18-847F: Special Topics in Computer Systems

Foundations of Cloud and Machine Learning Infrastructure

Lecture 4: Basics of Queueing Theory

Foundations of Cloud and Machine Learning Infrastructure

Announcements

- Has everybody submitted their paper reviews?
- Sign-up for Class Presentations
- After your talk, please upload the slides to Canvas
- New TA: Ankur Mallick

Queueing Theory

Reference Textbooks

Queueing Terminology

Arrival
Rate λ

Mean Service Time
Mean Waiting Time
Mean Response Time
Mean \# Customers in Queue
Server Utilization or Load
$E[S]=1 / \mu$
E[W]
$E[T]=E[W]+E[S]$
E[N]
$\rho=\lambda / \mu$

Exercise: First-come first-served Queue

$t=0 \quad$ Yellow job arrives
$t=2.5$ Blue job leaves
$t=4 \quad$ Green job leaves
$t=5 \quad$ Yellow job leaves at time $t=5$

Q1: Waiting Time W of the yellow job?
Q2: Service Time S of the yellow job?
Q3: Response time T of the yellow job?
O_{4} : Load on the system? What happens if $\lambda=1.1$?

Processor-Sharing Queues

$t=0 \quad$ Blue job arrives
$t=0.5$ Green job arrives
$t=1.5$ Yellow job arrives
$t=1.5$ Blue job leaves
$t=2.5$ Green job leaves
$t=3.0$ Yellow job leaves

First-come First-served vs. Processor-Sharing

 Which is better in terms of $\mathrm{E}[\mathrm{T}]$?

Suppose that all jobs arrive at time $t=0$, and service time is deterministic, 1 sec per job

First-come First-served vs. Processor-Sharing

 Which is better in terms of E[T]?

Suppose that all jobs arrive at time $t=0$, and service time is deterministic, 1 sec per job

$$
\begin{aligned}
& \mathrm{E}\left[\mathrm{~T}_{\text {blue }}\right]=1.0 \\
& \mathrm{E}\left[\mathrm{~T}_{\text {green }}\right]=2.0 \\
& \mathrm{E}\left[\mathrm{~T}_{\text {yellow }}\right]=3.0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}\left[\mathrm{~T}_{\text {blue }}\right]=3.0 \\
& \mathrm{E}\left[\mathrm{~T}_{\text {green }}\right]=3.0 \\
& \mathrm{E}\left[\mathrm{~T}_{\text {yellow }}\right]=3.0
\end{aligned}
$$

Then why use processor-sharing?

- To avoid starving small jobs that get stuck behind large ones
- For jobs that interact with each other

We will focus on FCFS jobs in this lecture

Arrival
Rate λ

Mean Service Time
Mean Waiting Time
Mean Response Time
Mean \# Customers in Queue
Server Utilization or Load
$E[S]=1 / \mu$
E[W]
$E[T]=E[W]+E[S]$
E[N]
$\rho=\lambda / \mu$

Design Question 1

 What if the arrival rate doubles?

Mean Response Time T = Waiting time in Queue + Service Time

Q: If λ doubles, do you need a server of $2 x$ rate to achieve the same $E[T]$?

Design Question 2 Many slow, or more fast server?

Q: Which of the two systems gives lower $\mathrm{E}[\mathrm{T}]$?

Design Question 3

 Many slow, or more fast server?FDM

Q: Which of the two systems gives lower E[T]?

Little's Law

Theorem: For any ergodic open system we have

$$
\mathrm{E}[\mathrm{~N}]=\lambda \mathrm{E}[\mathrm{~T}]
$$

Very general and hence powerful law

- Any \# of servers, scheduling policy, queue size limit

Some Variants

$$
\begin{gathered}
E\left[N_{w}\right]=\lambda E[W] \\
\rho=\lambda E[S]
\end{gathered}
$$

Little's Law: Exercise

A professor takes 2 new students in even-numbered years, and 1 new student in odd-numbered years.

If avg. graduation time $=6$ yrs, how many students will the professor have on average?

Little's Law: Answer

A professor takes 2 new students in even-numbered years, and 1 new student in odd-numbered years.

If avg. graduation time $=6$ yrs, how many students will the professor have on average?

$$
\begin{aligned}
\mathrm{E}[\mathrm{~N}] & =\lambda \mathrm{E}[\mathrm{~T}] \\
& =1.5 * 6 \\
& =9
\end{aligned}
$$

Kendall's Notation

Kendall's Notation

Exercise: What are the distributions of Poisson and Exponential random variables?

