
Rateless Codes for
Straggler Mitigation in
Distributed Computing

Ankur Mallick, Malhar Chaudhari, Gauri Joshi

Coded Computing

2

o What computing jobs can be coded such as any k out of n

tasks are sufficient to complete the job?

o Example: Matrix-Vector Multiplication

Distributed Matrix Vector Multiplication
o Large Matrices do not fit in memory on a single machine

o Typically stored in a distributed fashion

3

Distributed Matrix Vector Multiplication
o Each submatrix is multiplied with a vector and the results are

aggregated to obtain the final product

4

=

=

=

=

Coded Distributed Matrix Vector
Multiplication

o Matrix is encoded by pre-multiplying with a generator matrix

before storage

5

Coded Distributed Matrix Vector
Multiplication

o Result of matrix-vector multiplication needs to be decoded to

obtain the final product

6

=

=

=

Decode

Distributed Matrix Vector Multiplication
o Generator matrix E is chosen so that any 2 of (b’1,b’2,b’3) are

sufficient to obtain b

7

=

=

=

Decode

Properties of the Encoding Matrix

o Encoding step: A’=EA

● Size of A = m x n

● Size of E = (3m/2) x m

● Size of A’ = (3m/2) x n

8

=

Properties of the Encoding Matrix

o If any 2 of (, ,) can be aggregated to form an invertible

matrix then the matrix vector product Ax can be decoded

from any 2 of ()

9

=

Decoding Process

10

=

=

=

=

Decoding Process

11

=

=

=

=

Decoding Process

12

=

=

Decoding Process

13

=

= =

Decoding Process

14

=

Decoding Process

15

-1 -1

=

Decoding Process

16

-1 -1

=

Decoding Process

17

-1

= =

Latency Reduction with coding

18

o Without coding we have to wait for all servers to complete

their task

=

=

=

Runtime

Runtime

Runtime

Overall Runtime = = max(, ,)

Latency Reduction with coding

19

o With coding we only need to wait for the fastest 2 servers

=

=

=

Runtime

Runtime

Runtime

Overall Runtime = < max(, ,)

Generalized Coded Computing

○ In general the matrix vector multiplication can be
distributed over ‘N’ workers

20

Worker 1

Worker 2

Worker p

.

.

.

Generalized Coded Computing
○ The goal of coding is to reconstruct the matrix vector

product b = Ax from the outputs of any ‘k’ out of ‘N’ workers
(protects against ‘N-k’ stragglers)

21

Worker 1

Worker 2

Worker p

.

.

.

Generalized Coded Computing

22

○ The encoding scheme consists of splitting matrix A into ‘k’ submatrices
and generating N coded symbols using a standard MDS erasure code:

= G
G= Ik

P
Ik- k x k Identity Matrix

P- Parity check Matrix

For N = 3, k = 2:

=

○ Since the encoding scheme is linear, decoding can be achieved
using standard MDS decoding from the outputs of any k workers

Drawbacks of the MDS Coded approach
o Neglects partial work done by workers

=

=

=

Runtime

Runtime

Runtime

Overall Runtime = < max(, ,)

Drawbacks of the MDS Coded approach
o Increases computation load at each individual server

=

=

=

=

=

=
Uncoded

(each worker computes ⅓ of the total task)

MDS-Coded

(each worker computes ½ of the total task)

Rateless Erasure Codes

● Erasure codes that can handle a limitless amount of erasures (packet
losses)

● Motivated by unreliable communication protocols such as UDP
● Data is communicated at a rapid rate without waiting for

acknowledgement from the receiver
● This leads to a high number of packet drops unknown to the sender
● The goal is to reconstruct the original message, with minimal overhead,

in the presence of an unbounded number of packet drops, without
resending the lost packets

● Rateless Erasure Codes were originally developed by Digital Fountain
Inc. (now acquired by Qualcomm) and are used in several wireless
communication standards

Mutlipoint-to-Point Transmission

● Waiting for acknowledgements
from the receiver leads to time
wastage

● If each node communicates the
same message then the receiver
may receive duplicate messages
which is inefficient

