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Abstract— We study the fundamental trade-off between stor-
age and content download time. We show that the download
time can be significantly reduced by dividing the content into
chunks, encoding it to add redundancy and then distributing it
across multiple disks. We determine the download time for two
content access models – the fountain and fork-join models that
involve simultaneous content access, and individual access from
enqueued user requests respectively. For the fountain model we
explicitly characterize the download time, while in the fork-
join model we derive the upper and lower bounds. Our results
show that coding reduces download time, through the diversity
of distributing the data across more disks, even for the total
storage used.

I. INTRODUCTION

Consumers of cloud storage and content centric network-
ing demand that their content be reliably stored and quickly
accessible. Cloud storage providers today strive to meet
both demands by simply replicating content throughout the
storage network over multiple disks. A large body of recent
literature proposes erasure coding as a more efficient way to
provide reliability.

Research in coding for distributed storage was galvanized
by the results reported in [1]. Prior to that work, literature
on distributed storage recognized that when compared with
replication, coding can offer huge storage savings for the
same reliability levels. But it was also argued that the
benefits of coding are limited, and can easily be outweighed
by certain disadvantages and extra complexity. Namely, to
provide reliability in multi-disk storage systems, when some
disks fail, it must be possible to restore either the exact lost
data or an equivalent reliability with minimal download from
the remaining storage. The cost of this repair regeneration
was considered much higher in coded than in replication
system [2], until [1] established existence and advantages
of new regenerating codes. This work was then quickly
followed, and the area is very active today (see e.g., [3],
[4] and references therein).

A related line of work is concerned with another potential
weakness of coding in distributed storage. Namely, if any
part of the data changes, the corresponding coded packets
must be updated accordingly. To minimize the cost of such
updates, the authors in [5] propose a class of randomized
codes which have update complexity scaling logarithmically
with the size of data but can correct a linearly scaled number
of disk failures. Furthermore, the existence of such update

efficient codes that also minimize the repair bandwidth for
exact data reconstruction was established in [5].

Content accessibility is another main property of interest.
In current multi-disk, cloud storage systems (e.g., Amazon),
content files stored on the same disks may be simultaneously
requested by multiple users. The file accessibility, therefore,
depends on the dynamics of requests, and is limited by
the disks’ I/O bandwidth. In practice, it is again commonly
improved by replicating content on multiple disks, which
in turn requires more energy. Only recently was it realized
that erasure coding can guarantee the same level of content
accessibility with lower storage than replication. [6], [7].
In [7], it is considered that when there are multiple access
requests, all but one of them are blocked, and the accessbility
is measured in terms of blocking probability. In [6], multiple
requests are placed in a queue instead of blocking. The
authors propose a scheduling scheme to map requests to
servers (or disks) to minimize the waiting time.

In this paper, we assume that requests that cannot be
served upon arrival are queued, but we measure the ac-
cessibility in terms of the download time which includes
the waiting time in queues and the time taken to read
the data from the disk, which could be random. When
the content is available redundantly on multiple disks, it
is sufficient to read it only from a subset of these disks
in order to recover the data. The key contribution of our
work is to analyze how waiting for only a subset of disks to
be read, provides diversity in storage which helps achieve a
significant reduction in the download time.

Using redundancy in coding for delay reduction has also
been studied in packet transmission [8]–[10], and in some
other scenarios of content retrieval in [11]. Although they
share some common spirit, they do not consider storage sys-
tems and the impact of redundancy coding in such scenarios.

This paper is organized as follows. In Section II we
introduce the two content access models investigated in this
work. In Section III we present the central idea of how
coding gives diversity and reduces download time. Then
we determine the download time for the two models in
Section IV and Section V respectively. Finally we conclude
in Section VI.

II. TWO CONTENT ACCESS/DELIVERY MODELS

We consider two specific content access models in order
to isolate and emphasize different sources of delay in content



delivery, and show how they can be addressed through
coding. In general, a content delivery model is some hybrid
of the two models considered here.

