Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD

Sanghamitra Dutta, Gauri Joshi (Carnegie Mellon)

Soumyadip Ghosh, Parijat Dube, Priya Nagpurkar (IBM Research)

22th Oct 2018

Stochastic Gradient Descent is the backbone of ML

Speeding Up SGD convergence is of critical importance!

Accelerating single-node SGD convergence

$$\mathbf{w}_{j+1} = \mathbf{w}_j - \frac{\eta}{m} \sum_{n=1}^m \nabla f(\mathbf{w}_j, \xi_n)$$

Learning Rate Schedules: AdaGrad, Adam

Momentum Methods: Polyak, Nesterov

Variance Reduction Methods

Second-Order Hessian Methods

For large training datasets singlenode SGD can be prohibitively slow...

MAGENET

This Work: Speeding Up Distributed SGD via Scheduling + Algorithmic Techniques

Gradient Staleness

Batch Gradient Descent

 $F(\mathbf{w})$

F(w) is the empirical risk function

$$\min_{\mathbf{w}} \left\{ F(\mathbf{w}) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} f(\mathbf{w}, \xi_n) \right\}$$

 ξ_n is the n-th labeled sample

Stochastic Gradient Descent

 $F(\mathbf{w}) \qquad F(\mathbf{w}) \text{ is a function of the training dataset} \\ \min_{\mathbf{w}} \left\{ F(\mathbf{w}) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} f(\mathbf{w}, \xi_n) \right\} \\ \xi_n \text{ is the n-th labeled sample}$

Mini-batch SGD

 $F(\mathbf{w})$

 ξ_n is the n-th labeled sample

Parameter Server Model: Synchronous SGD

Can process a P-times larger mini-batch in each iteration

Bottlenecked by one or more slow learners

Parameter Server Model: Asynchronous SGD

[Recht 2011, Dean 2012, Cipar 2013 ...]

Don't have to wait for straggling learners

Gradient Staleness can increase error

Parameter Server Model: Asynchronous SGD

[Recht 2011, Dean 2012, Cipar 2013 ...]

Don't have to wait for straggling learners

Gradient Staleness can increase error

Parameter Server Model: Asynchronous SGD

Don't have to wait for straggling learners

Gradient Staleness can increase error

Main Results

Runtime & Error Analysis of Sync, Async SGD

Straggler Mitigation via SGD variants

Staleness Compensation in Async SGD

Expected Time Per Iteration

Synchronous SGD

$$\mathbb{E}[T] = \mathbb{E}[X_{P:P}]$$
$$\approx \frac{1}{\mu} \log P$$

Expected Time Per Iteration

Synchronous SGDAsynchronous SGD
$$\mathbb{E}[T] = \mathbb{E}[X_{P:P}]$$
 $\mathbb{E}[T] = \frac{1}{\mu P}$ $\approx \frac{1}{\mu} \log P$ P log P times
smaller!

Sync SGD: Error Analysis

Update Rule: Equivalent to mini-batch SGD with batch size Pm

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \frac{\eta}{P} \sum_{i=1}^{P} g(\mathbf{w}_n, \xi_i)$$

For c-strongly convex, L-smooth functions [Bottou, 2016]

$$\mathbb{E}[F(\mathbf{w}_{J}) - F^{*}] \leq \frac{\eta L \sigma^{2}}{2c(Pm)} + (1 - \eta c)^{J} \left(F(\mathbf{w}_{0}) - F^{*} - \frac{\eta L \sigma^{2}}{2c(Pm)}\right)$$

Error Floor Decay Rate

Async SGD: Error Analysis

Update Rule $\mathbf{w}_{n+1} = \mathbf{w}_n - \eta g(\mathbf{w}_{\tau(n)}, \xi_i)$

Hard to analyze due to stale gradients

Assumptions in Previous works

- \circ Upper Bound on Staleness $au(n) \leq B$ [Lian et al 2015]
- o Geometric staleness distribution

 $P(\tau(n)=j)=p(1-p)^{j-1}$ [Mitiliagkas et al 2016]

Independently drawn gradient staleness

We remove these assumptions, and instead consider

$$\mathbb{E}[||\nabla F(\mathbf{w}_j) - \nabla F(\mathbf{w}_{\tau(j)})||_2^2] \le \gamma \mathbb{E}[||\nabla F(\mathbf{w}_j)||_2^2] \qquad \gamma \le 1$$

Async SGD: Error Analysis

For c-strongly convex, L-smooth functions,

 $\gamma~$ is the staleness bound,

and p_0 is the probability of getting a fresh gradient

Analysis can be generalized to non-convex objectives

Need to compare convergence w.r.t. *wall-clock time* instead of iterations

Main Results

Runtime & Error Analysis of Sync, Async SGD

Straggler Mitigation via SGD variants

Staleness Compensation in Async SGD

Sync SGD Variants

Instead of using coding, we are utilizing the inherent redundancy in data

Sync SGD: Expected Time Per Iteration

Fully Sync-SGD

K-Sync SGD

K-Batch Sync SGD

 $\frac{K}{\mu P}$

$$\mathbb{E}[T] = \mathbb{E}[X_{P:P}] \qquad \mathbb{E}[T] = \mathbb{E}[X_{K:P}] \qquad \mathbb{E}[T]$$
$$\approx \frac{1}{\mu} \log P \qquad \approx \frac{1}{\mu} \log \frac{P}{P-K}$$

Sync SGD: Choosing the best K

Error is equivalent to mini-batch SGD with batch size Km

Async SGD Variants

Our error analysis for Async SGD can be generalized to these variants

Async SGD: Expected Time Per Iteration

Async SGD

K-Async SGD

K-Batch Async SGD

Spanning the spectrum between Synchronous and Asynchronous SGD

Spanning the spectrum between Synchronous and Asynchronous SGD

Main Results

Runtime & Error Analysis of Sync, Async SGD

Straggler Mitigation via SGD variants

Staleness Compensation in Async SGD

Adapting the Learning Rate to Tame Gradient Staleness

Proposed Learning Rate Schedule

$$\eta_j = \min\left\{\frac{C}{||\mathbf{w}_j - \mathbf{w}_{\tau(j)}||_2^2}, \eta_{max}\right\}$$

helps eliminate the bounded staleness assumption in our analysis

Related to momentum tuning in [Mitliagkas 2016]

Key Takeaways

- True SGD convergence is w.r.t. the wall-clock time
- Integration scheduling & algorithmic techniques

Ongoing & Future Directions

