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Problem: Stragglers in Parallel Computing

o A job with hundreds of parallel tasks
o Machine response time can vary due to virtualization, congestion etc.
o The slowest tasks are the bottleneck in job completion

> j Task 1 _
[Dean “Tail at Scale” 2013]

g _--

v

v

v

Task n

Gauri Joshi Straggler Replication to Reduce Latency 2



Solution: Replication of Stragglers

Re-run the stragglers when p fraction of tasks are remaining
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Related Previous Work

Task Replication in Systems Literature

o First used in MapReduce [Dean 2008] via back-up tasks
o Further developed in [Zaharia 2008], [Ananthanarayanan 2010] etc

Used in practice, but little theoretical analysis so far

Our Contributions

o Provide design insights on how to schedule task replication to reduce
delay, with efficient use of additional resources

[1] D. Wang, G. Joshi, G. Wornell, ” Efficient Task Replication for Fast Response
Times in Parallel Computation 7, SIGMETRICS 2014

[2] D. Wang, "Computing with Unreliable Resources”, PhD Thesis, MIT, 2014

[3] G. Joshi, “Efficient Redundancy Techniques to Reduce Delay in Cloud Systems”,
PhD Thesis, MIT 2016
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System Model

o Ajob with n parallel tasks, n is large

o Finish time of a task, X ~ F,, i.i.d. across Task 1
machines.

Task 2

Remark on the i.i.d assumptions: Job

o From cloud user’s point of view, all rented
machines are approx. identical.

Task n
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Performance Metrics

o Expected Latency E[T] = Expected Time when all tasks finish

o Expected Cost E[C]= Expected total machine time spent,
normalized by # of tasks

T=max(4,1,2)=4

C=(4

One job with 3 +1
tasks

+2)/3

=7/3

Remark on cost metric
o There could be other costs - network, memory usage, etc
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Outline

Analysis of E[T] and E[C] using Extreme Value Theory

o Tail behavior of Fy is a key factor affecting the E[T]-E[C]
trade-off

Heuristic Algorithm to find best replication strategy

o Compare with back-up tasks in MapReduce using Google
trace data
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Replication Policy: When to re-run?

o Re-run the stragglers when p fraction of tasks are left

>j V{askl
>j \/{askz p=25%

> j fask 3
>
j Task 4
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Replication Policy: When to re-run?

o Re-run the stragglers when p fraction of tasks are left

>j V{askl
>j \/{askz p=25%

>j fask3

\ i Task 4

Gauri Joshi Straggler Replication to Reduce Latency



Replication Policy: How many replicas?

o Re-run the stragglers when p fraction of tasks are left
o Run r additional replicas

j \/Taskl

j \/Taskz
p=25%
j ‘Aask3 r=1
>

Wait for any

1 out of r+1
replicas to finish,
and cancel the rest
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Replication Policy: Relaunch or not?

o Re-run the stragglers when p fraction of tasks are left
o Run r additional replicas

j \/Taskl

j \/Task 2
p=25%
j ‘Aask3 Relaunch

Relaunching the
original task on
another machine
replica
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Replication Policy: Relaunch or not?

o Re-run the stragglers when p fraction of tasks are left
o Run r additional replicas

j \/(Fask 1
>

N j \/Taskz
p=25%
j /Task3 =1

j Tack 4 No Relaunch

Keeping the
j Task 4

original task
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Problem Formulation

Given n tasks, and task finish time distribution F,,

Design Parameters

o p: Fraction of tasks left when we replicate
o r: Number of additional replicas

o Relaunch original straggling task or not

Performance Metrics

o Latency E[T]
o Cost E[C]
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Evaluating Expected Latency E[T]

o Wait for (1-p)n tasks to finish

o Launch replicas of the pn stragglers
o Time for 1 out r+1 copies to finish Y ~ F, =g(F,, r, kill/keep)
o Fore.g. r=1 with task-killing = (1-F,) = (1-F,)?

