
Using Straggler Replication to Reduce 
Latency in Large-scale Parallel Computing

Da Wang, Gauri Joshi, Gregory Wornell

Gauri	Joshi	 Straggler	Replication	to	Reduce	Latency 1



Problem: Stragglers in Parallel Computing

o A job with hundreds of parallel tasks
o Machine response time can vary due to virtualization, congestion etc.  
o The slowest tasks are the bottleneck in job completion

[Dean “Tail at Scale” 2013]

Latency 50%ile 99%ile

1	task	finishes 1ms 10ms

All	tasks finish 40ms 140	
ms
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Solution: Replication of Stragglers

Re-run the stragglers when p fraction of tasks are remaining
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Related Previous Work
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Task Replication in Systems Literature
o First used in MapReduce [Dean 2008] via back-up tasks
o Further developed in [Zaharia 2008], [Ananthanarayanan 2010] etc

Used in practice, but little theoretical analysis so far

Our Contributions
o Provide design insights on how to schedule task replication to reduce 

delay, with efficient use of additional resources

[1] D. Wang, G. Joshi, G. Wornell, ” Efficient Task Replication for Fast Response 
Times in Parallel Computation ”, SIGMETRICS 2014
[2] D. Wang, ”Computing with Unreliable Resources”, PhD Thesis, MIT, 2014
[3] G. Joshi, “Efficient Redundancy Techniques to Reduce Delay in Cloud Systems”, 
PhD Thesis, MIT 2016



System Model

o A job with n parallel tasks, n is large
o Finish time of a task, X ~ FX, i.i.d. across 

machines.

Remark on the i.i.d assumptions:

o From cloud user’s point of view, all rented 
machines are approx. identical. 

Gauri	Joshi Straggler	Replication	to	Reduce	Latency 5

Job

Task	1

Task	2

Task	n



o Expected Latency E[T] = Expected Time when all tasks finish
o Expected Cost E[C]= Expected total machine time spent, 

normalized by # of tasks

Remark on cost metric
o There could be other costs – network, memory usage, etc

Performance Metrics

One	job	with	3
tasks

C	=	(4

+1

+2)/3

=7/3

T	=	max(4,	1,	2)	=	4
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Outline

Analysis of E[T] and E[C] using Extreme Value Theory
o Tail behavior of FX  is a key factor affecting the E[T]-E[C] 

trade-off

Heuristic Algorithm to find best replication strategy
o Compare with back-up tasks in MapReduce using Google 

trace data
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Replication Policy: When to re-run?
o Re-run the stragglers when p fraction of tasks are left

p = 25%
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Replication Policy: When to re-run?
o Re-run the stragglers when p fraction of tasks are left

p = 25%
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Replication Policy: How many replicas?
o Re-run the stragglers when p fraction of tasks are left
o Run r additional replicas

p = 25%
r = 1
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replicas	to	finish,	
and	cancel	the	rest



Replication Policy: Relaunch or not?
o Re-run the stragglers when p fraction of tasks are left
o Run r additional replicas

p = 25%
Relaunch

Gauri	Joshi Straggler	Replication	to	Reduce	Latency 11

Task	1

Task	2

Task	3

Task	4

Task	4

Wait	for	any	
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Relaunching the	
original	task	on	
another	machine



Replication Policy: Relaunch or not?
o Re-run the stragglers when p fraction of tasks are left
o Run r additional replicas

p = 25%
r = 1

No Relaunch

Keeping	the	
original	task
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Problem Formulation

Given n tasks, and task finish time distribution FX,

Design Parameters
o p: Fraction of tasks left when we replicate
o r: Number of additional replicas
o Relaunch original straggling task or not

Performance Metrics
o Latency E[T]
o Cost E[C]
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Evaluating Expected Latency E[T]

o Wait for (1-p)n tasks to finish
o Launch replicas of the pn stragglers

o Time for 1 out r+1 copies to finish Y ~ FY =g(FX, r, kill/keep)
o For e.g. r= 1 with task-killing à (1-FY) = (1-FX)2
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T = X(1�p)n:n + Ypn:pn

