
1

Elastic Averaging SGD in
Distributed Deep Learning
Sixin Zhang, Anna Choromanska,Yann LeCun, NIPS 2015

Slides by: Jianyu Wang

18-847F: Foundations of Cloud & ML Infrastructure
Oct 31, 2018



2

Background



Recap: Distributed SGD

Worker 1

Parameter Server

w’ = w – η∇f(w)

Worker 2 Worker 3

w
∇f(w)

Parameter server framework Execution pipeline (Ideal case)

x1 x2 x3 x4 x5

Worker 1

Worker 2

Worker 5

3



Recap: Distributed SGD

Worker 1

Parameter Server

w’ = w – η∇f(w)

Worker 2 Worker 3

w
∇f(w)

Parameter server framework Execution pipeline (Ideal case)

x1 x2 x3 x4 x5

Worker 1

Worker 2

Worker 5

What is the problem?

4



ü Communication delay

ü Straggler/Staleness

Recap: Distributed SGD

What is the problem?

x1 x2 x3 x4 x5 x6

5



Key Ideas

6



Elastic Averaging SGD

Key Ideas: 

ü Workers maintain their local parameters

ü Don’t let local parameters go far away from central parameter

Dist. SGD:

Each worker

computes gi(w̃; ⇠i)

EASGD:

Each worker

locally update wi

7



Elastic Averaging SGD

Key Idea: 

ü Workers maintain their local parameters

ü Don’t let local parameters go far away from central parameter

Dist. SGD:

Minimize

EASGD:

Minimize 
PX

i=1

fi(w̃)
PX

i=1

h
fi(w

i) +
⇢

2
kwi � w̃k2

i

8



9

Update Rule: Sync. version



Update Rule
Sync. Version

10

wi
+ = wi � ⌘g(wi)� Elastic Forcei

w̃+ = w̃ +
X

i

Elastic Forcei

Elastic Forcei = ↵(wi � w̃) = ⌘⇢(wi � w̃)

worker

server



Update Rule
Sync. Version

Central

Worker 1

Worker 2
Global time = 0

Initialization

Local minimum

Weight Space

11



Global time = 0

Workers do one local UPDATE

Local minimum

Central

Worker 1

Worker 2

wi
⇤ = wi � ⌘g(wi; ⇠i)

w1
⇤

12

Update Rule
Sync. Version



Global time = 0

“Elastic Force”!

Workers go BACK.

Local minimum

Central

Worker 1

Worker 2

wi
+ = wi

⇤ � ↵(wi � w̃)

w1
⇤

w1
+

w1

13

Update Rule
Sync. Version



Global time = 1

“Elastic force”!

Server moves FORWARD!

Local minimum

Central

Worker 1

Worker 2

w̃+ = w̃ + ↵
PX

i=1

(wi � w̃)

14

Update Rule
Sync. Version



Global time = 1

Workers do 1 local UPDATE

Local minimum

Central

Worker 1

Worker 2

wi
⇤ = wi � ⌘g(wi; ⇠i)

15

Update Rule
Sync. Version



Local minimum

Central

Worker 1

Worker 2
Global time = 1

“Elastic Force”!

Workers go BACK.

wi
+ = wi

⇤ � ↵(wi � w̃)

16

Update Rule
Sync. Version



Local minimum

Central

Worker 1

Worker 2
Global time = 2

“Elastic force”!

Server moves FORWARD!

w̃+ = w̃ + ↵
PX

i=1

(wi � w̃)

17

Update Rule
Sync. Version



Local minimum

Central

Worker 1

Worker 2
Global time = 2

LOCAL UPDATES

18

Update Rule
Sync. Version



Local minimum

Central

Worker 1

Worker 2
Global time = 2

BACK

19

Update Rule
Sync. Version



Local minimum

Central

Worker 1

Worker 2
Global time = 3

FORWARD

20

Update Rule
Sync. Version



21

Async. & momentum variants



Variant 01: Asynchronous EASGD

Central

Worker 1

Worker 2

Local minimum

22

Global time = 0

Worker 1 finishes its T local updates

Worker 2 doesn’t

Configurable commun. period

wi
T = wi

0 �
T�1X

j=0

⌘jg(w
i
j ; ⇠

i
j)



Variant 01: Asynchronous EASGD

Central

Worker 1

Worker 2
Global time = 1

Elastic Force!

Move back and move forward.

Only worker 1 communicates with 

parameter server.

