time. Find-
ing the optimal adaptive policy involves solving a Markov
Decision Process (MDP). We formulate this MDP in Sec-
tion 4. This MDP can have a large state space and we need
to resort to myopic policies. We propose two replication
policies, MaxRate and AdaRep, that adaptively add repli-
cas and perform better than upfront replication policies. To
quantify the gap from optimality we give an upper bound
on the service capacity for the two-server case. All proofs
are deferred to the Appendix, which can be found in the
extended version [8].

2. Problem Formulation
Consider a system of K servers with a central queue con-

taining tasks, as illustrated in Fig. 1. We do not explicitly
define a task arrival process and instead assume that the cen-
tral queue is never idle. This flooded central queue model
obviates the effect of queue diversity provided by replicas
in a distributed queueing system, and helps us focus on the
effect of redundant service of replicas.

2.1 Task Service Times
Server i takes time S = Y · Xi to finish a task assigned

to it. The random variable Xi captures the variability in
task service time due to server slowdown, assumed to be
i.i.d. across tasks assigned to that server. The dependence
of the service time on the size of the task is captured by
Y , which is independent of Xi for all i. This method of
multiplying the randomness from the two sources of vari-
ability was introduced in [9]. The value of Y is same across
replicas of a task. Thus, if a task is replicated at two idle
servers i and j, the time taken to complete any one replica is
Y ·min(Xi, Xj). We also consider that when a task is repli-
cated, each server running it reserves a cancellation window
of length ∆. As soon as one replica is served, the scheduler
sends a cancellation signal to the other replicas, triggering
their cancellation. All these events occur in time ∆, after
which the servers are available to serve subsequent tasks.

2.2 Scheduling Policy
The policy π used to schedule replicas can be based on the

distributions of Y , X1, . . . , XK . The scheduler only knows
these distributions, but does not know their realizations for
currently running tasks. As soon as a server becomes idle,
the scheduler can take one of two possible actions:

• new : assign a new task to that server

• rep: launch a replica of a task currently running on
one of the other servers.

The space of scheduling policies with these actions is de-
noted by Πn,r and we aim to find the policy π∗n,r that
maximizes the throughput. This space of policies can be
expanded by allowing additional actions such as pausing a
currently running task, or killing and relaunching it to an-
other server. We consider new and rep as the only feasible
actions in this paper, except in Section 5 where we use task
pausing to find an upper bound on service capacity.

Note that all policies in Πn,r are work-conserving, that is,
they do not allow any server to be idle for a non-zero time
interval. We can show that there is no loss of generality in
restricting our attention to work-conserving policies.

Claim 1. The throughput-optimal scheduling policy π∗ is
work-conserving, that is, it does not allow any server to be
idle for a non-zero time interval.

2.3 Performance Metrics

Definition 1 (Throughput R). Let T1(π) ≤ T2(π) ≤
· · · ≤ Tn(π) be the departure times of tasks 1, 2, . . . n from the
system, when the scheduler follows a policy π. The through-
put of the system is defined as

R(π) , lim
n→∞

n

Tn(π)
. (1)

Definition 2 (Service Capacity R∗n,r). The service
capacity R∗n,r = maxπ∈Πn,r R(π), the maximum achievable
throughput over all policies in Πn,r. The policy π∗n,r that
achieves R∗n,r is called the throughput-optimal policy.

Next we define another performance metric, the comput-
ing time C per task.

Definition 3 (Computing Time C). The total time spent
by the servers on a task is called the computing time C.

The expected computing time E [C] is proportional to the
cost of running a task on a system of servers. In our system
model, if a task is assigned to only to server i then E [C] =
E [Y]E [Xi]. Instead if it is assigned to two servers i and
j, and the replica is canceled when any one copy finishes
then E [C] = 2(E [Y]E [min(Xi, Xj)] + ∆) where ∆ is the
cancellation window at each of the servers. Depending upon
Xi, Y and ∆, E [C] with replication may be greater or less
than that without replication.

The throughput R can be expressed in terms of the ex-
pected computing time E [C] as given below.

Claim 2. For any work-conserving scheduling policy,

R =
K

E [C]
. (2)

Thus, minimizing E [C] is equivalent to maximizing R.

3. UPFRONT REPLICATION
In this section we explore ‘upfront’ replication policies

that simultaneously launch a task and its replicas. The
number of replicas and the servers where they are launched
governs the overall throughput.

3.1 No Replication and Full Replication
First let us compare the throughput achieved by two ex-

treme policies: no replication and full replication. This anal-
ysis demonstrates how replication can create synergy and
boost the throughput of a server cluster.