M/M/1 Queue

WANTTO FIND

1. Mean Response Time E[T]
2. Mean Waiting Time E[W]

M/M/1: Markov Model

M/M/1: Mean Response Time

Exercise: Design Question 1 What if the arrival rate doubles?

Mean Response Time T = Waiting time in Queue + Service Time

Q: If λ doubles, do you need a server of $2 x$ rate to achieve the same $E[T]$?
A: Service rate $6+2=8$ is sufficient

Exercise: M/M/1 Queue What if the service rate doubles?

Q: Is the first queue twice (or more) longer than the second?

What is $E\left[W^{(A)}\right] / E[W(B)]$ as a function of $\rho=\lambda / \mu$?

Exercise: M/M/1 Queue What if the service rate doubles?

System B

Q: Is the first queue twice (or more) longer than the second?

What is $E\left[W^{(A)}\right] / E\left[W^{(B)]}\right.$ as a function of $\rho=\lambda / \mu$?

$$
\text { ANSWER: } \quad \frac{2(2-\rho)}{1-\rho}
$$

M/M/n Queue

WANTTO FIND

1. Mean Response Time E[T]
2. Mean Waiting Time E[W]

M/M/n Queue

$$
\begin{aligned}
P_{Q} & =\sum_{i=n}^{\infty} \pi_{i} \\
& =\pi_{0} \frac{n^{n}}{n!} \sum_{i=n}^{\infty} \rho^{i} \quad \text { where } \pi_{0}=\frac{\lambda}{n \mu} \\
& =\frac{\left.\sum_{i=0}^{n-1} \frac{(n \rho)^{i}}{i!}+\frac{(n \rho)^{n}}{n!(1-\rho)}\right]^{-1}}{n!(1-\rho)} \quad \text { Erlang-C Formula } \quad \begin{array}{l}
\text { Used in call centers to } \\
\text { determine number of } \\
\text { agents required }
\end{array}
\end{aligned}
$$

M/M/n Queue

$$
\begin{aligned}
\mathbb{E}\left[N_{w}\right] & =\sum_{i=n}^{\infty} \pi_{i}(i-n) \\
& =\pi_{0} \sum_{i=n}^{\infty} \frac{\rho^{i} n^{n}}{n!}(i-n) \\
& =P_{Q} \frac{\rho}{1-\rho}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}[W]=\frac{\mathbb{E}\left[N_{w}\right]}{\lambda}=P_{Q} \frac{\rho}{\lambda(1-\rho)} \\
& \mathbb{E}[T]=P_{Q} \frac{\rho}{\lambda(1-\rho)}+\frac{1}{\mu}
\end{aligned}
$$

Design Question 2 Many slow, or more fast server?

Q: Which of the two systems gives lower $\mathrm{E}[\mathrm{T}]$?

Design Question 2 Many slow, or more fast server?

Design Question 3 Many slow, or more fast server?

$M / M / n$ is n
times slower
when $\rho \rightarrow 0$

$$
\frac{\mathbb{E}[T]^{M / M / n}}{\mathbb{E}[T]^{M / M / 1}}=P_{Q}+n(1-\rho)
$$

$M / M / n$ and $\mathrm{M} / \mathrm{M} / 1$ are almost equal when $\rho \rightarrow 1$

Design Question 3 Many slow, or more fast server?

Freq. Division Multiplexing (FDM)

Design Question 3 Many slow, or more fast server?

FDM

$$
\mathbb{E}[T]^{F D M}=\frac{n}{n \mu-\lambda}
$$

$$
\mathbb{E}[T]^{M / M / 1}=\frac{1}{n \mu-\lambda}
$$

FDM is n times
slower than
M/M/1

M/G/1 Queue Pollaczek-Khinchine Formula

Proof of PK formula

$$
\begin{aligned}
\mathbb{E}\left[T_{w}\right] & =\mathbb{E}\left[N_{w}\right] \cdot \mathbb{E}[X]+E[R] \\
& =\lambda \mathbb{E}\left[T_{w}\right] \cdot \mathbb{E}[X]+\frac{\mathbb{E}\left[X^{2}\right]}{2} \\
& =\frac{\mathbb{E}\left[X^{2}\right]}{2(1-\lambda \mathbb{E}[X])}
\end{aligned}
$$

M/G/n Queue

$$
\mathbb{E}[T] \approx \mathbb{E}[X]+\frac{\mathbb{E}\left[X^{2}\right]}{2 \mathbb{E}[X]} \cdot \mathbb{E}\left[W^{M / M / n}\right]
$$

