
Machine Learning on Volatile Instances
Xiaoxi Zhang, Jianyu Wang, Gauri Joshi, Carlee Joe-Wong

Department of Electrical and Computer Engineering, Carnegie Mellon University, USA
Email:{xiaoxiz2, jianyuw1, gaurij, cjoewong}@andrew.cmu.edu

Abstract—Due to the massive size of the neural network models
and training datasets used in machine learning today, it is impera-
tive to distribute stochastic gradient descent (SGD) by splitting up
tasks such as gradient evaluation across multiple worker nodes.
However, running distributed SGD can be prohibitively expensive
because it may require specialized computing resources such as
GPUs for extended periods of time. We propose cost-effective
strategies that exploit volatile cloud instances that are cheaper
than standard instances, but may be interrupted by higher
priority workloads. To the best of our knowledge, this work
is the first to quantify how variations in the number of active
worker nodes (as a result of preemption) affects SGD convergence
and the time to train the model. By understanding these trade-
offs between preemption probability of the instances, accuracy,
and training time, we are able to derive practical strategies
for configuring distributed SGD jobs on volatile instances such
as Amazon EC2 spot instances and other preemptible cloud
instances. Experimental results show that our strategies achieve
good training performance at substantially lower cost.

Index Terms—Machine learning, Stochastic Gradient Descent,
volatile cloud instances, bidding strategies

I. INTRODUCTION

Stochastic gradient descent (SGD) is the core algorithm
used by most state-of-the-art machine learning (ML) problems
today [1]–[3]. Yet as ever more complex models are trained on
ever larger amounts of data, most SGD implementations have
been forced to distribute the task of computing gradients across
multiple “worker” nodes, thus reducing the computational bur-
den on any single node while speeding up the model training
through parallelization. Currently, even distributed training
jobs require high-performance computing infrastructure such
as GPUs and a reasonable amount of training time. However,
purchasing GPUs outright is expensive and requires intensive
setup and maintenance. Renting such machines as on-demand
instances from services like Amazon EC2 can reduce setup
costs, but may still be prohibitively expensive since distributed
training jobs can take hours or even days to complete.

A common way to save money on cloud instances is
to utilize volatile, or transient, instances, which have lower
prices but experience interruptions [4]–[6]. Examples of such
instances include Google Cloud Platform’s preemptible in-
stances [5] and Azure’s low-priority virtual machines [6]; both
give users access to virtual machines that can be preempted at
any time, but charge a significantly lower hourly price than on-
demand instances with availability guarantees. Amazon EC2’s
spot instances offer a similar service, but provide users addi-
tional flexibility by dynamically changing the price charged
for using spot instances. Users can then specify the maximum
price they are willing to pay, and they do not receive access

to the instance when the prevailing spot price exceeds their
specified maximum price [7]. Volatile computing resources
may also be used to train ML jobs outside of traditional cloud
contexts, e.g., in datacenters that run on “stranded power.”
Such datacenters only activate instances when the energy
network supplying power to the datacenter has excess energy
that needs to be burned off [8], [9], leading to significant
temporal volatility in resource availability. SGD variants are
also commonly used to train machine learning models in edge
computing contexts, where resource volatility is a significant
practical challenge [10], [11].

SGD algorithms can be run on volatile instances by de-
ploying each worker on a single instance, and deploying
the parameter server on an on-demand or reserved instance
that is never interrupted [12]. This deployment strategy, how-
ever, has drawbacks: since the workers may be interrupted
throughout the training process, they cannot update the model
parameters as frequently, increasing the error of the trained
model compared to deploying workers on on-demand in-
stances. Compensating for this increased error would require
either training the model for a larger number of iterations
or increasing the number of provisioned workers, both of
which will increase the training cost. In this paper, we
quantify the performance tradeoffs between error, cost, and
training time for volatile instances. We then use our analysis
to propose practical strategies for optimizing these tradeoffs
in realistic preemption environments. In particular, we first
consider Amazon spot instances, for which users can indirectly
control their preemptions by setting maximum bids, and derive
the resulting optimal bidding strategies. We then derive the
optimal number of iterations and workers when users cannot
control their instances’ probability of being preempted, as in
GCP’s preemptible instances and Azure’s low-priority VMs.
More specifically, this work makes the following contributions:

1) Quantifying training error convergence with dynamic num-
bers of workers (Section III). Using volatile instances that can
be interrupted and may rejoin later presents a new research
challenge: prior analyses of distributed SGD algorithms do
not consider the possibility that the number of active workers
will change over time. We derive new error bounds on the
convergence of SGD methods when the number of workers
varies over time and show that the bound is proportional to
the expected reciprocal of the number of active workers.
2) Deriving optimal spot bidding strategies (Section IV).
Bidding strategies for distributed machine learning jobs con-
sidering error convergence and the random runtime affected

by the bids have not been explored yet, to the best of our
knowledge. We analyze a unique three-way trade-off between
the cost, error, and training time, using which we can design
optimal bidding strategies to control the preemptions of spot
instances. For tractability, we focus on the case where each
worker submits one of two distinct bids.
3) Deriving the optimal number of workers (Section V). For
scenarios where users cannot control the preemption probabil-
ity, we propose a general relationship to connect the number of
provisioned workers to the expected reciprocal of the number
of active workers which can capture practical preemption
distributions. Using this, we then provide mathematical expres-
sions to jointly optimize the number of provisioned workers
and iterations. We also propose a strategy to dynamically
adjust the number of provisioned workers which can further
improve the error convergence.
4) Experimental validation on Amazon EC2 (Section VI). We
validate our results by running distributed SGD jobs analyzing
the CIFAR-10 [13] dataset on Amazon EC2. We show that our
derived optimal bid prices can reduce users’ cost by 65% on
real, and 62% on synthetic, spot price traces while meeting the
same error and completion time requirements, compared with
bidding a high price to minimize interruptions as suggested
in [14]. Moreover, we implement two simple but effective
dynamic strategies that reduce the cost and yield a better
cost/completion time/error trade-off: (i) adding workers later
in the job and re-optimizing the bids according to the realized
error and training time so far, (ii) exponentially increasing the
number of provisioned workers and running for a logarithmic
number of iterations.

II. RELATED WORK

Our work is broadly related to prior works on algorithm
analysis for distributed machine learning, as well as exploiting
spot instances to efficiently run computational jobs.

Distributed machine learning generally assumes that mul-
tiple workers send local computation results to be aggregated
at a central server, which then sends them updated parameter
values. The SGD algorithm [1], in which workers compute
the gradients of a given objective function with respect to
model parameters, is particularly popular. In SGD, workers
individually compute the gradient over stochastic samples
(usually a mini-batch [15]) chosen from data residing at each
worker in each iteration. Recent work has attempted to limit
device-server communication to reduce the training time of
SGD and related models [10], [16]–[18], while others analyze
the effect of the mini-batch size [15] or learning rate [19],
[20] on SGD algorithms’ training accuracy and convergence.
Bottou et al. [20] analyze the convergence of training error in
SGD algorithms but do not consider the running time of each
iteration. Dutta et al. [19] analyze the trade-off between the
training error and the (wall-clock) training time of distributed
SGD, accounting for stochastic runtimes for the gradient
computation at different workers. Our work is similar in spirit
but focuses on spot instances, which introduces cost as another
performance metric. We also go beyond [19], [20] to derive

error bounds when the number of active workers changes in
different iterations.