Lemma 1 (No Replication). If each task is assigned
to the first available idle server in a system of K servers,
the throughput is,

RNoRep =

K∑
i=1

1

E [Y]E [Xi]
(3)

Lemma 2 (Full Replication). Suppose each task is
assigned to all servers, and as soon as one replica finishes,
the others are canceled. The throughput achieved by this full
replication policy is,

RFullRep =
1

∆ + E [Y]E [min(X1, X2, . . . XK)]
(4)

Using Lemma 1 and Lemma 2 we can compare the two
policies for any given distributions X1, . . . , XK , Y and can-
cellation delay ∆. In Fig. 2 we show a comparison for the
two server case, with ∆ = 0 and Y = 1. In both subplots,
the service time X1 ∼ 0.5 + Exp(1), a shifted exponential.
We observe that full replication gives higher throughput
when X2 has higher variability. In the left subplot, X2 ∼
Pareto(0.5, α) and replication is better for smaller α (heav-
ier tail). In the right subplot, X2 is a hyper-exponential
HyperExp(µ1, µ2, p2), that is, it is an exponential with rate
µ2 with probability p2 and otherwise it is exponential with
rate µ1. In this case, replication is better for intermediate
p2 where X2 has higher variability.

3.2 General Upfront Replication
Instead of replicating task at all servers, or not replicating

at all we can replicate tasks at a subset of the servers. We
refer to this class of policies as upfront replication policies,
defined formally below.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

α in Pareto(1.0,α)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
T

h
ro

u
g

h
p

u
t
R

X2 ∼Pareto(0.5,α)

No Replication

Full Replication

0.0 0.2 0.4 0.6 0.8 1.0

p2 of the HyperExp(µ1 ,µ2 ,p2)

0.7

0.8

0.9

1.0

1.1

1.2
X2 ∼HyperExp(0.5,0.1,p2)

No Replication

Full Replication

Fig. 2. Comparison of the no replication and full replica-
tion policies for X1 ∼ 0.5 + Exp(1) and different X2. When
X2 ∼ Pareto(0.5, α), full replication is better for smaller
α (heavier tail). When X2 ∼ HyperExp(µ1 = 0.5, µ2 =
0.1, p2), full replication is better for intermediate p2.

Definition 4 (Upfront Replication). For h ∈ N ,
we partition of the set [K] = {1, 2, 3, . . .K} of server indices
into non-empty subsets S1,S2, . . . ,Sh, such that Si ∩ Sj =
0, and ∪jSj = [K]. When the servers in a set Sj become
idle (they will always become idle simultaneously), replicate
a task at these servers.

The no replication policy is a special case with Sj = j
for all j ∈ [K]. Similarly, full replication corresponds to
S1 = [K].

Theorem 1 (Upfront Replication). The throughput
RUpFr with upfront replication at server sets S1, . . . ,Sh is

RUpFr(S1, . . . ,Sh) =

h∑
j=1

1

E [Y]E
[
XSj

]
+ ∆

, (5)

where XSj = min
l∈Sj

Xl (6)

To maximize the throughput, we need to find the partition
{S1, . . . ,Sh} that maximizes (33). The number of possible
partitions of a set of size K is the Bell number BK , which is
given by the recursion BK =

∑K−1
i=0

(
K−1
i

)
Bi, with B0 = 1.

Since BK is exponential in K, finding the best partition can
be computationally intractable for large K. However, most
practical systems have limited heterogeneity, for which the
problem can be tractable. For example, if the K servers are
homogeneous with X ∼ FX , the throughput of the optimal
upfront replication policy is given by the following result.

Theorem 2 (Homogeneous Servers). For K servers
with i.i.d. service times X ∼ FX , let r∗ be the positive in-
teger that minimizes r(E [Y]E [X1:r] + ∆). The throughput
achieved with upfront replication of tasks satisfies

RUpFr ≤
K

r∗(E [Y]E [X1:r] + ∆)
. (7)

Equality holds in (7) if r∗ divides the number of servers K.

For Y = 1 (no task size variability) and ∆ = 0, r∗ is
the r that minimizes rE [X1:r]. Fig. 3 illustrates the nor-
malized expected cost per task, rE [X1:r] /E [X] versus r for

1 2 3 4 5 6 7 8 9 10

r, the number of servers in each group

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

pe
r

ta
sk

,r
E

[X
1
:r

]/
E

[X
]

Shifted Exp: r∗ = 1

Hyper Exp: r∗ = 10

Shifted Hyper Exp: r∗ = 3

Pareto: r∗ = 2

Fig. 3. Plot of rE [X1:r] /E [X] versus r for different service
distributions for K = 10. The r∗ that minimizes rE [X1:r]
is the optimal group size when ∆ = 0 and Y = 1.