Maximum	of	
finish	times	of	

the	pn stragglers	
after	replication

Wait	for	(1-p)n	
out	of	n	tasks	

to	finish

Notation	Xk:n:
kth smallest	of	n	i.i.d.	
rvs X1,	X2,	..	Xn



Evaluating Expected Latency E[T]
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E[X(1�p)n:n] = x1�p = F�1
X (1� p)

Central	Value	
Theorem

Extreme	Value	
Theorem

Different	behavior	for	
Exponential,	Light	or	
Heavy	tailed	Y

Asymptotic approx for n -> ∞ is close to simulation even for n ~ 300

n -> ∞ n -> ∞ 



Exercise: Task Execution Time X ~ Exp(μ)
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E[X(1�p)n:n] = x1�p = F�1
X (1� p)

Central	Value	
Theorem

Extreme	Value	
Theorem

Different	behavior	for	
Exponential,	Light	or	
Heavy	tailed	Y

n -> ∞ n -> ∞ 



Comparing Theoretical Analysis with Simulations
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X ∼ 1+ Exp(1), and n = 400
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r = 2 & kill
original copy
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original copy



Evaluating Expected Cost E[C]
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E[C] =
1

n

(1�p)nX

i=1

E[Xi:n] +
np

n
E[T (1)] +

1

n

pnX

j=1

(r + 1)E[Y ]

=

Z 1�p

0
F

�1
X (h)dh+ pF

�1
X (1� p) + (r + 1)pE[Y ] +O(1/n)

By	Central	
Value	Theorem



Case: Shifted Exponential (Exp. tail)
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X ∼ 1+ Exp(1), and n = 400

2 3 4 5 6

4

5

6

7

8

E [C]
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baseline

r = 0 & relaunch

r = 1 & relaunch

r = 1 no relaunch

r = 2 & relaunch

r = 2 no relaunch

o Increasing p and r reduces latency but increases cost
o Killing a straggling task never helps!



Case: Pareto (Heavy tail)
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X ∼ Pareto (2, 2) and n =400
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p⇤0 ⇡ 0.03

p⇤1 ⇡ 0.05
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E[C]

E[T ]

baseline

r = 0 & relaunch

r = 1 & relaunch

r = 1 no relaunch

r = 2 & relaunch

r = 2 no relaunch

Latency and cost both reduce for small p! 



Outline

Analysis of E[T] and E[C] using Extreme Value Theory
o Tail behavior is a key factor affecting the E[T]-E[C] trade-off

Heuristic Algorithm to find best replication strategy
o Comparing with back-up tasks in MapReduce using Google 

trace data
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Example: Job with 1026 tasks
Google Cluster Data

22

Straggling	
Tasks
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Simulations using Google Cluster Data
Latency-Cost Trade-off
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Careful	choice	of	replication	strategy	can	be	
better	than	the	default	in	MapReduce	



Example: Job with 488 tasks
Google Cluster Data

24

Straggling	
Tasks
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Simulations using Google Cluster Data
Latency-Cost Trade-off
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Heuristic Search of the Best Strategy
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May be hard to use our analysis to optimize the strategy for any FX
• Analysis of E[T] and E[C] after replication can be hard

ESTIMATION
o Estimate FX from traces of task execution time
o Use empirical FX to estimate J = E[T] + µ E[C] for given p, r, 

relaunch/not

HEURISTIC ALGORITHM
1. For given p, choose r, and the kill/keep strategy that minimizes J
2. Perform gradient descent on p
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r = 1, l = 1 and varying p

Baseline: p = 0

µ = 3 Heuristic: (p, r, l) = (0.122, 2, 1)

µ = 2 Heuristic: (p, r, l) = (0.086, 4, 1)

µ = 1 Heuristic: (p, r, l) = (0.145, 5, 1)

o Run heuristic algorithm with different µ, to minimize J = E[T] +µ E[C]
o r= 1, without relaunch (l=1): Back-up tasks option in MapReduce

Heuristic Algo: Resulting E[T] and E[C]
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Concluding Remarks

SUMMARY
o Tail behavior is important in choosing the right policy

o Pareto, Shifted Exponential etc.
o Heuristic algorithm to find good replication policy given traces of 

execution time

RELATED AND FUTURE WORK
o Queueing of jobs (next class)
o Online algorithm to learn FX and schedule simultaneously
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