18-847F: Special Topics in Computer Systems

Foundations of Cloud and Machine Learning Infrastructure

Lecture 8: Intro to Coding Theory

Foundations of Cloud and Machine Learning Infrastructure

Topics Covered

Topics Covered

Coding Theory

- For reliable communication in presence of noise
- Bell Labs was one of the leaders in 1950's
- Key figures: Claude Shannon and Richard Hamming

Coding Theory

- Two types of Coding:
- Source Coding: Data Compression
- Channel Coding: Error Correction

Source Coding

- Huffman Coding
- Zip Data Compression: Lempel-Ziv Coding
- Image/Video Compression: JPEG, MPEG
- Modern applications: Gradient \& Model Compression

Source Coding: Lempel-Ziv Coding

Simplest Channel Codes

- Repetition Code
- $\circ \rightarrow 0 \circ \circ:$ Rate: $1 / 3$
- If receive o? ? we can recover from 2 erasures
- $(3,2)$ code: Data bits: a, b Parity bit: (a XOR b)
- Example: 011, 110: Rate $2 / 3$
- If we receive o? 1 or ? 10 we can correct the failed bit
- 2 bit symbols: (01) ? (11)

Simplest Channel Codes

- Repetition Code
- $\circ \rightarrow 0 \circ \circ:$ Rate: $1 / 3$
- If receive o? ? we can recover from 2 erasures
- $(3,2)$ code: Data bits: a, b Parity bit: (a XOR b)
- Example: 011, 110: Rate $2 / 3$
- If we receive o? 1 or ? 10 we can correct the failed bit
- 2 bit symbols: (01) (1,0) (11)

Linear Codes: Definition and Notation

Linear Codes

An (n, k) linear code C is a dimension- k subspace of $F_{q}{ }^{n}$, where F_{q} is a finite field of q elements

Generator Matrix

G is an kxn matrix for code C , if its k rows span C

For an (7,4) binary (q=2) code $\quad G=$

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

Linear Codes: Definition and Notation

With an $(7,4)$ code, we encode a 4 -bit string (a, b, c, d) as
The code is said to be systematic if $G=\left[I_{k} \mid A\right]$

$$
\begin{aligned}
& \mathrm{a} \\
& \mathrm{~b} \\
& \mathrm{c} \\
& \mathrm{~d}
\end{aligned}\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right) .
$$

Linear Codes: Definition and Notation

Rate of the Code

An (n, k) code has code rate $r=k / n$

For an $(7,4)$
binary ($\mathrm{q}=2$) code $\quad G=$

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

Linear Codes: Definition and Notation

Distance

Minimum Hamming distance between any two codewords. For linear codes, it is the minimum Hamming weight of a non-zero codeword.

For an $(7,4)$
binary ($q=2$) code

$$
\begin{aligned}
& \text { Distance }=d=3 \\
& G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Codes with $\mathrm{d}=\mathrm{n}-\mathrm{k}+1$ are called maximumdistance separable (MDS) codes

Hamming Codes

- $(7,4)$ Hamming Code: 4 data bits, 3 parity bits
- Parity $p_{1}=d_{1} \oplus d_{2} \oplus d_{4}$
- Can correct 1-bit errors or 2-bit erasures
- Can detect 1 or 2-bit errors

Concept Check: Erasure Codes

- What is the rate and distance of this code?
- Correct the 2 erasures
- $\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \mathrm{~d}_{4}, \mathrm{p}_{1}, \mathrm{p} 2, \mathrm{p} 3\right)=(0, ?, 1, ?, 1,0,0)$

Concept Check: Answer

- What is the rate of the code? $\mathrm{r}=4 / 7, \mathrm{~d}=3$
- Correct the 2 erasures
$\circ \quad\left(\mathrm{d}_{1}, \mathrm{~d} 2, \mathrm{~d}_{3}, \mathrm{~d} 4, \mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3\right)=(\mathrm{o}, \mathrm{o}, 1,1,1, \mathrm{o}, \mathrm{o})$

(n,k) Reed-Solomon Codes: 1960

- Data: $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \ldots \mathrm{~d}_{\mathrm{k}}$
- Polynomial: $d_{1}+d_{2} x+d_{3} x^{2}+\ldots d_{k} x^{k-1}$
- Parity bits: Evaluate at n-k points:

$$
\begin{array}{ll}
x=1: & d_{1}+d_{2}+d_{3}+d_{4} \\
x=2: & d_{1}+2 d_{2}+4 d_{3}+8 d_{4} \\
x=3: & \cdots \\
x=4: & \cdots \\
x=n: & \cdots
\end{array}
$$

- Can solve for the coefficients from any k coded symbols

Example: $(4,2)$ Reed-Solomon Code

- Data: $\mathrm{d}_{1}, \mathrm{~d}_{2} \rightarrow$ Polynomial: $\mathrm{d}_{1}+\mathrm{d}_{2} \mathrm{x}+\mathrm{d}_{3} \mathrm{x}^{2+} \ldots \mathrm{d}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}-1}$

$d_{1}+2 d_{2}$
- Can solve for the coefficients from any k coded symbols
- Microsoft uses $(7,4)$ code
- Facebook uses $(14,10)$ code

Coding vs Replication

Concept Check: Coding vs Replication

- How many node-failures can each system tolerate?
- What is the code rate of each system?

Concept Check: Coding vs Replication

- How many node-failures can each system tolerate?: 4
- What is the code rate of each system? $1 / 5$ and 10/14
- Replication uses 357% more storage for the same reliability!

RAID: Redundant Array of Independent Disks (1987)

- Levels RAID o, RAID 1, ... : design for different goals such as reliability, availability, capacity etc.

- One of the inventors, Garth Gibson was here at CMU

RAID: Redundant Array of Independent Disks

 [Patterson et al 1987]- RAID 1: Replication
- RAID 2: The $(7,4)$ Hamming code Detect 2 errors, correct 1
- RAID 3: Only parity check disk, used for error correction
- RAID 4: Bit interleaving to allow parallel reads/writes
- RAID 5: Spread check and data bits across all disks

Level 2

RAID: Redundant Array of Independent Disks

 [Patterson et al 1987]- RAID 1: Replication
- RAID 2: The $(7,4)$ Hamming code Detect 2 errors, correct 1
- RAID 3: Only parity check disk, used for error correction
- RAID 4: Bit interleaving to allow parallel reads/writes

- RAID 5: Spread check and data bits across all disks