0 2 4 6 8 10 12 14 16

Number of servers in the system, K

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
or

m
al

iz
ed

T
hr

ou
gh

ut
R
/K

E
[X

]

Shifted Exp: r∗ = 1

Hyper Exp: r∗ = 10

Shifted Hyper Exp: r∗ = 3

Pareto: r∗ = 2

Fig. 4. Using the optimal r∗ that minimizes rE [X1:r], we
partition the servers as given in Definition 5. The normal-
ized throughput of this policy is shown here.

four different service distributions: shifted exponential 0.1+
Exp(1.0), hyper-exponential HyperExp(0.6, 0.2, 0.4), shifted
hyper-exponential 0.1 + HyperExp(1.0, 0.2, 0.4), and Pareto
Pareto(0.5, 1.2). When the tail distribution Pr(X > x)
of X is log-concave (for example shifted-exponential), the
optimal r is r = 1, whereas for log-convex X (for exam-
ple hyper-exponential), r∗ = K is optimal. This property
of log-concave (log-convex) distributions was proved in [7].
For other distributions such as shifted hyperexponential or
Pareto, intermediate r can be optimal.

If r∗ does not divide K, then the bound in (7) is not tight.
We now propose server partitioning scheme for this case.

Definition 5 (Homogeneous Server Partitioning).
Divide K homogeneous servers into bK/r∗c−1 groups of r∗

each. The remaining r∗+K mod r∗ servers are divided into
two groups of sizes z and r∗ + K mod r∗ − z respectively,
where

z = arg max
1,2,...,r∗

1

E [Y]E [X1:z] + ∆
+

1

E [Y]E [X1:r∗+Kmod r∗−z] + ∆
.

Applying the upfront policy (Definition 4) with this par-
titioning scheme yields the throughput shown in Fig. 4, for

a

b

Time taken to complete tasks

Server 1

c

d

e f

f g

h

h

Server 2

Renewal Interval

0 2 6 10

Fig. 5. Illustration of renewal instants of the system of
2 servers with the adaptive replication policy described in
Example 1.

Y = 1 and ∆ = 0. For K that are divisible by r∗ we achieve
optimal throughput. We observe that the optimality gap of
the throughput for other K is small for moderately large K.
Proving the optimality of this partitioning scheme remains
an open problem.

4. ADAPTIVE REPLICATION
Instead of launching replicas upfront, they could be added

conditionally, only if the original task does not finish in
some given time. Such policies can significantly increase
the throughput, as illustrated by the example below.

Example 1. Consider a system with two servers, and as-
sume that the task size variability Y = 1 and the cancella-
tion delay ∆ = 0. The service times of the two servers are

X1 = 2 (8)

X2 =

{
1 w.p. (1− p) = 0.9

20 w.p. p = 0.1
(9)

The throughput with full replication and no replication are

RNoRep =
1

E [X1]
+

1

E [X2]
= 0.8448 (10)

RFullRep =
1

E [min(X1, X2)]
= 0.909 (11)

Now consider an adaptive policy that launches a replica
of a task assigned to server 2 only if it has spent more than
1 second in service. To evaluate the throughput of this pol-
icy, we consider time instants called renewals when both
servers become idle. There are three types of intervals be-
tween successive renewal instants as illustrated in Fig. 5.
The throughput is the expected number of tasks completed
in an interval, divided by the expected interval length.

R =
0.9× 0.9× 3 + 0.9× 0.1× 3 + 0.1× 2

0.9× 0.9× 2 + 0.9× 0.1× 4 + 0.1× 4
(12)

≈ 1.2185, (13)

which outperforms the two extreme policies.

4.1 MDP Framework to Find the Throughput-
Optimal Policy

Inspired by the motivating example above, we propose a
Markov Decision Process (MDP) framework to search for
the throughput-optimal policy the achieves service capac-
ity. The state-space and actions described below satisfy the
Markov property, that is, the transitions from state s to s′

are depend on action π(s), and are conditionally indepen-
dent of all previous states and actions.

𝇉, (0,0), 0

{2}, (0, 2), 0

{1}, (1,0), 0

new

rep

p = 0.1,
C = 4

p = 0.9,
C = 2

new

p = 0.1,
C = 4

rep

C = 4

rep

p = 0.9,
C = 2

𝇉, (0, 0), 1

C = 4

C =2.2

{2}, (0, 1), 0

null

new

C =0

new

rep

Fig. 6. Illustration of the MDP for the service distribu-
tions in Example 1. Dotted arrows correspond to the ac-
tions taken from a state and solid arrows lead to the new
state resulting from the action. Parts of the MDP resulting
from sub-optimal actions are omitted in this figure.