Utilizing spot and other transient cloud resources for
computing jobs has been extensively studied. Zheng et al. [12]
design optimal bids to minimize the cost of completing jobs
with a pre-determined execution time and no deadline. Other
works derive cost-aware bidding strategies that consider jobs’
deadline constraints [21] or jointly optimize the use of spot and
on-demand instances [22]. However, these frameworks cannot
handle distributed SGD’s dependencies between workers. An-
other line of work instead optimizes the markets in which users
bid for spot instances. Sharma et al. [14] advocate bidding the
price of an on-demand instance and migrating to VM instances
in other spot markets upon interruptions. The resulting migra-
tion overhead, however, requires complex checkpointing and
migration strategies due to SGD’s substantial communication
dependencies between workers, realizing limited savings [23].
Some software frameworks have been designed for running
big data analytics on transient instances [24], but they do not
include theoretical ML performance analyses.

III. ERROR AND RUNTIME ANALYSIS OF DISTRIBUTED
SGD WITH VOLATILE WORKERS

The number of active computing nodes used for distributed
SGD training affects the convergence of training error versus
the number of SGD iterations as well as the runtime spent
per iteration. Unlike most previous works in optimization
theory literature that focus only on error-versus-iterations
convergence, we consider both these factors and analyze the
true convergence of SGD with respect to the wall-clock time.
Moreover, to the best of our knowledge this is the first
work that presents an error and runtime analysis for volatile
computing instances, which can result in a changing number
of active workers during training.

In Section III-B below, we quantify how the preemption
probability adversely affects error convergence because having
fewer active workers yields more noisy gradients. In Sec-
tion III-C we analyze the effect of worker volatility on the
training runtime, which is affected in two opposing ways.
A higher preemption probability results in longer dead time
intervals where we have zero active workers. Although a
lower preemption probability yields more active workers, it
can increase synchronization delays in waiting for straggling
nodes. This error and runtime analysis lays the foundation for
subsequent results on bidding strategies that can dynamically
control the probability of preemption and the number of active
worker nodes used for SGD training.

In Sections IV and V, we use our results on the error and
runtime analysis from this section to minimize the cost of
training a job, subject to constraints on the maximum allow-
able error and runtime. Our goal is to solve the optimization
problem:

minimize : Expected total cost E[C] (1)
st.: Expected training error E[φ] ≤ ε, (2)

Expected completion time E[τ] ≤ θ, (3)

where ε and θ denote the maximum allowed error and the job
completion time respectively.

A. Distributed SGD Primer

Most state-of-the-art machine learning systems employ
Stochastic Gradient Descent (SGD) to train a neural network
model so as to minimize the empirical risk function G : Rd →
R over a training dataset S, which is defined as

G(w) ,
1

|S|

|S|∑
s=1

l(h(xs,w), ys), (4)

where the vector w denotes the model parameters (for ex-
ample, the weights and biases of a neural network model),
and the loss l(h(xs,w), ys) compares our model’s prediction
h(xs,w) to the true output ys, for each sample (xs, ys).

The mini-batch stochastic gradient descent (SGD) algo-
rithm iteratively minimizes G(w) by computing gradients
of l over a small, randomly chosen subset of data samples
Sj in each iteration j and updating w as per the update
rule wj+1 = wj − αjg(wj). where αj is the step size
and g(wj) =

∑
s∈Sj ∇l(h(xs,wj), ys)/|Sj |, the gradient

computed using samples in the mini-batch Sj .
Synchronous Distributed SGD. To further speed up the

training, many practical implementations parallelize gradient
computation by using the parameter server framework shown
in Fig. 1. In this framework, there is a central parameter server
and n worker nodes. Each worker has access to a subset
of the data, and in each iteration each worker fetches the
current parameters wj from the parameter server, computes
the gradients of l(h(xs,wj), ys) over one mini-batch of its
data, and pushes them to the parameter server. The parameter
server waits for gradients from all n workers before updating
the parameters to wj+1 as per

wj+1 = wj −
αj
n

n∑
i=1

g(i)(wj), (5)

where g(i)(wj) is the mini-batch gradient returned by the
ith worker. The updated wj+1 is then sent to all workers,
and the process repeats. This gradient aggregation method is
commonly referred to as synchronous SGD. Asynchronous
gradient aggregation can reduce the delays in waiting for strag-
gling workers, but causes staleness in the gradients returned
by workers, which can give inferior SGD convergence [19].
While we focus on synchronous SGD in this paper, the insights
could be extended to other distributed SGD variants.

Distributed SGD on Volatile Workers. In this work we
consider that the parameter server is run on an on-demand
instance, while the n workers are run on volatile instances that
can be interrupted or preempted during the training process, as
illustrated in Fig. 1. Let yj denote the number of active (i.e.,
not preempted) workers in iteration j, such that 0 < yj ≤ n for
all j = 1, . . . , J , where J is the total number of iterations. The
sequence y1, y2, . . . yJ can be considered as a random process.
When the number of active workers is 0 we do not consider it
as an ‘iteration’ of SGD. However, having zero workers will

Parameter Server

Worker 3

Wallclock Time

Er
ro

r

C
os

t

Zero
Active

Workers

More
Active

Workers

Fewer
Active

Workers

Worker 2Worker 1

Fig. 1: Parameter Server Model and an illustration of how
error and cost vary versus training time when the number of
workers varies with time. Having more active workers results
in a faster decrease in error, but a faster increase in cost.

increase the total training runtime, which we will account for
in the runtime analysis in Section III-C.

B. SGD Error Convergence with Variable Number of Workers

Next we give an upper-bound on the expected training
error in terms of yj for j = 1, . . . J . For error convergence
analysis we make the following assumptions on the objective
function G, which are common in most prior works on SGD
convergence analysis [19], [20].

Assumption 1 (Lipschitz-smoothness). The objective function
G(w) : Rd → R is L-Lipschitz smooth, i.e., it is continuously
differentiable and there exists L > 0 such that

‖ ∇G(w)−∇G(w′) ‖2≤ L ‖ w −w′ ‖2,∀w,w′ ∈ Rd (6)

Assumption 2 (First and second moments). Let
ESj [∇G(wj ,Sj)] represent the expected gradient at
iteration j for a mini-batch Sj of the training data. Then
there exist scalars µG ≥ µ > 0 such that

∇G(wj)
TESj [∇G(wj ,Sj)] ≥ µ ‖ ∇G(w) ‖22

and ‖ ESj [∇G(wj ,Sj)] ‖2 ≤ µG ‖ ∇G(w) ‖2 (7)

and scalars M,MV ≥ 0 and MG = MV + µ2
G ≥ 0 such that

ESj
[
‖ ∇G(wj ,Sj) ‖22

]
≤M +MG ‖ ∇G(w) ‖22 . (8)

for any given size of mini-batch Sj on one worker.