A. The Fountain Model

Our first model can describe, e.g., a content delivery
network scenario, where content may not be available at the
point of request, and there is a delay associated with waiting
for the content to become available at the contacted server.
Once in possession of the content, the server can deliver it to
the users by, e.g., broadcast enabled by digital fountain codes
[12]. Thus multiple users do not affect each other’s delivery
time. Another scenario that can be modeled in this way is
when content is broadcast at some prescribed times, but the
arrival of users is random. We will refer to this model as the
fountain model (where fountains are turned on at random
times).

When a content request arrives at the server, the content
has to be fetched from the distribution network and then
transmitted to the user. The waiting time to obtain the content
from the network is a non-negative random variable W . Once
the content is obtained, the time to deliver it to the user is a
positive random variable D, which is proportional to the size
of content and erasure rate of the channel. Multiple users can
access a server simultaneously and the content is broadcast
to these users. Hence, the response time of the system (the
download completion time) is W + D, and is independent
of the number of requests being served simultaneously.

B. The Queueing Model

Our second model can describe, e.g., a storage area
network (SAN), where content is stored on a disk, which
can be accessed only by one user at a given time. The delay
in this model is associated with the response time of the
queueing systems. In this model, multiple requests by the
same user do affect each other’s content download time. We
will refer to this model as the queueing model.

When a content request arrives at the disk, it enters a first-
come-first-serve queue. After a request reaches the head of
the queue, it takes some random service time to read the
content from the disk. We model this service time a random
variable with mean 1/µ. Here again, the download time is
the sum of two components: the waiting time in queue and
the service time required to read from the disk.

III. REDUCING DELAY BY CODING

In both of our models, the download completion time is a
random variable. One natural way to reduce this time is to
replicate the content across n independent servers (or disks).
Then if the user issues n requests, one to each of the n
servers, it only needs to wait for the one of the requests to
be served. This strategy gives a sharp reduction in download
time, but at the cost of n times more storage space and the
cost of processing multiple requests.

We thus argue that it is more economical to divide the
content into k blocks, encode them into n > k coded blocks,
and store them on n different servers (one block per server).

Each incoming request is sent to all n servers, and the content
can be recovered when any k out of n blocks are successfully
downloaded.

This can be achieved by using an (n, k) maximum distance
separable (MDS) code to encode the k blocks of content.
MDS codes have been suggested to provide reliability against
server outages (or disk failures). In this paper we show that,
in addition to error-correction, we can exploit these codes to
reduce the download time of the content.

Note that for the fountain model, since multiple users
can simultaneously access the content, the response times
(waiting plus delivery time) of the n servers are independent.
The download time is the kth order statistic of the response
time of each server. However, the analysis of download time
for the queueing model is more challenging because the the
response times of the n queues are not independent.

Since in both models we require the first k out of n
blocks to be downloaded, we now provide some background
of finding the kth order statistic of n independent and
identically distributed (i.i.d) random variables. For a more
complete treatment in order statistics, please refer to [13].

Let X1, X2, · · · Xn be i.i.d. random variables. Then,
Xk,n, the kth order statistic of Xi , 1 ≤ i ≤ n , or the
kth smallest variable has the distribution,

fXk,n
(x) = n

(
n− 1

k − 1

)
FX(x)k−1(1− FX(x))n−kfX(x)

(1)

where FX(x) and fX(x) and the distribution and density
functions of X respectively. In particular, if Xi’s are expo-
nential with mean 1/µ, then the expectation and variance of
order statistic Xk,n are given by,

E[Xk,n] =
1

µ

k∑
i=1

1

n− k + i
=

1

µ
(Hn −Hn−k) (2)

V[Xk,n] =
1

µ2

k∑
i=1

1

(n− k + i)2
=

1

µ2
(Hn2 −H(n−k)2),

(3)

where Hn and Hn2 are generalized harmonic numbers de-
fined as

Hn =

n∑
j=1

1

j
and Hn2 =

n∑
j=1

1

j2
. (4)

Note that E[Xk,n] decreases as k decreases for a given
n. This fact will provide us some intuition to understand
the analysis of download time for the fountain and queueing
models presented in Section IV and Section V respectively.