4.1.1 State-space
We denote the state evolution by s0, s1, . . . si, . . . such

that the system transitions to state si as soon as the ith

task departs. The state-space can be collapsed into states
[B, t, Dr] where B contains disjoint sets of server indices that
are running the unfinished tasks in the system. For exam-
ple, if B = {{1}, {2, 3}} there are two unfinished tasks in
the system, one running on server 1 and another on servers
2 and 3. The vector t = (t1, t2, . . . tK) where tk is the time
spent by server k on its current task. Since we observe the
system immediately after a task departure, at least one of
the elapsed times t1, t2, . . . tK is zero. The purpose of the
Dr term is to ensure that each state transition corresponds
to a single task departure. It is the number of tasks that
have finished, but are still to depart. If h > 1 tasks exit the
system simultaneously and result in the task assignment set
B and elapsed-time vector t, then the system goes through
states [B, t, h− 1]→ [B, t, h− 2]→ · · · → [B, t, 0].

4.1.2 Actions
In each state s, denote the set of possible actions is As.

The scheduling policy π determines the action a = π(s) that
is taken from state s.

First note that no tasks are assigned in the exit states
s = [B, t, Dr] with Dr > 0. Thus, for these states, the
action space As contains a single placeholder null action.
The system directly transitions to [B, t, Dr − 1].

In states s = [B, t, 0], the scheduler can assign new tasks
to idle servers (new), or replicate existing tasks (rep). For
example, consider a system of 2 servers (illustrated in Fig. 6
for the service time distributions in Example 1). In states
[{2}, (0, t), 0] or [{1}, (t, 0), 0] with t > 0, one server is idle
while the other has spent t seconds on its current task. From
the state s = [∅, (0, 0), 0] where both servers are idle, the
new action assigns two new tasks, one to each server, and
the rep action replicates a new task at both servers.

4.1.3 Cost
The cost C(s, s′, a) associated with a transition from state

s to s′ when action a is taken in state s is defined as the

total time spent by the servers in that interval. Thus, the
throughput-optimal policy π∗n,r is the solution to the follow-
ing cost minimization problem,

π∗n,r = arg min
π∈Πn,r

∞∑
j=0

C(sj , sj+1, π(sj)). (14)

For the service distributions in Example 1, we can solve
the MDP. The optimal policy (illustrated in Fig. 7) is to
replicate a server 2’s task at server 1 only if it does not
finish in 1 second. However in general, the MDP can have a
large state-space even for simple service distributions. And
if Xi for any i or Y is a continuous random variable for
which the MDP will have a continuous state-space, which
becomes even harder to solve.

4.2 The MaxRate Myopic Policy
As an alternative to solving the MDP, we propose a my-

opic policy called the MaxRate policy.

Definition 6 (MaxRate Policy). From state s, the
MaxRate policy chooses the action a∗ that maximizes the
instantaneous service rate R̂(a) which is defined as,

R̂(a) ,
M(a)∑
m=1

1

E [Dm(a)]
. (15)

where M(a) is the number of unfinished tasks after taking
action a, and E [Dm] is the expected remaining time until
the departure of task j, assuming it is not replicated further.

Corollary 1. Consider a two server system, with Y = 1
and ∆ = 0. Suppose server 1 becomes idle, and the task
assigned to server 2 has spent time t2 > 0 in service. Let
Xrs

2 = (X2 − t2)|X2 > t2 be the residual computing time.
The MaxRate policy launches a replica at server 1 if

1

E [min(X1, Xrs
2)]

>
1

E [X1]
+

1

E [Xrs
2]

. (16)

and otherwise it assigns a new task to server 1.

Fig. 7 illustrates the MaxRate policy, in comparison with
the FullRep and NoRep policies for the service distributions
in Example 1. Observe that the throughput of the MaxRate
policy is the maximum of the throughputs of the NoRep
and FullRep policies. We also observe that MaxRate is sub-
optimal, which is not surprising because it is greedy, and
oblivious to the system state resulting the action.

4.3 The AdaRep Policy
With the MaxRate policy, we dynamically find replica-

tion thresholds ti→j such that a task running on server i is
replicated at server j if it does not finish in ti→j seconds.
Based on this idea we propose another class of policies called
AdaRep(t), which is directly parametrized by a replication
threshold vector t.

Definition 7 (AdaRep Policy). Consider a vector of
server indices u = (j1, j2, . . . jk) for k < K such that a task
first launched on server j1 was later replicated on j2, j3 and
so on. This task is replicated at an idle server i if the last
server jk has spent at least tu→i time on it. Otherwise it
assigns a new task to the idle server. If more than one tasks
satisfy the replication condition, we choose the task whose
elapsed time is closest to its replication threshold tu→i.