Theorem 1 (SGD Error Bound). Suppose the objective func-
tion G(·) satisfies Assumptions 1– 2 and is c-strongly convex
[25] with parameter c ≤ L. For a fixed step size 0 < α <
µ

LMG
, the expected training error after J iterations is:

E [G(wJ)−G∗] ≤ (1− αcµ)JE [G(w0)] +

1

2
α2LM

J∑
j=1

(1− αcµ)J−jE
[

1

yj

]
(9)

The proof is given in the Appendix. The above conver-
gence bound can be extended to handle non-convex objective
function G(·) and a diminishing step size, and we analyze
the convergence speed to a stationary point. The extension is
omitted for brevity purposes.

Remark 1 (Penalty for Using Volatile Instances). The error
bound in Theorem 1 is the smallest when the number of active

workers is not a random variable, i.e., SGD is run on on-
demand instead of volatile instances. This is because since
y−1
j is a convex function, using Jensen’s inequality we can

show that fixing the number of active workers to y = E [yj]
minimizes E

[
y−1
j

]
.

Remark 2 (Error and Preemption Probability). Suppose that
a worker is preempted with probability q in an iteration, then
the bound in Theorem 1 increases with q because E[1/yj] in-
creases with q. Thus, more frequent preemption or interruption
of workers reduces the effective number of active workers and
yields worse error convergence.

C. SGD Runtime Analysis with Volatile Workers

Now let us analyze how using volatile workers affects the
training runtime. The runtime has two components: 1) the time
required to complete the J SGD iterations, and 2) the idle time
when no workers are active and thus no iterations can be run.

Let R(yj) denote the runtime in the jth iteration in which
we have the set Yj of yj active workers. Suppose each
worker takes time rk to compute its gradient, where rk
is a random variable. Fluctuations in computation time are
common especially in cloud infrastructure due to background
processes, node outages, network delays etc. [26]. Since the
parameter server has to wait for all yj workers to finish their
gradient computations, the runtime per iteration is,

R(yj) = max
k∈Yj

rk + ∆, (10)

where ∆ is the time taken by the parameter server to update
w and push it to the yj workers. The E[R(yj)] increases with
the number of active workers. For example, if rk ∼ exp(µ),
an exponential random variable that is i.i.d. across workers
and mini-batches, then E[R(yj)] ≈ (log yj)/µ + ∆. Adding
this per-iteration runtime to the idle time when no workers
are active, we can show that the expected time required to
complete J SGD iterations is

E[τ] =

J∑
j=1

E [R(yj)] + E[idle time with no active workers]

For the case where each worker is preempted uniformly at
random with probability q in each iteration (as described in
Remark 2), then the expected completion time becomes E[τ] =∑J
j=1 E [R(yj)] /(1− qn).

IV. OPTIMIZING SPOT INSTANCE BIDS

In this section, we use the results of Section III to derive
the bid prices that minimize the cost of running distributed
SGD with workers placed on spot instances in markets. We
first consider the simple case in which we submit the same
bid for each worker in Section IV-A and then consider the
heterogeneous bid case in Section IV-B.

Spot Price and Bidding Model. Let pt denote the spot price
of each instance at time t. We assume pt is i.i.d. and is bounded
between a lower-bound

¯
p and an upper-bound p̄, similar to

prior works on optimal bidding in spot markets [12]. Let f(·)

and F (·) denote the probability density function (PDF) [27]
and the cumulative density function (CDF) [28] of the random
variable pt. When a bid b is placed for an instance, we consider
that the provider assigns available spot capacity to users in
descending order of their bids, stopping at users with bids
below the prevailing spot price. Thus, a worker is active only if
its bid price exceeds the current spot price. Hence, without loss
of generality the range of the bid price can also be assumed
to be

¯
p ≤ b ≤ p̄. Whenever a worker is active (b ≥ pt), the

per-time cost incurred for running it is equal to the prevailing
spot price pt (not the bid price).

A. Identical Worker Bids
Suppose we choose bid price b for each of the n workers.

We first simplify the error and runtime in Section III for this
case, and then solve the cost minimization problem (1)-(3).

Observe that the n workers all available or all interrupted
depending on the bid price b. This insight implies that
E
[
y−1
j

]
= 1/n, and thus that the error bound in Theorem 1

is independent of the bid b: this bid affects only the frequency
with which iterations are executed, not the number of active
workers within an iteration. We can thus rewrite the error
bound as a functions of J , the number of iterations required to
reach error ε. Formally, we set φ̂ to be the right-hand side of
(9) and J ≥ φ̂−1(ε), where φ̂−1(ε) is the number of iterations
required to ensure that the expected error is no larger than ε.

We further observe that, the number of active workers yj
always equals n when the job is running. Thus, the expected
runtime per iteration can be rewritten as E [R(yj)] = E[R(n)].
Accounting for the idle time we can show that the expected
completion time is monotonic with b:

Lemma 1 (Completion Time in Terms of Bid Price). Using
the same bid price b for all workers, the expected completion
time to complete J iterations of synchronous SGD is

E[τ] = JE[R(n)]/F (b), (11)

which increases with J and is non-increasing in the bid price
b. The function F (·) is the CDF of the spot price.

We can further show the expected cost (defined in (1)) is
monotonically non-decreasing with b and J .

Lemma 2 (Cost in Terms of Bid Price). Using one bid price
for all workers, the expected cost of finishing a synchronous
SGD job is given by

E[C] = JnE[R(n)]

(
¯
p+

∫ b

¯
p

(
1− F (p)

F (b)

)
dp

)
, (12)

which is non-decreasing in the bid price b and J . The function
F (·) is the CDF of the spot price.

Since both E[τ] and E[C] increase with J , we should set
J to be equal to φ̂−1(ε) in order to reach the target error in
minimum time and cost of the volatile workers.

Optimizing the bid price. Having shown that J = φ̂−1(ε),
we now find the optimal bid b that minimizes the expected
cost (see (1)).

According to Amazon’s policy [4], b is determined upon the
job submission without knowing the future spot prices and will
be fixed for the job’s lifetime. Although the user can effectively
change the bid price by terminating the original request and re-
bidding for a new VM, doing so induces significant migration
overhead. Thus, we assume that users employ persistent spot
requests: a worker with a persistent request will be resumed
once the spot price falls below its bid price, exiting the system
once its job completes. Using Lemma 1 and Lemma 2, we can
show the following theorem for the optimal bid price b.

