Logical Topology and Axiomatic Cohesion

David Jaz Myers

Johns Hopkins University

March 12, 2019
Lawvere proposes to continue the following dialogue:

“What is a space?”
“It is an object of a category of spaces.”
“Then what is a category of spaces?”

Lawvere’s *wu wei* axiomatization of “space”: modalities that remove all “spatial cohesion” in three different ways.

- ♯: whose modal types are the codiscrete spaces.
- ♭: whose modal types are the discrete spaces.
- \int: whose modal types are the discrete spaces (but whose action is different).
Models of Cohesion

Some *gros topos* of interest are cohesive toposes:

- **Continuous Sets** as in Shulman’s *Real Cohesion*.
- **Dubuc’s Topos** and **Formal Smooth Sets** as in Synthetic Differential Geometry and Schreiber’s *Differential Cohesion*.
- **Menni’s Topos** (similar to the big *Zariski Topos*) as in algebraic geometry.*

In all of these models, there are suitably nice spaces

- continuous manifolds,
- smooth manifolds,
- (suitable) schemes,

which have topologies (via open sets) on their underlying sets.
Penon’s Logical Topology

In his thesis, Penon defined a **Logical Topology** held by any type.

Definition (Penon)

A subtype $U : A \to \text{Prop}$ is **logically open** if

- For all $x, y : A$ with x in U, either $x \neq y$ or y is in U.

Penon and Dubuc proved that in the three examples

- **Continuous Sets**: Logical opens on continuous manifolds are ϵ-ball opens.
- **Dubuc’s Topos**: Logical opens on smooth manifolds are ϵ-ball opens.
- **Zariski Topos**: Logical opens on (suitable) separable schemes are Zariski opens.
Motivating Question:

How does the logical topology on a type compare with its cohesion?

We will see two glimpses today:

- The path connected components $\int_0 A$ (defined through cohesion) are the same as the logically connected components of A.
- A set is **Leibnizian** (defined through cohesion) if and only if it is de Morgan (a logical notion).
Cohesive Type Theory Refresher

In his *Real Cohesion*, Shulman gave a type theory for axiomatic cohesion. Cohesive type theory uses two kinds of variables:

- Cohesive variables, which vary “continuously”.
- Crisp variables, which vary “discontinuously”.

Following Shulman, we assume the following:

Axiom (LEM)

If $P :: \text{Prop}$ is a crisp proposition, then either P or $\neg P$ holds.

Every discontinuous proposition is either true or false.
Cohesive Type Theory Refresher

We will also assume that \int is given by nullifying some “basic contractible space(s)”.

Axiom (Punctual Local Contractibility)

There is a type $\mathbb{A} :: \textbf{Type}$ such that:

- A crisp type X is discrete if and only if it is homotopical – the inclusion of constants $X \to (\mathbb{A} \to X)$ is an equivalence, and
- There is a point $0 :: \mathbb{A}$ in each of these types.

We can consider a map $\gamma : \mathbb{A} \to X$ to be a path in X.

- This means that $\int A$ is the homotopy type (or fundamental ∞-groupoid) of A, considered as a discrete type.
- And, therefore,

$$\int_0 A \equiv \parallel \int A \parallel_0$$

is the set of path connected components of A.
Path components \equiv Connected components?

- So,
 \[\mathcal{P}_0 A \equiv ||A||_0 \]
 is the set of path connected components of A.
- Is it also the set of *logical* connected components of A?
The Powerset of a Type

Definition

Given a type A, its powerset $\mathcal{P} A : \equiv A \to \text{Prop}$ is the set of propositions depending on an $a : A$. The order on subtypes is given by:

$$P \subseteq Q : \equiv \forall a. \, Pa \Rightarrow Qa$$

We define the usual operations on subtypes point-wise:

$$P \cap Q : \equiv \lambda a. \, Pa \land Qa$$
$$P \cup Q : \equiv \lambda a. \, Pa \lor Qa$$
$$\neg P : \equiv \lambda a. \, \neg Pa$$
Logical Connected Components

Definition

1. A subtype $U : \mathcal{P}A$ is *merely inhabited* if there is merely an $a : A$ such that Ua.

2. A subtype $U : \mathcal{P}A$ is *detachable* if for all $a : A$, Ua or $\neg Ua$.

3. A subtype $U : \mathcal{P}A$ is *logically connected* if for all $P : \mathcal{P}A$, if $U \subseteq P \cup \neg P$, then $U \subseteq P$ or $U \subseteq \neg P$.

Definition

A subtype $U : \mathcal{P}A$ is a *logical connected component* if it is merely inhabited, detachable, and logically connected.

Lemma

If U and V are logical connected components of A, and $U \cap V$ is non-empty, then $U = V$.
\(\int_0 \) gives the Logical Connected Components

We let \(\int_0 A \equiv \| \int A \|_0 \), and \(\sigma_0 : A \to \int_0 A \) be its unit.

Lemma

For any type \(A \) and any \(u : \int_0 A \), the proposition \(\sigma_0^* u \equiv \lambda a. \sigma_0 a = u \) is a logical connected component of \(A \).

Proof.