0.0 0.1 0.2 0.3 0.4 0.5

Probability p that service time X2 is 20

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
h

ro
u

g
h

p
u

t
R

No Replication

Full Replication

MaxRate Policy

Optimal = AdaRep([∞,1])

Upper Bound

Fig. 7. Illustration of the upper bound on R∗n,r, along with
the throughputs of different replication policies. The service
distributions are as defined in Example 1.

For example forK = 2 servers, the vector t = [t1→2, t2→1].
The optimal policy shown in Fig. 7 obtained by solving the
MDP is AdaRep([∞, 1]). In the next section we propose a
method to choose the replication threshold vector t.

5. BOUND ON THE SERVICE CAPACITY
To quantify the optimality gap of a policy without solving

the MDP, we need an upper bound on R∗n,r. In this section
we propose such a upper bound on R∗n,r. Drawing insights
from this bound, we also propose a method to choose the
replication thresholds of the AdaRep policy.

5.1 The Pause-and-Replicate System
Recall that in our problem formulation, tasks can be repli-

cated only at time instants when one or more servers become
idle. To find the upper bound on R∗n,r, we consider a system
where the scheduler is also allowed to pause ongoing tasks.

Definition 8 (Pause-and-Replicate System). In this
system, a task can be replicated at any server where it is not
already running by pausing the ongoing task on that server.
The paused task is resumed when the replica is served or
canceled.

For the example shown in Fig. 5, the pause-and-replicate
system can pause task g at time 7 to run a replica of task h,
and resume task g afterwards. Both g and h will then finish
at time 9, which is 1 second faster than with the AdaRep
policy without task pausing.

Claim 3. The service capacity or maximum achievable
throughput R∗p,r in the pause-and-replicate system is an up-
per bound on the service capacity R∗n,r of the original system.

5.2 Evaluating the Upper Bound
In the pause-and-replicate framework, the AdaRep(t) pol-

icy can replicate a task exactly after tu→i, instead of waiting
for server i to become idle. In Theorem 3 below, we obtain
a closed-form expression for the throughput Rp,r(t) of the
AdaRep policy for K = 2 servers and Y = 1.

Theorem 3. In the pause-and-replicate framework, the
throughput Rp,r(t) of AdaRep(t = [t1→2, t2→1]), with deter-
ministic task size (Y = 1) can be expressed as follows. For

t1→2 > 0 and t2→1 > 0,

Rp,r(t) =
E
[
Xtr

1 (t1→2)
]

+ E
[
Xtr

2 (t2→1)
]

E [Xtr
1 (t1→2)]E [Xtr

2 (t2→1)] (1 + γ1→2 + γ2→1)
(17)

where,

γt1→2 ,
Pr(X1 > t1→2)(∆ + E [min(Xrs

1 (t1→2), X2)])

E [Xtr
1 (t1→2)]

(18)

γt2→1 ,
Pr(X2 > t2→1)(∆ + E [min(X1, X

rs
2 (t2→1)])

E [Xtr
2 (t2→1)]

,

(19)

and Xtr
i (τ) = min(Xi, τ), the truncated part of Xi, and

Xrs
i (τ) = (Xi|(Xi > τ)− τ), the residual service time after

τ seconds of service.
If t1→2 = 0 or t2→1 = 0,

Rp,r(t) =
1

∆ + E [min(X1, X2)]
. (20)

In Corollary 2 below we give the throughput expression
for the special case where t1→2 set to infinity.

Corollary 2. The throughput Rp,r(t = [∞, t2→1]) of
the two-server pause-and-replicate system with Y = 1 is

Rp,r(t2→1) =
E
[
Xtr

2

]
E [Xac

2]

(
1

E [X1]

)
+

1

E [Xac
2]

(21)

where, E
[
Xtr

2

]
= min(X2, t2→1), is the truncated part of

X2, and E [Xac
2] is the effective service time of server 2,

E [Xac
2] = E

[
Xtr

2

]
+ Pr(X2 > t2→1)(∆ + E [min(X1, X

rs
2]),

(22)

where Xrs
2 = (X2|(X2 > t2→1)− t2→1), the residual service

time after time t2→1 of service.

Here is an intuitive explanation of the throughput in (21).
Since server 2 is never paused, its throughput of server 2
is 1/E [Xac

2], where E [Xac
2] accounts for the reduction in

service time due to replication of tasks. For server 1, the
throughput is ζ/E [X1], where ζ = E

[
Xtr

2

]
/E [Xac

2], the
fraction of time server 1 is not paused.

To find the optimal AdaRep policy in the pause-and-
replicate framework, we find t that maximizes the through-
put in Theorem 3. Lemma 3 below shows that for two
servers, Rp,r(t

∗) is in fact the service capacity R∗p,r.

