Rateless Codes for Straggler Mitigation in Distributed Computing

Ankur Mallick, Malhar Chaudhari, Gauri Joshi

Coded Computing

- What computing jobs can be coded such as any k out of n tasks are sufficient to complete the job?
- Example: Matrix-Vector Multiplication

Distributed Matrix Vector Multiplication

- o Large Matrices do not fit in memory on a single machine
- $\circ~$ Typically stored in a distributed fashion

Distributed Matrix Vector Multiplication

 $\circ~$ Each submatrix is multiplied with a vector and the results are

aggregated to obtain the final product

Coded Distributed Matrix Vector Multiplication

 Matrix is encoded by pre-multiplying with a generator matrix before storage

Coded Distributed Matrix Vector Multiplication

Result of matrix-vector multiplication needs to be decoded to

obtain the final product

Distributed Matrix Vector Multiplication

 \circ Generator matrix E is chosen so that any 2 of (b'_1, b'_2, b'_3) are

sufficient to obtain b

Properties of the Encoding Matrix

- \circ Encoding step: A'=EA
 - Size of $A = m \times n$
 - Size of $E = (3m/2) \times m$
 - Size of $A' = (3m/2) \times n$

Properties of the Encoding Matrix

 \circ If any 2 of (E₁, E₂, E₃) can be aggregated to form an invertible matrix then the matrix vector product Ax can be decoded

from any 2 of $(A'_{2}x, A'_{3}x, A'_{3}x)$

Latency Reduction with coding

 $\,\circ\,$ Without coding we have to wait for all servers to complete

18

Latency Reduction with coding

 $\,\circ\,$ With coding we only need to wait for the fastest 2 servers

Generalized Coded Computing

 In general the matrix vector multiplication can be distributed over 'N' workers

Generalized Coded Computing

 The goal of coding is to reconstruct the matrix vector product b = Ax from the outputs of any 'k' out of 'N' workers (protects against 'N-k' stragglers)

Generalized Coded Computing

• The encoding scheme consists of splitting matrix A into 'k' submatrices and generating N coded symbols using a standard MDS erasure code:

 Since the encoding scheme is linear, decoding can be achieved using standard MDS decoding from the outputs of any k workers

Drawbacks of the MDS Coded approach

Neglects partial work done by workers

Drawbacks of the MDS Coded approach

• Increases computation load at each individual server

Rateless Erasure Codes

- Erasure codes that can handle a limitless amount of erasures (packet losses)
- Motivated by unreliable communication protocols such as UDP
- Data is communicated at a rapid rate without waiting for acknowledgement from the receiver
- This leads to a high number of packet drops unknown to the sender
- The goal is to reconstruct the original message, with minimal overhead, in the presence of an unbounded number of packet drops, without resending the lost packets
- Rateless Erasure Codes were originally developed by Digital Fountain Inc. (now acquired by Qualcomm) and are used in several wireless communication standards

Mutlipoint-to-Point Transmission

- Waiting for acknowledgements from the receiver leads to time wastage
- If each node communicates the same message then the receiver may receive duplicate messages which is inefficient
- If the message is split across the nodes then erasures lead to loss of data
- Solution: Rateless Erasure Coding (LT/Raptor Codes)

System Model

LT Codes (Encoding)

- Determine the degree 'd' of an encoding symbol from a given degree distribution ρ(d)
- Choose 'd' distinct information symbols uniformly at random
- Generate an encoded symbol which is the sum of the 'd' information symbols
- Any number of encoded symbols can be generated

LT Codes (Encoding)

Original Rows

Encoding Computations

 Each encoded matrix row is a linear combination of a random subset of original matrix rows

$$\mathbf{a}_{\mathbf{e},j} = \sum_{i \in \mathcal{S}_d} \, \mathbf{a}_i$$

- The encoded matrix rows are distributed equally across all workers
- We generate 'αm' encoded rows from 'm' original rows (α>1 controls the amount of redundancy)

LT Codes (Decoding)

- Identify a symbol with degree 1
- Map that to the corresponding information symbol
- Remove the recovered information symbol from all other encoded symbols containing it
- Repeat until all symbols are successfully decoded

LT Codes (Decoding)

Decode degree 1 encoded symbols Subtract decoded symbols from encoded products

Decoding Computations

- Workers compute encoded row vector products of the form <a_e,i'x>
- Master collects a total of m' row vector products from across *all* workers (even the slow ones)
- Collected row vector products have the form:

$$egin{aligned} &< \mathbf{a}_{\mathbf{e},j}, x > = < \sum_{i \in \mathcal{S}_d} \, \mathbf{a}_i > \ &= \sum_{i \in \mathcal{S}_d} \, < \mathbf{a}_i, x > \ &= \sum_{i \in \mathcal{S}_d} \, b_i \end{aligned}$$

- LT decoding can be applied to the collected symbols to recover $b = [b_1, b_2, ..., b_m]^T$
- Successful decoding occurs with high probability for m' = m(1+ ϵ) where ϵ -> o as m -> ∞

Degree Distribution for LT Codes

The 'd' in $\mathbf{a}_{e,j} = \sum_{i \in S_d} \mathbf{a}_i$ is chosen according to the Robust soliton distribution

• Partial Work of all workers is Utilised

Reduction in Latency and computation overhead

Reduction in Latency and computation overhead

Reduction in Latency and computation overhead

Simulations

Decoding overhead (difference between m' and m) for different settings of LT code parameters

Simulations

Simulations are for multiplying a 10000 x 10000 matrix with a 10000 x 1 vector across 10 workers assuming a shifted exponential delay

Experimental Results

Results are for multiplying a 10000 x 10000 matrix with a 10000 x 1 vector across 10 Amazon EC2 workers

Conclusions and Future Work

- Benefits of LT Codes:
 - Efficient utilization of partial work across all workers (both fast and slow)
 - Lower latency and computation overhead at all workers along with better tolerance to worker failures
- Future Directions:
 - Extending to unreliable communication channels between master and workers (erasures/errors in addition to straggling)
 - Extending to other distributed computing tasks beyond matrix-vector multiplication (distributed machine learning)
 - Handling sparsity and other kinds of structure in data (For eg. Low rank matrices)

References

- Mallick, Ankur, Malhar Chaudhari, and Gauri Joshi. "Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication." *arXiv preprint arXiv:1804.10331* (2018) (<u>https://arxiv.org/abs/1804.10331</u>)
- Luby, Michael. "LT codes." IEEE, 2002. (<u>https://www.researchgate.net/profile/Michael_Luby/publication/2214</u> <u>98536_LT_codes/links/59274994a6fdcc4443507e45/LT-codes.pdf</u>)