T — X(l—p)n:n 1 an:pn Notation X,.,:

kth smallest of nii.i.d.
rvs Xy, Xy, o X,

N

Maximum of
finish times of
the pn stragglers
fter replicatio

ait for (1-p)n
out of n tasks
to finish
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Evaluating Expected Latency E[T]

E[T] — IE‘:1’[)((1—]0)77;%]

_|_

E[Ypn:pn)

Central Value
Theorem

n -> oo

v

Fy'(1-p)

Extreme Value

Theorem

v

Different behavior for
Exponential, Light or
Heavy tailed Y

Asymptotic approx for n -> « is close to simulation even for n ~ 300
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Exercise: Task Execution Time X ~ Exp(p)

]E’[T] — IE‘j’[‘X(l—p)n:n]

+ E[Ypn:pn)

Central Value
Theorem

n-> oo

v

Fy'(1-p)

Extreme Value
Theorem

W

Different behavior for
Exponential, Light or
Heavy tailed Y
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Comparing Theoretical Analysis with Simulations

X~ 1+ Exp(1), and n =400

E[T]
7 4

r =1 & kill

original copy
r =1 & keep
original copy
r = 2 & kill

original copy
r = 2 & keep

original copy
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Evaluating Expected Cost E[C]

(1-p)n pn
EIC) =~ Y EXp)+ "ZEIO] + 3 (r + DEY]

- / e (h)dh + pFg 1~ p)+ (r + DPELY] + O(1/n)

By Central
Value Theorem
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Case: Shifted Exponential (Exp. tail)

X~ 1+ Exp(1), and n =400

1]
.................. ® baseline
gl e r = 0 & relaunch
- == r =1 & relaunch
S N r = 1 no relaunch
7T [_‘ r = 2 & relaunch
E\\ -—-= 7 = 2 no relaunch
6 + \
5 .
4 -
| > E[C]
2 3 4 5 6

o Increasing p and r reduces latency but increases cost
o Killing a straggling task never helps!
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Case: Pareto (Heavy tail)

X ~ Pareto (2, 2) and n =400

E[T]

60 + ® baseline
------ r = 0 & relaunch
- == 1 =1 & relaunch
: J[ESIEEE r = 1 no relaunch
40 + : r = 2 & relaunch
Ik -—.=1 = 2 no relaunch
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Latency and cost both reduce for small p!
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Outline

Analysis of E[T] and E[C] using Extreme Value Theory
o Tail behavior is a key factor affecting the E[T]-E[C] trade-off

Heuristic Algorithm to find best replication strategy

o Comparing with back-up tasks in MapReduce using Google
trace data
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Example: Job with 1026 tasks
Google Cluster Data
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Expected Latency E[T]

Simulations using Google Cluster Data

Latency-Cost Trade-off
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Careful choice of replication strategy can be
better than the default in MapReduce
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Example: Job with 488 tasks
Google Cluster Data
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Expected Latency E[T]

Simulations using Google Cluster Data
Latency-Cost Trade-off
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Heuristic Search of the Best Strategy

May be hard to use our analysis to optimize the strategy for any F,
Analysis of E[T] and E[C] after replication can be hard

ESTIMATION
o Estimate F, from traces of task execution time

o Use empirical F, to estimate J = E[T] + p E[C] for given p, r,
relaunch/not

HEURISTIC ALGORITHM
1. For given p, choose r, and the kill/keep strategy that minimizes J
2. Perform gradient descent on p
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Heuristic Algo: Resulting E[T] and E[C]

o Run heuristic algorithm with different y, to minimize J = E[T] +u E[C]
o r=1, without relaunch (I=1): Back-up tasks option in MapReduce
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Concluding Remarks

SUMMARY
o Tail behavior is important in choosing the right policy
o Pareto, Shifted Exponential etc.

o Heuristic algorithm to find good replication policy given traces of
execution time

RELATED AND FUTURE WORK
o Queueing of jobs (next class)
o Online algorithm to learn F, and schedule simultaneously
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