Lemma 3. For K = 2 servers with Y = 1, there is no loss
of generality in focusing on AdaRep policies to find the op-
timal throughput R∗p,r in the pause-and-replicate framework.
That is, R∗p,r = maxtRp,r(t).

For the service distributions in Example 1, [t∗1→2, t
∗
2→] =

[∞, 1]. Thus, if a task does not finish in 1 seconds on server
2, the optimal AdaRep policy launches a replica on server 1
by pausing its ongoing task. The upper bound obtained by
substituting t∗2→1 = 1 in (21) is shown in Fig. 7.

5.3 Choosing AdaRep Replication Thresholds
We propose using the optimal t∗ that maximizes Rp,r(t)

as the replication threshold vector for the AdaRep policy in
the original system. This policy tries to emulate the optimal

pause-and-replicate policy, under the limitation that it can-
not pause ongoing tasks. In Fig. 7 we plot the throughput
of AdaRep(t∗ = [∞, 1]), alongwise the upper bound. For
this example, AdaRep(t∗) matches the solution of the MDP
and thus it is indeed throughput-optimal. In general, we
conjecture that it will give close-to-optimal throughput.

6. CONCLUDING REMARKS
Task replication is generally thought to add load to the

system and reduce its service capacity. Recent works show
that task replication can in fact boost the throughput of
server cluster. This paper is the first attempt to find the
service capacity of a multi-server system with task replica-
tion. It demonstrates how replication can not only cope with
service variability, but also make more efficient use of com-
puting resources. The search for the throughput-optimal
policy involves solving an MDP, which can be hard in gen-
eral. We propose two myopic replication policies: MaxRate
and AdaRep that adaptively launch replicas of tasks. To
quantify their gap from optimality we also obtain an upper
bound on the service capacity.

Future directions include considering more actions such
as killing and relaunching replicas. We also want to better
understand the scaling of the proposed policies to systems
with K > 2 servers. For systems with unknown or chang-
ing service time distributions, we plan to develop an online
algorithm to dynamically adapt the replication policy.

7. REFERENCES
[1] J. Dean and L. Barroso, “The Tail at Scale,”

Communications of the ACM, vol. 56, no. 2, pp. 74–80,
2013.

[2] G. Koole and R. Righter, “Resource allocation in grid
computing,” Journal of Scheduling, vol. 11,
pp. 163–173, June 2008.

[3] G. Joshi, Y. Liu, and E. Soljanin, “On the
Delay-storage Trade-off in Content Download from
Coded Distributed Storage,” IEEE Journal on Selected
Areas on Communications, May 2014.

[4] N. Shah, K. Lee, and K. Ramchandran, “When do
redundant requests reduce latency?,” in Proceedings of
the Allerton Conference, Oct. 2013.

[5] Y. Sun, Z. Zheng, C. E. Koksal, K. Kim, and N. B.
Shroff, “Provably delay efficient data retrieving in
storage clouds,” in Proceedings of IEEE INFOCOM,
Apr. 2015.

[6] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter,
E. Hyytiä, and A. Scheller-Wolf, “Reducing latency via
redundant requests: Exact analysis,” in Proceedings of
the ACM SIGMETRICS, Jun. 2015.

[7] G. Joshi, E. Soljanin, and G. Wornell, “Efficient
replication of queued tasks for latency reduction in
cloud systems,” in Proceedings of the Allerton
Conference, Oct. 2015.

[8] G. Joshi, “Synergy via Redundancy: Boosting Service
Capacity with Adaptive Replication.”
https://goo.gl/549f8G, July 2017.

[9] K. Gardner, M. Harchol-Balter, and A. Scheller-Wolf,
“A better model for job redundancy: Decoupling server
slowdown and job size,” in Proceedings of IEEE
MASCOTS, Sept. 2016.

https://goo.gl/549f8G

APPENDIX
Proof of Claim 1. Consider a non-work-conserving schedul-

ing policy πnwc which results in task departure times T1(πnwc) ≤
· · · ≤ Tn(πnwc). Construct a work-conserving πwc that fol-
lows all the actions of πnwc, except the idling of servers. For
example, consider a set of r ≥ 1 servers that become idle at
times h1, h2, . . . , hr respectively. If πnwc launches replicas of
a task i on these servers at times h1 +ε1, h2 +ε2, . . . , hr+εr,
where εj ≥ 0 are the idle times, then πwc starts the replicas
at times h1, h2, . . . , hr instead.