Local minimum

23



Variant 01: Asynchronous EASGD

Central

Worker 1

Worker 2
Global time = 2

Worker 1 finishes another T updates

Worker 2 doesn’t

Local minimum

24



Variant 01: Asynchronous EASGD

Central

Worker 1

Worker 2
Global time = 3

Worker 2 finishes its first T updates

Worker 1 doesn't finish its third T updates

Local minimum

25



Variant 01: Asynchronous EASGD

Global time = 3

Worker 2 finishes its first T updates

Worker 1 doesn't finish its third T updates

Central

Worker 1

Worker 2

Local minimum

This algorithm is robust w.r.t. the 
communication period T.
Increase T, reduce comm. overhead!

26



Variant 02: Momentum EASGD

Central

Worker 1

Worker 2

Global time = 0

Local worker uses Nesterov momentum SGD.

Local minimum

wi
T = wi

0 �
T�1X

j=0

⌘jg(w
i
j ; ⇠

i
j)

vit+1 = �vit � ⌘g(wi
t + �vit)

wi
t+1 = wi

t + vit

Local workers converge faster!
27



28

Theoretical Analysis



Stability Analysis

29

minimize
nX

i=1

F (wi)

subject to wi � w̃ = 0

The objective we want to optimize in each 
iteration can be formulized as:



Stability Analysis

minimize
nX

i=1

F (wi)

subject to wi � w̃ = 0

minimize
nX

i=1

h
F (wi)� �i(wi � w̃) +

⇢

2
(wi � w̃)2

i

Alternating Direction Methods for Multipliers (ADMM)

30



Stability Analysis

minimize
nX

i=1

F (wi)

subject to wi � w̃ = 0

minimize
nX

i=1

h
F (wi)� �i(wi � w̃) +

⇢

2
(wi � w̃)2

i

Alternating Direction Methods for Multipliers (ADMM)

31

One dimensional quadratic case + Round-Robin scheme 



Stability Analysis

Key takeaway

ü In 1-D quadratic case, ADMM algorithm can exhibit chaotic behavior, leading to exponential divergence. 

ü The analytic condition for ADMM to be stable is still unknown, while for EASGD it is very simple.

minimize
nX

i=1

F (wi)

subject to wi � w̃ = 0

minimize
nX

i=1

h
F (wi)� �i(wi � w̃) +

⇢

2
(wi � w̃)2

i

Alternating Direction Methods for Multipliers (ADMM)

32



Stability Analysis

Some basic convergence analysis in:

üOne dimensional quadratic case

üMulti-dimensional quadratic case

üStrongly convex case

Hasn’t been studied sufficiently!

33

Key takeaway

ü In 1-D quadratic case, ADMM algorithm can exhibit chaotic behavior, leading to exponential divergence. 

ü The analytic condition for ADMM to be stable is still unknown, while for EASGD it is very simple.



34

Experimental Results



Experimental Setup

Hardware

ü Running on a GPU-cluster

ü Parameter-sever framework

(https://zh.gluon.ai/chapter_gluon-advances/multiple-gpus-scratch.html)

ML Model

ü 7(or 11)-layer CNN

ü Tested on CIFAR-10 and IMAGENET

(http://cs231n.github.io/convolutional-networks/)

35



Results on CIFAR-10

Wallclock Time

Training Loss

T	=	1

Wallclock Time

Training Loss

T	=	64

Key Takeaway:

ü EAMSGD significantly outperforms comparator methods for all values of T 

ü EASGD can work well even when T = 1000.

P	=	4
𝛽 = 𝛼	×𝑃 =	0.9

36

EASGD

DownPour



Similar Results on ImageNet

Wallclock Time

Test Error

Wallclock Time

Test Error

Key Takeaway:

ü EAMSGD significantly outperforms comparator methods.

P	=	4
𝛽 = 𝛼	×𝑃 =	0.9
T	=	10

Downpour vs EASGD Downpour vs EAMSGD

37



EASGD is a special case of 
Cooperative SGD.

38

“Cooperative SGD: A Unified Framework for the Design and Analysis of Communication-
Efficient SGD Algorithms”
Jianyu Wang and Gauri Joshi. arXiv preprint.

ü Provided a convergence analysis for non-convex objectives (sync. version)
ü Identified the best choice of the elasticity parameter 
ü Generalized the idea of elastic force and developed new comm. efficient SGD 

variants