Theorem 2 (Optimal Uniform Bid). When we make an iden-
tical bid b for n workers and use them to perform distributed
synchronous SGD to reach error ε within time θ, the optimal
bid price that minimizes the cost is b∗ = F−1

(
φ̂−1(ε)E[R(n)]

θ

)
.

Theorem 2 provides a general form of the optimal bid price,
given the number of workers per iteration, n, the deadline θ,
and the target error bound ε, for any distributions of the spot
price and training runtime per iteration.

B. Optimal Heterogeneous Bids

We next extend our results from Section IV-A to find the
optimal bidding strategy with two distinct bid prices b1 and
b2 for two groups of workers. This strategy is motivated by
the observation that bidding lower prices for some workers
yields a larger number of active workers when the spot price
is relatively low, which improves the training error but will not
cost much. Formally, we place bids of b1 for workers 1, · · · , n1

and b2 (< b1) for workers n1+1, · · · , n. We define the random
variable y(~b) ∈ {n1, n} as the number of active workers when
the bid prices are ~b = (b1, b2). Note that the times when 0
workers are active are not considered into an SGD ‘iteration’.
Thus, y(~b) can only be either n1 (with probability F (b1)−F (b2)

F (b1))
or n (with probability F (b2)/F (b1)) in each iteration.

Optimized bids. We initially assume that n1, the number
of workers in the first group, and J , the required number of
iterations, are fixed; thus, we optimize the trade-off between
the expected cost, expected completion time, and the expected
training error using only the bid prices ~b. After deriving the
closed-form optimal solutions of b1 and b2 in Theorem 3, we
discuss co-optimizing n1 and J with the bids ~b. The expected
cost minimization problem is given as follows.

min
~b

J

∫ b1

¯
p

E
[
R(~b, p)

]
y(~b)p

f(p)

F (b1)
dp (13)

subject to: E
[
φ̂(~b)

]
≤ ε (Error constraint) (14)

J

F (b1)

∫ b1

¯
p

E
[
R(~b, p)

] f(p)

F (b1)
dp ≤ θ (15)

p̄ ≥ b1 ≥ b2 ≥
¯
p, ∀i ≤ j (16)

To derive the cost and completion time expressions in (13)
and (15), we express the expected runtime of iteration j as
E
[
R(~b, p)

]
, a function of the bids and price; yj depends on

~b and thus is re-written as y(~b). For simplicity, we assume

that the spot prices do not change within each iteration. In
practice, the spot price changes at most once per hour [29],
compared to a runtime of several minutes per iteration, and
thus this assumption usually holds. Note that we did not need
this assumption for the identical bid case in Section IV-A since
all workers become active/inactive at the same time.

To derive the optimal bid prices, we first relate the dis-
tribution of the spot price and our bid prices to the training
error through the number of active workers, i.e., y(~b). From
Theorem 1, the expected error is at most ε if we can have a
y(~b) such that:

E

[
1

y(~b)

]
≤

2cµ
(
ε− (1− αcµ)JE[G(w0)]

)
αLM (1− (αcµ)J)

, Q(ε) (17)

Further, we simplify E
[
R(~b, p)

]
to be a function of the

number of active workers: E[R(X)] is the expected runtime
per iteration given X workers are active. We then provide
closed-form expressions for the optimal bid prices through
Theorem 3.

Theorem 3 (Optimal-Two Bids with a Fixed J). Suppose
the objective function G(·) satisfies Assumptions 1–2. Given a
number of iterations (J) that can guarantee 1

n < Q(ε) ≤ 1
n1

(Q(ε) is defined as the right-hand side of (17)), a fixed step
size α, and a feasible deadline (θ ≥ JE[R(n)]), we have the
optimal bid prices b∗1 and b∗2:

b∗1 = F−1

(
J

θ

(
(E[R(n)]− E[R(n1)])

1
n1
−Q(ε)

1
n1
− 1

n

+ E[R(n1)]

))

b∗2 = F−1

(
1
n1
−Q(ε)

1
n1
− 1

n

× F (b∗1)

)
, (18)

for any i.i.d. spot price and any i.i.d. running time per mini-
batch, i.e., F (·) and E[R(n)] (or E[R(n1)]) do not change
during the training process.

For brevity, we use Figure 2 to illustrate our proof of
Theorem 3. The key steps are: (i) change the variables of
the optimization problem (13) to be F (b1) and γ = F (b2)

F (b1) ; (ii)
show that the expected cost, completion time, and error are
monotonic w.r.t. to F (b1) and γ. Intuitively, the expected error
should depend only on the number of active workers given that
some workers are active, which is controlled by the relative
difference between F (b1) and F (b2): γ. Formally, the error
bound decreases with E

[
y(~b)−1

]
. Applying E

[
y(~b)−1

]
=

1
F (b1)

(
F (b1)−F (b2)

n1
+ F (b2)

n

)
= 1

n1
− 1

γ

(
1
n1
− 1

n

)
to (17)

gives us the the optimal γ, since the expected cost increases
with F (b1) and γ, respectively. We then choose F (b∗1) to the
one that yields E[τ] = θ (tight (15)). Intuitively, F (b∗1) should
be high enough to guarantee that some workers are active often
enough that the job completes before the deadline.

Co-optimizing n1 and ~b. If n1 is not a known input but a
variable to be co-optimized with ~b, we can write n1 and b∗2 in
terms of F (b∗1) according to (18) and plug them into (13)-(16)
to solve for b∗1 first, and then derive b∗2 and the optimal n1.

Expected error bound
decreases with �

Ex
pe

ct
ed

 e
rr

or
 b

ou
nd

�

(a) Error-vs-γ

Expected cost increases
with , given �

Ex
pe

ct
ed

 c
os

t

�

F (b1)

(b) Cost-vs-γ

Expected cost increases
with , given

F (b1)

�

Ex
pe

ct
ed

 c
os

t

F (b1)

(c) Cost-vs-F (b1)

Expected completion time
decreases with ,
given

F (b1)

�

Ex
pe

ct
ed

 c
om

pl
et

io
n

tim
e

F (b1)

(d) Compl. time-vs-F (b1)

Expected completion time
increases with ,
given

�

Ex
pe

ct
ed

 c
om

pl
et

io
n

tim
e

�

F (b1)

(e) Compl. time-vs-γ

Fig. 2: Illustration of how the expected cost, completion time and error vary w.r.t. F (b1) and γ = F (b2)
F (b1) . As a larger γ leads

to a smaller expected error (Fig. 2a) but a larger expected cost (Fig. 2b) and completion time (Fig. 2e), and the expected error
is only controlled by γ, the optimal γ should be the smallest possible γ, i.e., the one that yields error = ε. The optimal F (b1)
should be the one that yields the completion time equal to the deadline under the optimal γ (Fig. 2d).