IV. MULTIPLE FOUNTAINS

In this section we investigate the redundancy storage in the
context of fountain model. Content requests ( e.g., request for
videos, news or other information) from customers are sent
to a network of servers. We focus in particular on multiple
fountain content retrieval systems defined as follows.

Definition 1 ((n, k) multiple fountain): An (n, k) multi-
ple fountain content retrieval system contains n servers.



Every content request entering the system is forked to n
servers. Requests are served as soon as the content becomes
available, which happens at a random time independently of
request arrivals. A request is satisfied when any k out of n
servers have responded and delivered their messages.

Recall that the content is divided into k blocks and en-
coded into n > k coded blocks which are stored on n servers
(one block per server). Content is said to be downloaded
when any k out of n blocks are successfully delivered to the
user. The fountain model described in Section II-A assumes
that multiple users can access the server simultaneously (i.e,
no queueing). The response time for each server is the sum of
waiting time for the content to become available and the time
taken to deliver each content block. We model the waiting
time W as an exponentially distributed random variable with
mean 1/µ. After the content becomes available, the server
delivers it to the customer in constant time D

k , where the
factor 1/k appears because each server only delivers 1/k
fraction of the content.

The mean response time, i.e., the time taken to download
the content, from the (n, k) multiple fountain system is given
by the following theorem.

Theorem 1: The mean response time T(n,k) of a content
retrieval system is

T(n,k) =
1

µ
(Hn −Hn−k) +

D

k
, (5)

where Hn is defined in (4).
Proof: Since each message is delivered to the customer

in constant time D
k , the mean response time for a request

equals the waiting time until the content becomes available
at k servers plus the delivery time D

k . The expected waiting
time is the kth order statistic of n i.i.d. exponential random
variables with mean 1/µ, which has mean 1

µ (Hn −Hn−k)
(c.f. (2)).

We notice that it is possible to have an optimal k such that
(5) is minimized. The intuition behind this is the trade-off
between the waiting time 1

µ (Hn − Hn−k) and the content
delivery time D

k , as k varies from 1 to n. When k is small,
the T(n,k) is dominated by the delivery time D

k . But as k
increases, T(n,k) is dominated by the waiting time due to the
increase in 1

µ (Hn−Hn−k), and decrease in D
k . The following

lemma gives the optimal value of k.
Lemma 1: The k that minimizes (5) is given by

k∗ = argmin
k

T(n,k) ≈

⌈
−Dµ+

√
D2µ2 + 4nDµ

2

⌉
. (6)

Proof: We use the log approximation for Hn, i.e., Hn ≈
log(n) + O(1) and Hn−k ≈ log(n − k) + O(1). Substitute
in (5) we obtain

T(n,k) =
1

µ
log

(
n

n− k

)
+
D

k
.

Taking derivative with respect to k and set it to 0 we obtain

1

µ
k2 +Dk −Dn = 0,

which has root k∗ = −Dµ+
√
D2µ2+4nDµ

2 as in (6).
Fig. 1 shows the mean response time T10,k versus k for the
(10, k) multiple fountain system with parameters delivery
time D = 5 and various values of mean waiting time 1/µ.
We observe that the optimal value of k∗ increases with 1/µ.
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Fig. 1. Mean response time simulation for (10, k) multiple fountain system
with parameters 1

µ
= 0, 2, 4, 6 and D = 5. Note that 1/µ = 0 means that

the content is immediately available thus the download time decreases as
k increases. On the contrary, when D = 0 (not shown in this plot), the
download time goes down as k decreases.

V. FORK-JOIN QUEUES

In this section we consider the second content delivery
model described in Section III, the queueing model. We show
how coding can help minimize the time taken to download
time of a content which is stored on an array of disks. We
refer to this time as the response time. Although we focus
on this storage model, it is possible to extend our results to
other distributed systems such as parallel cluster computing
[14].

