18-847F: Special Topics in Computer Systems

Foundations of Cloud and Machine Learning Infrastructure

Lecture 8: Intro to Coding Theory

Foundations of Cloud and Machine Learning Infrastructure

Topics Covered

Topics Covered

- Coding for locality/repair
- Reducing latency in content
 download
 - Coded Computing

Coding Theory

- For reliable communication in presence of noise
- Bell Labs was one of the leaders in 1950's
- Key figures: Claude Shannon and Richard Hamming

Coding Theory

- Two types of Coding:
 - Source Coding: Data Compression
 - Channel Coding: Error Correction

Source Coding

- o Huffman Coding
- Zip Data Compression: Lempel-Ziv Coding
- Image/Video Compression: JPEG, MPEG
- Modern applications: Gradient & Model Compression

Source Coding: Lempel-Ziv Coding

Simplest Channel Codes

- Repetition Code
 - $\circ \circ \rightarrow \circ \circ \circ : \text{Rate: 1/3}$
 - If receive o?? we can recover from 2 erasures
- (3,2) code: Data bits: a, b Parity bit: (a XOR b)
 - Example: 011, 110: Rate 2/3
 - If we receive o ? 1 or ? 1 o we can correct the failed bit
 - 2 bit symbols: (0 1) ? (1 1)

Simplest Channel Codes

- Repetition Code
 - $\circ \circ \rightarrow \circ \circ \circ : \text{Rate: 1/3}$
 - If receive o?? we can recover from 2 erasures
- (3,2) code: Data bits: a, b Parity bit: (a XOR b)
 - Example: 011, 110: Rate 2/3
 - If we receive o ? 1 or ? 1 o we can correct the failed bit
 - 0 2 bit symbols: (0 1) (1,0) (1 1)

Linear Codes

An (n,k) linear code C is a dimension-k subspace of F_q^{n} , where F_q is a finite field of q elements

Generator Matrix

G is an k x n matrix for code C, if its k rows span C

 $G \equiv$

For an (7,4) binary (q=2) code

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{pmatrix}$$

With an (7,4) code, we encode a 4-bit string (a,b,c,d) as

The code is said to be systematic if $G = [I_k | A]$

Rate of the Code

An (n,k) code has code rate r = k/n

For an (7,4)
binary (q=2) code
$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Distance

Minimum Hamming distance between any two codewords. For linear codes, it is the minimum Hamming weight of a non-zero codeword.

Distance = d = 3 $(1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0)$

For an (7,4)
binary (q=2) code
$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Codes with d = n-k+1 are called maximumdistance separable (MDS) codes

Hamming Codes

- (7,4) Hamming Code: 4 data bits, 3 parity bits
- \circ Parity $p_1 = d_1 \oplus d_2 \oplus d_4$
- Can correct 1-bit errors or 2-bit erasures
- Can detect 1 or 2-bit errors

Concept Check: Erasure Codes

- What is the rate and distance of this code?
- Correct the 2 erasures
 - \circ (d1, d2, d3, d4, p1, p2, p3) = (o, ?, 1, ?, 1, o, o)

Concept Check: Answer

- What is the rate of the code? $r = \frac{4}{7}, d = 3$
- Correct the 2 erasures
 - \circ (d1, d2, d3, d4, p1, p2, p3) = (0, 0, 1, 1, 1, 0, 0)

(n,k) Reed-Solomon Codes: 1960

- $\circ \quad \mathsf{Data:} \, \mathsf{d_{1\prime}} \mathsf{d_{2\prime}} \, \mathsf{d_{3\prime}} \dots \mathsf{d_{k}}$
- Polynomial: $d_1 + d_2 x + d_3 x^2 + ... d_k x^{k-1}$
- Parity bits: Evaluate at n-k points:

X=1:	$d_1 + d_2 + d_3 + d_4$
X=2:	$d_1 + 2 d_2 + 4 d_3 + 8 d_4$
x=3 :	
x=4:	
x=n:	

Can solve for the coefficients from any k coded symbols

Example: (4,2) Reed-Solomon Code

○ Data: $d_1, d_2 \rightarrow Polynomial: d_1 + d_2 x + d_3 x^{2+} \dots d_k x^{k-1}$

- Can solve for the coefficients from any k coded symbols
- Microsoft uses (7, 4) code
- Facebook uses (14,10) code

Coding vs Replication

Concept Check: Coding vs Replication

- How many node-failures can each system tolerate?
- \circ $\,$ What is the code rate of each system?

Concept Check: Coding vs Replication

- How many node-failures can each system tolerate?: 4
- What is the code rate of each system? 1/5 and 10/14
- Replication uses 357% more storage for the same reliability!

RAID: Redundant Array of Independent Disks (1987)

 Levels RAID o, RAID 1, ... : design for different goals such as reliability, availability, capacity etc.

• One of the inventors, Garth Gibson was here at CMU

RAID: Redundant Array of Independent Disks [Patterson et al 1987]

- RAID 1: Replication
- RAID 2: The (7,4) Hamming code
 Detect 2 errors, correct 1
- RAID 3: Only parity check disk, used for error correction
- RAID 4: Bit interleaving to allow parallel reads/writes
- RAID 5: Spread check and data
 bits across all disks

ai 190	ר/י				
4 Transfer Unuts a, b, c & d	a0 a a1 a2 a3	b0 b b1 b2 b3		d0 d d1 d d2 d3	
	Level	2 Level	3 Level	4	
Sector 0 Data Disk 1	8 8 8 9 8 8 8	a0 b0 c0 d0	a0 a1 a2 a3	I	D
Sector () Data Disk 2	al bl c1 d1	al bl c1 d1	60 b1 b2 b3	2	A T A D
Sector 0 Data Disk 3	a2 b2 c2 d2	a2 b2 c2 d2	c0 c1 c2 c3	7	I S K S
Sector 0 Data Dısk 4	a3 b3 c3 d3	a3 b3 c3 d3	d0 d1 d2 d3	4	
Sector 0 Check bl Disk 5 d		ECCa ECCc ECCd	ECCI	1	C H E C
Sector 0 al Check bl Disk 6 cl di		(Unly one check disk in level 3 Check info is calculated	(Each transfer unit is placed i a single sector Note that the c info is now cal	nto heck	K D I S
Sector 0 al Check bl Disk 7 cl		over each transfer unit)	over a piece of transfer unit)	each	5 K (S)

dECC2

RAID: Redundant Array of Independent Disks [Patterson et al 1987]

- RAID 1: Replication
- RAID 2: The (7,4) Hamming code
 Detect 2 errors, correct 1
- RAID 3: Only parity check disk, used for error correction
- RAID 4: Bit interleaving to allow parallel reads/writes
- RAID 5: Spread check and data
 bits across all disks