Co-optimizing J and ~b. Taking J as an optimization
variable may allow us to further reduce the job’s cost. For
instance, allowing the job to run for more iterations, i.e.,
increasing J , increases Q(ε) (the right-hand side of (17)). We
can then increase E

[
1

y(~b)

]
by submitting lower bids b2, making

it less likely that workers n1 + 1, . . . , n will be active, while
still satisfying (17). A lower b2 may decrease the expected
cost by making workers less expensive, though this may be
offset by the increased number of iterations. To co-optimize
J , we show it is a function of ~b and ε:

Corollary 1 (Relationship of J and~b). To guarantee a training
error ≤ ε, the number of iterations J should be at least

J = log(1−αcµ)

ε− αLM
2cµ E

[
1

y(~b)

]
E[G(w0)]− αLM

2cµ E
[

1

y(~b)

] (19)

For brevity, we show the idea of co-optimizing J and ~b:
We first replace J in (13) and (15) by (19). Constraint (14)
is already guaranteed by (19) and can be removed. We then
solve for the remaining optimization variables, the bids ~b.

V. OPTIMAL NUMBER OF PREEMPTIBLE INSTANCES

In this section, we consider preemptible instances offered by
other cloud platforms, e.g., low priority VMs from Microsoft
Azure [6] and preemptible instances from Google Cloud
Platform [5]. Unlike spot instances where users can specify the
maximum prices they are willing to pay, on these platforms
users can only decide the number of provisioned instances to
request in each iteration. Therefore, in this section, we choose
to optimize the number of instances (workers) and assume the
instance price is stable during the entire training time [5]. To
better quantify the relationship between the number of active
workers yj and the number of provisioned workers n, we
consider the two preemption distributions in Lemma 3. We
will make use of the fact that for both distributions, there
exists a parameter χ > 0 such that E

[
1
yj

]
∝ 1

nχ . The problem
of minimizing the job cost is then equivalent to minimizing
E
[∑J

j=1 yjR (yj)
]
, subject to the completion time and error

constraints.

Lemma 3 (Example Distributions of yj). If the number of
active workers yj follows a uniform distribution P[yj = k] =
1
nj
,∀k = 1, · · · , nj , we have E

[
1
yj

]
≤ O

(
n
−1
2
j

)
; if each

worker is preempted with probability q each iteration, we have
E
[

1
yj

]
≤ O

(
1
nχj

)
, where there exists a χ ∈ (0, 1).

We then find closed-form solutions for the optimal number
of workers n and iterations J when χ ≥ 1 in Theorem 4 and
then provide a dynamic strategy with error analysis for any
χ > 0 in Theorem 5.

Theorem 4 (Co-optimizing n and J). Suppose E[yj] ∝ n and
E
[

1
yj

]
≤ d

n (d > 0), the probability of no active workers does
not depend on n, and the runtime per iteration is deterministic.
Then the completion time constraint (3) is simply J ≤ θδ
where δ is a constant), and the optimal J and n (denoted by
J∗ and n∗) satisfy:

J∗ = min

{
arg min
J∈{J1,J2}

BJ(1− βJ)

(1− β)(ε−AβJ)
, bθδc

}
,

J1 =
⌊
J̃
⌋
, J2 =

⌈
J̃
⌉
,
AβJ̃

(
J̃ ln 1

β + 1− βJ̃
)

1 + βJ̃(J̃ ln 1
β − 1)

= ε,

n∗ =

⌈
B(1− βJ̃)

(1− β)(ε−AβJ̃)

⌉
,

where β = 1− αcµ, A = E[G(w0)], and B = α2LMd
2 .

A strategy with dynamic numbers of workers. While
Theorem 4 gives us the exact optimal expression for n when
the provisioned number of workers is fixed over iterations,
ML practitioners often increase the number of workers over
time [30]–[32]. Intuitively, in the later stages of the model
training the parameter values are closer to convergence, and
thus it is crucial that the gradient updates are accurate, i.e.,
averaged over a larger number of worker mini-batches. More
formally, we observe in Theorem 1 that E

[
1
yj

]
’s contribution

to the error bound increases exponentially with j by 1
1−αcµ .

Inspired by these observations, we propose to decrease
E
[

1
yj

]
over iterations by controlling the provisioned number

of workers: we dynamically set the number of workers to be

nj =
⌈
n0η

j−1
⌉

for each iteration j. One can similarly expo-
nentially increasing the batch size of each worker while using
the same number of workers over iterations [33], but doing
so will exponentially increase the runtime of each iteration.
We prove in Theorem 5 that our dynamic strategy achieves
the same error convergence rate and a better asymptotic error
bound with a significantly smaller number of iterations than
using a static number of workers during the entire training.

Theorem 5. Suppose that the number of active workers yj
satisfies E

[
1
yj

]
≤ O

(
1
nχj

)
for some χ ≥ 0. Then hav-

ing
⌈
n0η

j−1
⌉

workers in iteration j and running SGD for⌈
logηχ (1 + (η − 1)J)

⌉
iterations achieves an error bound

no larger than having a fixed set of n0 workers running J
iterations when J is sufficiently large.

In the proof of Theorem 5, we also show that our dynamic
strategy achieves an error bound that converges to 0 asymp-
totically with J , while when using a static number of workers
the error bound in Theorem 1 converges to a positive constant.

We then optimize η to minimize the expected cost, subject
to the error and completion time constraints. If we ignore
straggler effects, we can define E [R(yj)] = R, ∀j. Suppose
zj denotes the number of active workers including the case
zj = 0, and zj follows a binomial distribution with parameter
nj and probability q (the probability that each instance is
inactive), namely, the probability that zj = 0 equals qn0η

j

.
Assuming E[yj] ∝ nj = n0η

j−1 and E
[

1
yj

]
≤ d

nχj
, our cost

minimization problem can be modified as follows.

minimizeη (1− ηJ)/(1− η) (20)

subject to :

J∑
j=1

R/(1− qn0η
j

) ≤ θ (21)

AβJ +
BβJ−1

(
1− (1

βηχ)J
)

nχ0

(
1− 1

βηχ

) ≤ ε (22)

ηχ > 1/β, (23)

where β = 1 − αcµ, A = E [G(w0)], and B = α2LMd
2 . For

any given J , both the objective function and constraints are
convex functions of η (refer to the operations that preserve
convexity in [25]). Therefore, we can use standard algorithms
for convex optimization to solve for the optimal η.

We can capture the effect of straggling workers by replacing
the constant per-iteration runtime R in (3) with E [R(yj)] =
1
λ (log n0 + (j − 1) log η) in the completion time constraint
(3). This constraint accounts for the fact that as we have more
active workers in each iteration, the per-iteration runtime will
likely increase because we need to wait for the slowest worker
to finish. As in the case without stragglers, we then observe
that our optimization problem is convex in η for each fixed
J , and moreover that there exists a finite maximum number
of iterations J for which (3) is feasible. Thus, we can jointly
optimize the optimal rate of increase in the number of workers,
η, and J by iterating over all possible values of J .