A. System Model

Consider that a content F of unit size, divided into k
blocks of equal size. It is encoded to n > k blocks using
a (n, k) maximum distance separable (MDS) code, and the
coded blocks are stored on an array of n disks. MDS codes
have the property that any k out of the n blocks are sufficient
to reconstruct the entire file. An illustrative example with
n = 3 disks and k = 2 is shown in Fig. 2. The content F is
split into equal blocks a and b, and stored on 3 disks as a,
b, and a⊕ b, the exclusive-or of blocks a and b. Thus each
disk stores content of half the size of file F . Downloads
from any 2 disks jointly enable reconstruction of F . Each
user’s request for content F is forked to all the n disks.
Our objective is to determine the mean response time of the
system – the expected time from the arrival of a request until
it finishes service by reading the content from some k of the
n disks. In order to evaluate the response time we model it
as an n-fork k-join system which is defined as follows.

Definition 2 ((n, k) fork-join system): An (n, k) fork-join
system consists of n processing nodes (fork nodes). Every
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Fig. 2. A (3, 2) fork-join system; storage is 50% higher, but response
time (per disk & overall) is reduced.

arriving job is divided into n tasks which are sent to the
queue at each of the n nodes. A task is served when it arrives
at the top of its queue. The job departs the system when any
k out of n tasks are served by their respective nodes. The
remaining n − k tasks abandon their queues and exit the
system without receiving service.
The (n, n) fork-join system, known in literature as fork-
join queue, has been extensively studied in, e.g., [15]–[17].
However, the (n, k) generalization in Definition 2 above has
not been previously studied to our best knowledge.

We consider an (n, k) fork-join system where each node
represents a disk from which content is being downloaded.
Download requests arrive according to a Poisson process
with rate λ per second. Every request is sent to each of
the n disks. The time taken to download one unit of data
is exponential with mean 1/µ. Since, each disk is requested
to provide 1/k units of data, the service time for each node
is exponentially distributed with mean 1/µ′ where µ′ = kµ.
Define the load factor ρ , λ/µ′. We assume ρ > 1, or
equivalently µ′ > λ to ensure stability of the queue at each
fork node.

B. Bounds on Mean Response Time

Our objective is to evaluate the mean response time T(n,k)
of the (n, k) fork-join system described in Section V-A. It
is the time from the arrival of a job until k out of n of its
tasks are served by their respective nodes.

Even for the (n, n) system, the mean response time has
not been found in closed form – only bounds are known.
An exact expression for the response time is found only for
the (2, 2) fork-join in [16]. The reason why the fork-join
system is harder to analyze than a set of parallel independent
M/M/1 queues is that each incoming job is sent to the
n queues. Hence, the arrivals to the queues are perfectly
synchronized and the response times of the n queues are
correlated.

The simplest case of an (n, k) fork-join system is the
(n, 1) system. It is not hard to see that this system behaves
exactly as an M/M/1 queue with arrival rate λ and service
rate µ′ = nµ. Therefore its response time is exponential
with the mean T(n,1) equal to 1/(nµ − λ). It is difficult to
evaluate T(n,k) exactly for other cases, but the bounds we
derive below are fairly tight.

Theorem 2 (Upper Bound on Mean Response Time):
The mean response time T(n,k) of an (n, k) fork-join system
satisfies

T(n,k) ≤
Hn −Hn−k

µ′
+ (7)

λ
[
(Hn2 −H(n−k)2) + (Hn −H(n−k))

2
]

2µ′2
[
1− ρ(Hn −Hn−k)

]
where λ is the request arrival rate, µ′ = kµ is the service
rate at each queue, ρ = λ/µ′ is the load factor, and the
generalized harmonic numbers Hn and Hn2 are as given in
(4).

Proof: We use a related, but easier to analyze queueing
model called the split-merge system, to find this upper bound
on T(n,k). In the (n, k) fork-join queueing model, after a
node serves one of the tasks, it is free to process the next task
in its queue. On the contrary, in the split-merge model, all n
nodes are blocked until k of them finish service. Thus, the
job departs all the queues at the same time. Since the nodes
are not blocked in the fork-join system, the mean response
time of the (n, k) split-merge model is an upper bound on
(and a pessimistic estimate of) T(n,k) for the (n, k) fork-join
system.