● If the message is split across the
nodes then erasures lead to loss of
data

● Solution: Rateless Erasure Coding
(LT/Raptor Codes)

R

S

S

S

S

S

S

System Model

LT Codes (Encoding)

● Determine the degree ‘d’ of an encoding symbol
from a given degree distribution ρ(d)

● Choose ‘d’ distinct information symbols uniformly
at random

● Generate an encoded symbol which is the sum of
the ‘d’ information symbols

● Any number of encoded symbols can be generated

LT Codes (Encoding)

Encoding Computations

● Each encoded matrix row
is a linear combination of a
random subset of original
matrix rows

● The encoded matrix rows
are distributed equally
across all workers

● We generate ‘αm’ encoded
rows from ‘m’ original rows
(α>1 controls the amount
of redundancy)

LT Codes (Decoding)

● Identify a symbol with degree 1
● Map that to the corresponding information symbol
● Remove the recovered information symbol from all

other encoded symbols containing it
● Repeat until all symbols are successfully decoded

LT Codes (Decoding)

Decoding Computations
● Workers compute encoded row vector

products of the form <ae,j,x>

● Master collects a total of m’ row vector
products from across all workers (even the
slow ones)

● Collected row vector products have the
form:

● LT decoding can be applied to the collected
symbols to recover b = [b1, b2,...,bm] T

● Successful decoding occurs with high
probability for m’ = m(1+ε) where ε -> 0 as m
-> ∞

Degree Distribution for LT Codes

The ‘d’ in is chosen according to the Robust soliton distribution

Practical Benefits of using LT Codes
● Partial Work of all workers is Utilised

Replication MDS LT

Practical Benefits of using LT Codes

36

o Reduction in Latency and computation overhead

=

=

=

Runtime

Runtime

Runtime

Overall Runtime for uncoded = = max(, ,)

Practical Benefits of using LT Codes

37

o Reduction in Latency and computation overhead

=

=

=

Runtime

Runtime

Runtime

Overall Runtime for MDS = = max(,)

Practical Benefits of using LT Codes

38

o Reduction in Latency and computation overhead

=

=

=

Runtime

Runtime

Runtime

Overall Runtime for LT = = Time taken for all 3 workers
to compute a total of m’ products of the form <ae,j,x>

Simulations

Decoding overhead (difference between m’ and m) for different settings of LT code parameters

Simulations

Simulations are for multiplying a 10000 x 10000 matrix with a 10000 x 1 vector across 10 workers assuming a
shifted exponential delay

Experimental Results

Results are for multiplying a 10000 x 10000 matrix with a 10000 x 1 vector across 10 Amazon EC2 workers

Conclusions and Future Work

● Benefits of LT Codes:
○ Efficient utilization of partial work across all workers (both fast and slow)
○ Lower latency and computation overhead at all workers along with better

tolerance to worker failures
● Future Directions:

○ Extending to unreliable communication channels between master and
workers (erasures/errors in addition to straggling)

○ Extending to other distributed computing tasks beyond matrix-vector
multiplication (distributed machine learning)

○ Handling sparsity and other kinds of structure in data (For eg. Low rank
matrices)

References

● Mallick, Ankur, Malhar Chaudhari, and Gauri Joshi. "Rateless Codes
for Near-Perfect Load Balancing in Distributed Matrix-Vector
Multiplication." arXiv preprint arXiv:1804.10331 (2018)
(https://arxiv.org/abs/1804.10331)

● Luby, Michael. "LT codes." IEEE, 2002.
(https://www.researchgate.net/profile/Michael_Luby/publication/2214
98536_LT_codes/links/59274994a6fdcc4443507e45/LT-codes.pdf)

https://arxiv.org/abs/1804.10331
https://www.researchgate.net/profile/Michael_Luby/publication/221498536_LT_codes/links/59274994a6fdcc4443507e45/LT-codes.pdf
https://www.researchgate.net/profile/Michael_Luby/publication/221498536_LT_codes/links/59274994a6fdcc4443507e45/LT-codes.pdf