VI. EXPERIMENTAL VALIDATION

We evaluate our bidding strategy from Section IV-B on
the CIFAR-10 image classification benchmark dataset, using
J = 5000 iterations on ResNet-50 [34] and J = 10000 on
a small Convolutional Neural Network (CNN) [35] with two
convolutional layers and three fully connected layers; the dis-
tributed SGD algorithms under both datasets are implemented
based on Ray [36] and Tensorflow [37]. We run the former
experiments on a local cluster with GPU servers and the latter
on Amazon EC2’s c5.xlarge spot instances.

Choosing the experiment parameters. We set the deadline
(θ) to be twice the estimated runtime of using 8 workers to
process J iterations without interruptions. We estimate that
Q(ε) ∈ [1

n ,
1
n1

] for our choices of ε and J (ε = 0.98 for
ResNet-50 and ε = 0.65 for the small CNN), demonstrating
the robustness of our optimized strategies to mis-estimations.
To estimate the probability distribution of the spot prices, we
first consider two synthetic spot price distributions for the
ResNet-50 experiments: a uniform distribution in the range
[0.2, 1] and a Gaussian distribution with mean and variance
equal to 0.6 and 0.175; we draw the spot price when each
iteration starts and re-draw it every 4 seconds after the job is
interrupted. We then download the historical price traces of
c5.xlarge spot instances using Amazon EC2’s DescribeSpot-
PriceHistory API for the small CNN experiments, demonstrat-
ing that our bidding strategy is robust to non-i.i.d spot prices.

Superiority of our bidding strategies. We evaluate the
bidding strategies with both the optimal single bid price for all
workers (Optimal-one-bid) and the optimal bid prices for two
groups of workers derived in Theorem 3 (Optimal-two-bids)
against an aggressive No-interruptions strategy that chooses
a bid price larger than the maximum spot price. To further
minimize the expected total cost while guaranteeing a low
training/test error, we propose a Dynamic strategy, which
updates the optimal two bid prices when increasing the total
number of workers. More specifically, we initially launch four
workers (n1 = 2, n = 4) and apply our optimal two bid
prices. After completing 4000 iterations, we add four more
workers (n1 = 4, n = 8) and re-compute the optimal bids
in: we subtract the consumed time from the original deadline
θ and take J to be the number of remaining iterations. One
could further divide the training and re-optimization into more
stages. Frequent re-optimizing will likely incur significant
interruption overheads, but infrequent optimization may reduce
the cost with tolerable overhead. Figures 3 and 4 compare the
performance of our strategies on synthetic and real spot prices,
respectively. Figures 3a and 3b show that our dynamic strategy
leads to a lower cost and the no interruptions benchmark to a
higher cost for any given accuracy, compared to the optimal-
one-bid and optimal-two-bids strategies. In Figures 3c and 3d,
we indicate the cumulative cost as we run the jobs. The use
markers to indicate the costs where we achieve 98% accuracy;
while the no interruptions benchmark achieves this accuracy
much faster, it costs nearly three times as much as our dynamic
strategy and twice as much as our optimal-two-bids strategy.

0 1000 2000 3000 4000 5000

Cost

0

0.2

0.4

0.6

0.8

1
T

ra
in

in
g

 a
cc

u
ra

cy

No interruptions

Optimal-one-bid

Opimal-two-bids

Dynamic Strategy

(a) Accuracy-vs-cost, uniform
spot price distribution

0 1000 2000 3000 4000 5000

Cost

0

0.2

0.4

0.6

0.8

1

T
ra

in
in

g
 a

cc
u

ra
cy

No interruptions

Optimal-one-bid

Opimal-two-bids

Dynamic Strategy

(b) Accuracy-vs-cost, Gaussian
spot price distribution

0 200 400 600 800 1000 1200

Wall-clock time (s)

0

1000

2000

3000

4000

5000

C
o

st

No interruptions

Optimal-one-bid

Opimal-two-bids

Dynamic Strategy

(c) Cost-vs-time, uniform spot
price distribution

0 200 400 600 800 1000 1200

Wall-clock time (s)

0

1000

2000

3000

4000

5000

C
o

st

No interruptions

Optimal-one-bid

Opimal-two-bids

Dynamic Strategy

(d) Cost-vs-time, Gaussian spot
price distribution

Fig. 3: The dynamic strategy (a,b) achieves the highest test
accuracy under any given cost under synthetic spot prices. The
markers on the curves in (c,d) show the cost when achieving a
98% test accuracy; at which point No-interruptions, Optimal-
one-bid, and Optimal-two-bids respectively increase the cost
by 134%, 82%, 46% under the uniform distribution, and 103%,
101%, 43% under the Gaussian distribution relative to the
dynamic strategy.

Figures 4a and 4b show that our optimal-one-bid and optimal-
two-bids strategies can significantly save cost under the real
spot prices while achieving almost the same training accuracy
as the no interruptions benchmark.

Superiority of our choices of the number of workers. To
verify our results in Section V, we simulate No preemption
by running 2 workers for 10000 iterations without preemption
and observe that the final accuracy can approach 63%. We
then estimate the optimal n under J = 10000 to be 4 when
each instance is preempted with probability p = 0.5, aiming at
the same accuracy 65% (cff. Theorem 4, the estimated optimal
n is proportional to 1/(1 − p) even if the combination of n
and J is not the joint optimal solution). Figure 5a shows that
using our estimated n achieves a better accuracy per dollar
than randomly choosing n. We further show in Figure 5b that
our strategy Dynamic nj , which exponentially increases nj
by a fixed rate 1.0004 and runs for a much smaller number
of iterations set according to Theorem 5, achieves a better
accuracy per dollar, compared with using 1 worker for J =
10000 iterations (Static n = 1).

VII. DISCUSSION AND CONCLUSION

In this work, we consider the use of volatile workers that run
distributed SGD algorithms to train machine learning models.
We first focus on Amazon EC2 spot instances, which allow
users to reduce job cost at the expense of a longer training time
to achieve the same model accuracy. Spot instances allow users
to choose how much they are willing to pay for computing
resources, thus allowing them to control the trade off between

0 2 4 6 8

Cost ($) 10
-4

0

20

40

60

80

T
ra

in
in

g
 a

cc
u

ra
cy

 (
%

)

No interruptions
Optimal-one-bid
Opimal-two-bids

(a) Accuracy-vs-cost

0 2000 4000 6000 8000 10000

Iterations

0

2

4

6

C
o
st

 (
$
)

10
-4

No interruptions
Optimal-one-bid
Opimal-two-bids

(b) Cost-vs-iterations

Fig. 4: Under historical price traces of the c5x.large spot in-
stances in the region of us-west-2a (Oregon), Optimal-one-bid
and Optimal-two-bids can save cost by 26.27% and 65.46%
respectively compared with No-interruptions (Figure 4b) while
achieving 96.78% and 96.46% of the training accuracy that
No-interruptions achieves (Figure 4a).