The (n, k) split-merge system is equivalent to an M/G/1
queue where arrivals are Poisson with rate λ and service
time is a random variable S distribution according to the
kth order statistic of the exponential distribution. The mean
and variance of S are (c.f. (2) and (3))

E[S] =
Hn −Hn−k

µ′
and V[S] =

Hn2 −H(n−k)2

µ′2
. (8)

The Pollaczek-Khinchin formula [18] gives the mean re-
sponse time T of an M/G/1 queue in terms of the mean
and variance of S as follows.

T = E[S] +
λE[S2]

2(1− λE[S])
(9)

where the second moment E[S2] = V[S] + E[S]2. Substitut-
ing the values of E[S] and V[S] given by (8), we get the
upper bound (7).

Remark 1: Note that the approach used in [16] to find
an upper bound on the mean response time of the (n, n)
fork-join system cannot be extended to the (n, k) fork-join
system considered here. The authors in [16] show that the
response times of the n queues form a set of associated
random variables [19]. Associated random variables have the
property that their expected maximum is less than that for
independent variables with the same marginal distributions.
Thus, the mean response time of the (n, n) fork-join system
is upper bounded by that of the system of n independent
M/M/1 queues. However, this property of associated vari-
ables does not hold for the kth order statistic for k < n.

Theorem 3 (Lower Bound on Mean Response Time):
The mean response time T(n,k) of an (n, k) fork-join
queueing system satisfies

T(n,k) ≥
1

µ′
[
Hn −Hn−k + ρ(Hn(n−ρ) −H(n−k)(n−k−ρ))

]
(10)



where λ is the request arrival rate, µ′ = kµ is the service
rate at each queue, ρ = λ/µ′ is the load factor, and the
generalized harmonic number Hn(n−ρ) is given by

Hn(n−ρ) =

n∑
j=1

1

j(j − ρ)
.

Proof: The lower bound in (10) is a generalization of
the bound for the (n, n) fork-join system derived in [17].
The bound for the (n, n) system is derived by considering
that a job goes through n stages of processing. A job is said
to be in the jth stage, for 0 ≤ j ≤ n− 1, if j out of n tasks
have been served by their respective nodes and the remaining
n− j tasks are waiting to be served. The job will depart the
system when all n tasks are served.

For the (n, k) fork-join system, since we only need k
tasks to finish service, the number of stages of processing is
reduced. Each job now goes through k stages of processing,
where in the jth stage, for 0 ≤ j ≤ k − 1, j tasks have
finished processing and we are waiting for the k − j more
tasks to finish service in order to complete the job.

Consider two jobs B1 and B2 in the ith and jth stages of
processing respectively. Let i > j, or in other words, B1 has
completed more tasks than B2. Since every incoming job is
sent to all n queues, this implies that B1’s tasks will be in
front B2’s in all n− i queues remaining to be served for B1.
Further, we can conclude that the mean service rate of job
B2 moving to the (j + 1)th stage of processing is at most
(n − j)µ′. If the n − j pending tasks are at the head of all
the respective queues, then the service rate will be exactly
(n−j)µ′. However, B1’s task could be ahead of B2’s in one
of the n − j pending queues, due to which that task of B2

cannot be immediately served. Hence, we have shown that
for a job in the jth stage of processing, the mean service
rate is at most (n− j)µ′.

Consider an M/M/1 queue with arrival rate λ and service
rate (n− j)µ′. Its response time is exponentially distributed
with mean Tj = 1/((n − j)µ′ − λ). By the memory-
less property of the exponential distribution, the total mean
response time is the sum of the mean response times of each
of the k stages of processing, given by

T(n,k) ≥
k−1∑
j=0

1

(n− j)µ′ − λ
=

1

µ′

k−1∑
j=0

1

(n− j)− ρ

=
1

µ′

k−1∑
j=0

[ 1

n− j
+

ρ

(n− j)(n− j − ρ)

]
=

1

µ′
[
Hn −Hn−k + ρ · (Hn(n−ρ) −H(n−k)(n−k−ρ))

]

Hence, we have found lower and upper bounds on the
mean response time T(n,k). In Section V-D, we perform
simulations to check the tightness of these bounds. These
help us answer some practical questions in designing storage
systems with the minimum download completion time.