We use induction to prove that Ti(πnwc) ≥ Ti(πwc) for all
1 ≤ i ≤ n. In both policies, all servers are available for task
assignment at time 0. The departure time of the first task
is

T1(πnwc) = Y ·min(X1 + ε1, X2 + ε2, . . . Xr + εr) (23)

≥ Y ·min(X1, X2, . . . Xr) (24)

= T1(πwc). (25)

This is the induction base case. For the induction hypothe-
sis, assume that for all i ≤ n − 1, Ti(πnwc) ≥ Ti(πwc). We
now prove that Tn(πnwc) ≥ Tn(πwc). Suppose πnwc assigns
task n to r ≥ 1 servers. The times h1, h2, . . . , hr when these
servers become idle belong to the set {0, T1(πnwc), . . . Tn−1(πnwc)},
the departure times of previous tasks. By the induction hy-
pothesis, with πwc the servers become idle earlier at times
g1, g2, . . . , gr where gj ≤ hj for all 1 ≤ j ≤ r. Thus,

Tn(πnwc) = Y ·min(X1 + h1 + ε1, X2 + h2 + ε2, . . . ,

Xr + hr + εr) (26)

≥ Y ·min(X1 + h1, X2 + h2, . . . Xr + hr) (27)

≥ Y ·min(X1 + g1, X2 + g2, . . . Xr + gr) (28)

= Ti+1(πwc) (29)

Thus, by induction, Tn(πnwc) ≥ Tn(πwc) for any n ∈ N .
Hence by (1), R(πnwc) < R(πwc).

Proof of Claim 2. Consider tasks 1, 2, . . .n run on
the system of servers. If the scheduling policy is work-
conserving, the total busy time of each server is exactly equal
to Tn, the departure time of the last task. Since E [C] is de-
fined as the total expected time spent at servers per task,
by law of large numbers we have

E [C] = lim
n→∞

KTn
n

=
K

R
, (30)

where the second equality follows from Definition 1.

Proof of Lemma 1. This policy is work-conserving and
thus keeps all servers busy all the time. Thus, if we look at
server i, the departure time of the nth task assigned to that

server is T
(i)
n is the sum of n i.i.d. realizations of the service

time Y ·Xi. Thus, the rate of departure of tasks from server
i is,

Ri = lim
n→∞

n

T
(i)
n

=
1

E [Y]E [Xi]
. (31)

Adding the rates of departure from all the servers yields
overall throughput as given by (3).

Proof of Lemma 2. With the full replication policy, all
K servers are working on the same task at any time instant.
The total time spent by them on each task is,

E [C] = K(∆ + E [Y]E [min(X1, X2, . . . XK)]) (32)

Then (4) follows from the result in Claim 2.

a

b

Time taken to complete tasks

Server 1

c

d

e

e

Δ

g

fServer 2

Type 0 Type 2 Type 0

d’

Type 1

g

Δ

f’

t2à1

t1à2

Fig. 8. Illustration of different types of intervals used to
evaluate the throughput in Theorem 3. Tasks d and f are
paused to launch the replicas of e and g respectively, and
they are resumed when the replicas are served or canceled.

Proof of Theorem 1. Incoming tasks are replicated at
any one super-server, and the replicas are canceled as soon
as one copy is served. Thus, the total time spent by each
server in super-server Sj on a task is Y minl∈Sj Xl+∆. The
throughput of that super-server is

RSj =
1

E [Y]E
[
minl∈Sj Xl

]
+ ∆

. (33)

The overall throughput is the sum of the throughputs of the
super-servers S1,S2, . . . ,Sh, and is given by (33).

Proof of Theorem 2. Let the number of servers in server
i′s group be denoted by ri. For example if K = 5 are di-
vided into two groups of 3 and 2, then r1 = r2 = r3 = 3
and r4 = r5 = 2. The throughput of a group with ri servers
is 1/(E [Y]E [X1:ri] + ∆). If we normalize by the number of
servers, the throughput per server is 1/ri(E [Y]E [X1:ri] +
∆). Summing this over all servers we have,

RUpFr =

K∑
i=1

1

ri(E [Y]E [X1:ri] + ∆)
(34)

≤
K∑
i=1

1

r∗(E [Y]E [X1:r∗] + ∆)
(35)

=
K

r∗(E [Y]E [X1:r∗] + ∆)
(36)

If r∗ divides K, then dividing servers into groups of r∗

servers each gives equality in (35) above.

Proof of Claim 3. The set of feasible policies Πn,r is a
subset of Πp,r, the set of policies in the pause-and-replicate
framework. Thus,

R∗p,r = max
π∈Πp,r

R(π) ≥ max
π∈Πn,r

R(π) = R∗n,r. (37)

Proof of Theorem 3. When t1→2 = 0 or t2→1 = 0, all
tasks are replicated at both servers. Thus by Lemma 2 we
get (20).