0 1 2 3 4

Cost ($) 10
-4

0

20

40

60

T
ra

in
in

g
 a

cc
u

ra
cy

 (
%

)

Binomial y
j
 (p=0.5, n=4)

Binomial y
j
 (p=0.5, random n

j
)

No preemption (n=2)

(a) Accuracy-vs-cost varying
preemption probability and n

0 0.2 0.4 0.6 0.8 1 1.2

Cost ($) 10
-4

0

20

40

60

T
ra

in
in

g
 a

cc
u
ra

cy
 (

%
)

Static n = 1
Dynamic n

j

(b) Accuracy-vs-cost: static-vs-
dynamic strategies

Fig. 5: Using n estimated based on Theorem 4 achieves
higher accuracy per dollar than randomly setting n (Figure
5a); Compared with using 1 worker for J = 10000 iterations,
dynamically setting nj = 1.0004j−1 and the number of
iterations according to Theorem 5 with χ = 1 achieves higher
accuracy per dollar on EC2 spot instances.

a higher cost and a longer completion time or higher training
error. We quantify these tradeoffs and derive new bounds on
the training error with using time-variant numbers of workers.
We finally use these results to derive optimized bidding
strategies for users on spot instances and propose practical
strategies for scenarios without controlling the preemption of
the instances by submitting bids. We validate these strategies
by comparing them to heuristics when training neural network
models on the CIFAR-10 image dataset.

Our proposed strategies are an initial step towards a more
comprehensive set of methods that allow distributed ML
algorithms to exploit the benefits of volatile instances. As
a simple extension, one might adapt the bids over time as
we obtain better estimates of the iteration running time. Our
bidding strategies might also be generalized to allow different
bids for each worker. Even more generally, one can envision
dividing a resource budget across workers, with the budget
controlling each worker’s availability. This budget might be
a monetary budget when workers are run on cloud instances,
but if the workers are instead run on mobile devices, it might
instead represent a power budget that controls how often these
devices can afford to process data.

VIII. ACKNOWLEDGMENTS

This work was supported by NSF grants CNS-1751075,
CNS-1909306, CCF-1850029, and a 2018 IBM Faculty Re-
search Award. We also thank Fangjing Wu for her help.

APPENDIX

Proof of Theorem 1. G(wj+1) is at most:

G(wj) +∇G(wj) · (wj+1 −wj) +
L

2
||wj+1 −wj ||22 (24)

due to Assumption 1. Combining (5), Assumption 2, and (24),

E[G(wj+1)−G(wj)]

≤ −α||∇G(wj)||22
(
µ− αLMG

2

)
+ E

[
α2LM

2yj

]
(25)

≤ −1

2
αµ||∇G(wj)||22 + E

[
α2LM

2yj

]
, (26)

where (26) follows from our choice of 0 < α < µ
LMG

. If G(·)
is c-strong convex with c ≤ L, then it satisfies the Polyak-
Lojasiewicz condition ||∇G(wj)||22 ≥ 2c (G(wj)−G∗) ,∀wj

(Appendix B of [38]). Substituting this into (26) and subtract-
ing G∗ on both sides, we have:

E[G(wj+1)] ≤ (1− αcµ) (G(wj)−G∗) + E
[
α2LM

2yj

]
Applying the above inequality recursively over all iterations
leads to (9), and the theorem follows.

Proof of Lemma 2. The objective function (1) takes
the sum of price multipled by the runtime over
all J iterations with at least one active worker.

Therefore, we have E[C] =
J
∫ b
¯
p
nE[R(n)]pf(p)dp

F (b) , which

equals JnE[R(n)]
F (b)

∫ b
¯
p

(
(pF (p))

′ − F (p)
)

dp and thus
JnE[R(n)]
F (b)

(
bF (b)− bF (

¯
p)−

∫ b
¯
p
F (b)dp

)
. The lemma

follows as F (
¯
p) = 0.

Proof of Theorem 2. Note that E[C] is non-increasing with
b, the optimal number of iterations equals φ̂−1(ε), and the
expected cost in non-decreasing with b, the optimal bid price
has E[τ] = θ. Setting the right-hand side of (11) to be equal
to θ and taking J = φ̂−1(ε), we can conclude that the optimal
b should be equal to F−1

(
φ̂−1(ε)E[R(n)]

θ

)
.

Proof of Theorem 4. Given that yj is i.i.d. across all iterations
with E[yj | yj > 0] ∝ n, it suffices to minimize J · n subject

to AβJ +
B(1−βJ)
n(1−β) ≤ ε. Suppose the n∗ is a feasible

solution that is not least integer that makes the error constraint

tight, i.e., satisfying AβJ
∗

+
B
(

1−βJ
∗)

(n∗−1)(1−β) ≤ ε, there exists
a feasible solution n′ = n∗ − 1 such that the objective
value J∗ · n′ is strictly smaller than J∗ · n∗, a contradic-
tion. Therefore, we can replace the objective function J · n
by BJ(1−βJ)

(1−β)(ε−AβJ)
. Letting its derivative to be zero leads to

AβJ̃
(
J̃ ln 1

β+1−βJ̃
)

1+βJ̃ (J̃ ln 1
β−1)

(denoted by H(J̃)) = ε where J̃ can be

fractional. One can verify that H(J̃) monotonically decreases
with J̃ and the objective function is smooth. Thus, J∗ should
be among: the least integer no smaller than J̃ , the largest
integer no larger than J̃ , and bθδc, whichever that yields the
smallest objective value, the theorem follows.

Proof of Theorem 5. Based on our Theorem 1, the error
bound of using

⌈
n0η

j−1
⌉

workers in iteration j and running
the SGD for J ′ iterations is at most:

(1− αcµ)J
′
E[G(w0)] +B

J′∑
j=1

(1− αcµ)J
′−j

(n0ηj−1)
χ

=(1− αcµ)J
′
E[G(w0)] +

B

nχ0
·
J′∑
j=1

(1− αcµ)J
′−1

[ηχ(1− αcµ)]
j−1

=(1− αcµ)J
′
E[G(w0)] +

B

nχ0
· (1− αcµ)J

′−1 · 1− xJ′

1− x
,

(27)

where we define x = 1
ηχ(1−αcµ) and B is a constant linear

with α2LM
2 . Given our choice of ηχ > (1−αcµ)−1, the error

bound will exponentially decrease with J ′. In comparison, if
using n0 workers for J iterations, the error is at most:

(1− αcµ)JE[G(w0)] +
B

n0
· 1− (1− αcµ)J

αcµ
(28)

Based on (27), (28), and our choice of η, the error decay
rate is no smaller than (1 − αcµ) in the dynamic strategy
(bound (27)) and equals (1 − αcµ) in the static strategy.
Moreover, when J → +∞, the error bound of the dynamic

strategy approaches
BβJ

′−1
(

1−(1
βηχ)J

′)
nχ0 (1− 1

βηχ)
, where β := 1−αcµ,

while that of the static strategy (28) approaches B
(1−β)n0

.
Putting J ′ = logη (1 + (η − 1)J) into the former, it becomes
B[(ηχ+1)J+1]

logηχ β

nβ(1− 1
βηχ)

which is smaller than B
(1−β)n0

(error
bound of the static strategy) when J is sufficiently large due
to logηχ β < 0, the theorem follows.