C. Extension to General Service Time Distribution

In this section we derive the upper bound on expected
download time with a general service time distribution at
each node, instead of the exponential service time considered
so far. Let X1, X2, . . . , Xn be the i.i.d random variables rep-
resenting the service times of the n nodes, with expectation
E[Xi] =

1
µ′ and variance V[Xi] = σ2 for all i.

Theorem 4 (Upper Bound with General Service Time):
The mean response time Tn,k of an (n, k) fork-join system
with general service time X such that E[X] = 1

µ′ and
V[X] = σ2 satisfies

T(n,k) ≤
1

µ′
+ σ

√
k − 1

n− k + 1

+

λ

[(
1
µ′ + σ

√
k−1

n−k+1

)2
+ σ2C(n, k)

]
2
[
1− λ

(
1
µ′ + σ

√
k−1

n−k+1

)] .

(11)
Proof: The proof follows from Theorem 2 where

the upper bound can be calculated using (n, k) split-merge
system and Pollaczek-Khinchin formula (9). Unlike the ex-
ponential distribution, we do not have an exact expression
for S, i.e., the kth order statistic of the service times
X1, X2, · · ·Xn. Instead, we use the following upper bounds
on the expectation and variance of S derived in [20] and [21].

E[S] ≤ 1

µ′
+ σ

√
k − 1

n− k + 1
(12)

V[S] ≤ C(n, k)σ2, (13)

The proof of (12) involves Jensen’s inequality and Cauchy-
Schwarz inequality. For details please refer to [20]. The
constant C(n, k) depends only on n and k, and can be found
in the table in [21]. Holding n constant, C(n, k) decreases
as k increases. The proof of (13) can be found in [21].

Note that (9) strictly increases as either E[S] or V[S]
increases. Thus, we can substitute the upper bounds in it
to obtain the upper bound on mean response time (11).

Finally, we note that our proof in Theorem 3 cannot
be extended to this general service time setting. The proof
requires memoryless property of the service time, which does
not necessary hold in the general service time case.

D. Numerical Examples and Simulation

In this section we present numerical and simulation ex-
ample results to help us appreciate how storing the content
on n disks using an (n, k) fork-join system (as described
in Section V-A) reduces the expected download time. The
results demonstrate the tightness of the bounds derived in
Section V-B. In addition, we simulate the fork-join system
to obtain an empirical cumulative density function (CDF) for
the download time.

The download time of a file with k blocks can be improved
by increasing 1) the storage expansion n/k per file and/or
2) the number n of disks used for file storage. For example,
fork-join systems (4, 2) and (10, 5) both provide a storage
expansion of 2, but the former uses 4 and the latter 10 disks,



and thus their download times behave differently. Both the
total storage and the number of storing elements could be a
limiting factor in practice.

We first address the scenario where the number of disks
disks n is kept constant, but the storage expansion changes
from 1 to n as we choose k from n to 1. We then study
the scenario where the storage expansion factor n/k is kept
constant, but the number of disks varies.

1) Flexible Storage Expansion & Fixed Number of Disks:
In Fig. 3 we plot the mean response time T(n,k) versus k
for fixed number of disks n = 10, arrival rate λ = 1 request
per second and service rate µ = 3 units of data per second.
Each disk stores 1/k units of data and thus the service rate
of each individual queue is µ′ = kµ. The simulation plot
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Fig. 3. Mean response time T(n,k) increases with k for fixed n because
the redundancy of coding reduces. The plot also demonstrates the tightness
of the bounds derived in Section V-B

shows that as k increases with n fixed, the code rate k/n
increases thus reducing the amount of redundancy. Hence,
T(n,k) increases with k. We also observe that the bounds (7)
and (10) derived in Section V-B are very tight.