Now consider the case where t1→2 > 0 and t2→1 > 0.
Time can be divided into three types of intervals as illus-
trated in Fig. 8. In Type 0 intervals, no tasks are replicated.
In a Type 1 interval, both servers are serving a task that was
originally launched on server 1. As soon as any one copy fin-
ishes, its replica is canceled. Then server 2 can resume its
paused task, and we go back to a Type 0 interval. Similarly,
in a Type 2 interval, both servers are serving a task that
was originally run on server 2.

One task departs the system at the end of each Type 1 or
Type 2 interval. Consider that this departure time is shifted
to the end of the Type 0 preceding this Type 1 or Type
2 interval. This shift does not affect the overall through-
put. Further, we rearrange the intervals to concatenate all
Type 0 intervals together at the beginning of the time hori-
zon, followed by all Type 1 and Type 2 intervals. Now the
concatenated Type 0 interval can be viewed as a system of
two servers running tasks according to the no replication
policy, with service times Xtr

1 (t1→2) = min(X1, t1→2) and
Xtr

2 (t2→1) = min(X2, t2→1), which are truncated versions of
the original service times. Thus the rate of task completion
in the concatenated Type 0 interval is

R0 =
1

E [Xtr
1 (t1→2)]

+
1

E [Xtr
2 (t2→1)]

. (38)

Since all task departures are shifted to the end of Type 0
intervals, the rate of task completion in Type 1 and Type 2
intervals is zero, that is, R1 = R2 = 0. The overall through-
put can be expressed as

Rp,r = µ0R0 + µ1R1 + µ2R2 (39)

= µ0R0, (40)

where Ri is the rate of task completion in concatenated in-
terval of Type i. The weight µi is the fraction of total time
spent in a Type i interval. The ratios µ1/µ0 and µ2/µ0 can
be expressed in terms of t1→2 and t2→1 as follows.

µ1

µ0
=

Pr(X1 > t1→2)(∆ + E [min(Xrs
1 (t1→2), X2)])

E [Xtr
1 (t1→2)]

(41)

µ2

µ0
=

Pr(X2 > t2→1)(∆ + E [min(X1, X
rs
2 (t2→1)])

E [Xtr
2 (t2→1)]

(42)

Every task originally run on server 1 spends E
[
Xtr

1 (t1→2)
]

expected time in a Type 0 interval, and Pr(X1 > t1→2)(∆+
E [min(Xrs

1 (t1→2), X2)]) expected time in a Type 1 interval.
Thus, the ratio µ1/µ0 is given by (41). Similarly we get
(42).

Using (41) and (42) along with the fact that µ0+µ1+µ2 =
1, we can solve for µi. Substituting µ0 in (40), we get the
result in (21).

Proof of Lemma 3. AdaRep policies replicate a task run
on server 1 (or server 2) after a fixed elapsed time t1→2 (or
respectively t2→1). Instead of fixed t, the replication thresh-
olds could be chosen randomly such that the threshold vec-
tor t(i) for some i ∈ [1, 2, . . . I] is chosen with probability

Pr(t = t(i)). First let us show that this does not improve
the throughput.

We can divide time into I types of intervals, such that
in the Type i interval, replicas are launched according to
the threshold vector t(i). We can concatenate all intervals
of Type i together. Each type i interval can be further
divided into three types sub-intervals as given in the proof
of Theorem 3 to compute the rate of task completion in
that interval. The overall throughput can be expressed as
a linear combination of rates of task completion in each of

these interval types,

Rp,r =

I∑
i=0

Pr(t = t(i))Rp,r(t(i)) (43)

≤
I∑
i=0

Pr(t = t(i)) max
t
Rp,r(t) (44)

= max
t
Rp,r(t) (45)

where Pr(t = t(i)) is the fraction of time spent in the Type
i interval. The throughput of the best fixed threshold policy
upper bounds each term in (43).

At any time instant the scheduler has two elapsed times
available to it. AdaRep policies only consider the elapsed
time of the task to be replicated. We now show that consid-
ering the elapsed time of the task that will be paused does
not improve the throughput. To prove this we show that the
throughput of any scheduling policy is independent of the
elapsed time of the paused task. For any scheduling policy,
the time horizon can be divided into three types of intervals
as shown Fig. 8. Consider that the departures at the end of
Type 1 and 2 are shifted to the end of the preceding Type
0 intervals. From the throughput analysis in the proof of
Theorem 3 we can see that the rate of task completion in
the concatenated Type 0 interval, and the fraction of time
µ0 only depend on the elapsed times t1→2 and t2→1. Thus,
considering the elapsed times of the task to be paused does
not improve the throughput.