Proof of Lemma 3. For such a uniform yj , we have:

E
[

1

yj

]
=

nj∑
k=1

1

k
· 1

nj
≤ lnnj + 1

nj
≤ O

(
1

n
1/2
j

)
If each worker is preempted with probability q, it suffices to
show that for a constant d > 0, any q ∈ [1

2 , 1), and γ ∈ (0, 1),∣∣∣E[1
yj

]
− E

[
1

yj+1

]∣∣∣ ≤ dn−γ is at most

≤ 1

1− qn

(
nγ∑
y=1

1

y(y + 1)

(
n

y

)
qn +

n∑
y=nγ+1

1

y(y + 1)

(
n

y

)
qn

)

≤ 1

1− qn

(
nγ
(
qnn

γ−1
)n

+
1

n2γ−1

)
≤ d

n2γ−1

and E
[

1
yj+1

]
= 1−qn+1

(1+n)(1−q) according to [39]. The result also
holds for q ∈ (0, 1

2) by applying the derivation on 1−q which
is ∈ [1

2 , 1)), rather than on q, the lemma follows.

REFERENCES

[1] H. Robbins and S. Monro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[2] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT, 2010.

[3] J. D. et al., “Large scale distributed deep networks,” in International
Conference on Neural Information Processing Systems (NIPS), vol. 1,
2012, pp. 1223–1231.

[4] Amazon EC2, “Amazon ec2 spot instances,” https://aws.amazon.com/
ec2/spot/, 2019.

[5] Google Cloud Platform, “Preemptible virtual machines,” https://cloud.
google.com/preemptible-vms/, 2019.

[6] Microsoft Azure, “Announcing low-priority vms on scale sets
now in public preview,” https://azure.microsoft.com/en-us/blog/
low-priority-scale-sets/, 2018.

[7] Amazon EC2, “Spot price overrides,” https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/spot-fleet.html#spot-price-overrides, 2019.

[8] F. Yang and A. A. Chien, “Zccloud: Exploring wasted green power for
high-performance computing,” in 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2016, pp. 1051–
1060.

[9] A. A. Chien, F. Yang, and C. Zhang, “Characterizing curtailed and
uneconomic renewable power in the mid-continent independent system
operator,” arXiv preprint arXiv:1702.05403, 2016.

[10] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[11] Z. Tao and Q. Li, “esgd: Communication efficient distributed deep
learning on the edge,” in {USENIX} Workshop on Hot Topics in Edge
Computing (HotEdge 18), 2018.

[12] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How to
bid the cloud,” in Proc. ACM SIGCOMM, 2015.

[13] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” https:
//www.cs.toronto.edu/∼kriz/cifar.html.

[14] P. Sharma, D. Irwin, and P. Shenoy, “How not to bid the cloud,” in Proc.
USENIX Conference on Hot Topics in Cloud Computing (HotCloud),
2016.

[15] O. S. Ofer Dekel, Ran Gilad-Bachrach and L. Xiao., “Optimal distributed
online prediction using mini-batches.” Journal of Machine Learning
Research, vol. 13, no. 1, pp. 165–202, 2012.

[16] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient dis-
tributed optimization using an approximate newton-type method,” in
International conference on machine learning, 2014, pp. 1000–1008.

[17] M. Kamp, L. Adilova, J. Sicking, F. Hüger, P. Schlicht, T. Wirtz, and
S. Wrobel, “Efficient decentralized deep learning by dynamic model
averaging,” arXiv preprint arXiv:1807.03210, 2018.

[18] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proceedings of AISTATS, 2017. [Online].
Available: http://arxiv.org/abs/1602.05629

[19] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and
stale gradients can win the race: Error-runtime trade-offs in distributed
sgd,” in Proceedings of AISTATS, 2018.

[20] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–311,
2018.

[21] M. Zafer, Y. Song, and K.-W. Lee, “Optimal bids for spot vms in a
cloud for deadline constrained jobs,” in Proc. of IEEE CLOUD, 2012.

[22] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons,
“Proteus: Agile ml elasticity through tiered reliability in dynamic re-
source markets,” in Proc. of European Conference on Computer Systems,
2017.

[23] K. Lee and M. Son, “Deepspotcloud: leveraging cross-region gpu spot
instances for deep learning,” in Proceedings of IEEE CLOUD. IEEE,
2017, pp. 98–105.

[24] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda, “Tr-
spark: Transient computing for big data analytics,” in Proceedings of
the Seventh ACM Symposium on Cloud Computing. ACM, 2016, pp.
484–496.

[25] S. Boyd and L. Vandenberghe, “Convex optimization,” Cambridge
university press, 2014.

[26] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[27] “Probability density function.” [Online]. Available: https://en.wikipedia.
org/wiki/Probability density function

[28] “Cumulative distribution function.” [Online]. Available: https://en.
wikipedia.org/wiki/Cumulative distribution function

[29] “How spot instances work,” https://docs.
aws.amazon.com/aws-technical-content/latest/
cost-optimization-leveraging-ec2-spot-instances/
how-spot-instances-work.html.

[30] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” in Proc. of SysML
Conference, 2019.

[31] H. Yun, H.-F. Yu, C.-J. Hsieh, S. V. N. Vishwanathan, and I. Dhillon,
“Nomad: Non-locking, stochastic multi-machine algorithm for asyn-
chronous and decentralized matrix completion,” in Proc. of VLDB
Endowment, 2014.

[32] J. Chen, X. Pan, R. Monga, and S. Bengio, “Revisiting distributed
synchronous sgd,” in Proc. of ICLR Workshop Track, 2016.

[33] H. Yu and R. Jin, “On the computation and communication complexity
of parallel sgd with dynamic batch sizes for stochastic non-convex
optimization,” in Proc. of ICML, 2019.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[35] G. E. H. Alex Krizhevsky, IIya Sutskever, “Imagenet classification with
deep convolutional neural networks,” in Proceedings of NIPS, 2012.

[36] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” in In Proceedings
of USENIX OSDI, 2018.

[37] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, , and X. Zheng., “Tensorflow: A system for large-scale
machine learning.” in In Proceedings of USENIX OSDI, 2016.

[38] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the polyak-ojasiewicz condition,”
in Proc. of ECML PKDD, 2016.

[39] M. T. Chao and W. E. Strawderman, “Negative moments of positive
random variables,” Journal of the American Statistical Association,
vol. 67, no. 338, pp. 429–431, 1972.