In addition to low mean response time, ensuring quality-
of-service to the user may also require that the probability of
exceeding some maximum tolerable response time is small.
Thus, we study the CDF of the response time for different
values of k for a fixed n.

In Fig. 4 we plot the CDF of the response time with k =
1, 2, 5, 10 for fixed n = 10. The arrival rate and service rate
are λ = 1 and µ = 3 as defined earlier. For k = 1, the PDF is
represents the minimum of n exponential random variables,
which is also exponentially distributed.

The CDF plot can be used to design a storage system
that gives probabilistic bounds on the response time. For
example, if we wish to keep the response time below 0.1
seconds with probability at least 0.75, then the CDF plot
shows that k = 5, 10 satisfy this requirement but k = 1
does not. The plot also shows that at 0.4 seconds, 100% of
requests are complete in all fork-join systems, but only 50%
are complete in the single-disk case

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

response time

fr
ac

tio
n 

of
 c

om
pl

et
ed

 d
ow

nl
oa

ds

single disk
k=1
k=2
k=5

← unit storage requirement per file

n/k = 1

n/k = 2

n/k = 10
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required storage

2) Flexible Number of Disks & Fixed Storage Expansion
: Now we take a different viewpoint and analyze the benefit
of spreading the content across more disks while using the
same total storage space. Fig. 5 shows a simulation plot
of the mean response time T(n,k) versus k while keeping
constant code rate k/n = 1/2. The response time T(n,k)
reduces with increase in k because we get the diversity
advantage of having more disks. With a very large n, as
k increases, the theoretical bounds (7) and (10) suggest that
T(n,k) approaches zero. This is because we assumed that
service rate of a single disk µ′ = kµ since the 1/k units of
the content F is stored on one disk. However, in practice the
mean service time 1/µ′ will not go zero because reading each
disk will need some non-zero processing delay in completing
each task irrespective of the amount of data stored on it.

In order to understand the response time better, we plot
its CDF in Fig. 6 for different values of k for fixed ratio
k/n = 1/2. Again we observe that the diversity of increasing
number of disks n helps reduce the response time.

VI. CONCLUSION AND FUTURE WORK

We analyzed the download time of a content file from a
distributed storage system. We assume that content of interest
is available redundantly on multiple disks, or on multiple
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Fig. 5. The mean response time with constant code rate

nodes throughout the network, entirely or in chunks. Such
scenarios may be a consequence of caching throughout a
network or as a result of purposeful storage in data centers
and storage area networks. Our idea is to also make redun-
dant requests for content in order to reduce the download
time through route diversity (the fountain model) and load
balancing (the queuing model). Under this central idea, we
showed that the expected download time is significantly
reduced using coding – we divide the content into k parts,
apply an (n, k) MDS code and store it on n disks. The
file can be recovered by reading any k of the n disks. We
analytically studied the mean response time and derived tight
upper and lower bounds.

In practical storage systems, adding redundancy in storage
not only requires extra capital investment in storage devices,
networking and management but also consumes more energy.
It has been estimated that around 40% of total operation cost
has been related to power distribution, cooling, and electricity
bills [22] and the total data center power consumption in
2005 was already 1% of the total US power consumption
[23]. It would be interesting to study the fundamental tradeoff
between power consumption and quality of service (QoS)
performance and distill insight on system design. As we
have shown in this paper, for the same performance, coding
requires less redundancy than conventional replication based
storage. We would like to investigate how much energy
can coding based storage save us. Furthermore, this also
motivates the research on more efficient load balancing
algorithms, which not only fork each job onto a set of servers,
but do so with power conservation in mind.

In this paper we do not consider some other possible
costs, such as the decoding time required to reconstruct
the original content out of k received blocks, or placing
redundant requests. We try to qualitativly illustrate the
possible benefits of coding without exactly quantifying the
gains in particular, practical systems. Taking the decoding
time (which affects delay performance) into consideration
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motivates us to investigate the optimal redundancy level. We
also leave this as our future work.
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