- \(\sigma_0^* u \) is merely inhabited because \(\sigma_0 \) is merely surjective (PLC).
- Since \(\int_0 A \) is a discrete set, it has decideable equality (LEM). Therefore, \(\sigma_0^* u \) is detachable.
- If \(\sigma_0^* u \subseteq P \cup \neg P \), then we can define \(\bar{P} : (a : A) \times \sigma_0^* u(a) \to \{0, 1\} \) by cases. But \((a : A) \times \sigma_0^* u(a) \equiv \text{fib}_0(u) \) and so is \(\int_0 \)-connected; therefore, \(\bar{P} \) is constant, and \(\sigma_0^* u \subseteq P \) or \(\sigma_0^* u \subseteq \neg P \).
\[\int_0 \] gives the Logical Connected Components

Theorem

For a type \(A \), the map \(\sigma_0^* \) gives an equivalence between \(\int_0 A \) and the set of logical connected components of \(A \).
Infinitesimals and Double Negation

In his paper *Infinitesimaux et Intuitionisme*, Penon makes the following claims:

Proposition (Kock)

In the big Zariski or étale topos, with \mathbb{A} the affine line,

$$\neg\neg\{0\} = \text{Spec}(\mathbb{Z}[[t]]) = \{a : \mathbb{A} \mid \exists n. a^n = 0\}$$

is the set of nilpotent infinitesimals.

Proposition (Penon)

In Dubuc’s topos, with \mathbb{A} the sheaf co-represented by $C^\infty(\mathbb{R})$,

$$\neg\neg\{0\} = \uparrow(C^\infty_0(\mathbb{R}))$$

is co-represented by the germs of smooth functions at 0.
Ainsi donc l'écriture

\[\neg \neg \{ 0 \} = \{ \text{Infinitésimaux} \} \]

est justifiée.
Neighbors and Germs

Definition

Let $A : \text{Type}$, and let $a, b : A$. We say a and b are **neighbors** if they are not distinct:

$$a \approx b \equiv \neg \neg (a = b).$$

Proposition

The neighboring relation is reflexive, symmetric, and transitive, and is preserved by any function $f : A \to B$.

- For $a : A$, $a \approx a$,
- For $a, b : A$, $a \approx b$ implies $b \approx a$,
- For $a, b, c : A$, $a \approx b$ and $b \approx c$ imply $a \approx c$,
- For $a, b : A$ and $f : A \to B$, if $a \approx b$, then $f(a) \approx f(b)$.
Neighbors and Germs

Definition

The **neighborhood** \mathbb{D}_a of $a : A$ is the type of all its neighbors:

$$\mathbb{D}_a : \equiv (b : A) \times a \simeq b.$$

The **germ** of $f : A \to B$ at $a : A$ is

$$df_a : \mathbb{D}_a \to \mathbb{D}_{f(a)}$$

$$(d, _) \mapsto (f(d), _)$$

Proposition

(Chain rule) For $f : A \to B$, $g : B \to A$, and $a : A$,

$$d(g \circ f)_a = dg_{f(a)} \circ df_a.$$
Cohesion Refresher

Theorem (Shulman)

\[\# \text{ is } \text{lex}: \text{ for any } x, y : A, \text{ there is an equivalence } (x^\# = y^\#) \simeq #(x = y) \]

such that the following diagram commutes.

\[
\begin{array}{ccc}
 & x^\# = y^\# & \\
 \text{ap}_{(-)^\#} & & \simeq \\
 x = y & \downarrow & \\
 & (-)^\# & \\
 & \#(x = y) & \\
\end{array}
\]

Lemma (Shulman)

For any \(P : \text{Prop} \), \(\#P = \neg \neg P \), and a proposition is codiscrete if and only if it is not-not stable.
Codiscretes and Infinitesimals

Putting these facts together, we get:

Proposition

For a set A and points $a, b : A$,

$$ a \approx b \equiv \neg \neg (a = b) \iff \#(a = b) \iff a^\# = b^\# $$

Corollary

0 is the only crisp infinitesimal.

In fact, since

$$ \text{fib}(_)^\#(x^\#) : \equiv (y : A) \times x^\# = y^\# $$

$$ \simeq (y : A) \times x \approx y \equiv: \mathbb{D}_x $$

we have that all formal discs \mathbb{D}_x are $\#$-connected.
Leibnizian Sets and the Leibniz Core

Definition (Lawvere)

A set A is Leibnizian if $\#\sigma : \#A \to \# \int A$ is an equivalence, where $\sigma : A \to \int A$ is the unit.

For crisp sets, this is equivalent to the points-to-pieces transform $\sigma \circ (-)_b : \♭ A \to \int A$ being an equivalence.

Every piece contains exactly one crisp point.

Definition

The Leibniz core $\mathcal{L} A$ of a crisp set A is the pullback

$$\mathcal{L} A \equiv (a : \♭ A) \times (b : A) \times a_b^\# = b^\#
\simeq (a : \♭ A) \times \mathbb{D}_{a_b}$$
A Set is Leibnizian if and only if it is de Morgan

Definition
A type A is *de Morgan* if for all $a, b : A$,

$$ a \approx b \text{ or } a \napprox b. $$

Theorem
A set A is Leibnizian if and only if it is de Morgan

Compare with:

Theorem (Shulman)
A set A is discrete if and only if it is decidable – that is,

for $a, b : A$, $a = b$ or $a \neq b$.
Sketching a Proof

Theorem

A set A is Leibnizian if and only if it is de Morgan

If A is Leibnizian, then $\#\sigma_0$ is an equivalence as well. For $a, b : A$, either $\sigma_0 a = \sigma_0 b$ or not; therefore, $(\sigma_0 a)^\# = (\sigma_0 b)^\#$ or not. Naturality then gives us that $\#\sigma_0(a^\#) = \#\sigma_0(b^\#)$ or not. But $\#\sigma_0$ is an equivalence, so $a^\# = b^\#$ or not.

On the other hand, if A is de Morgan we can give an inverse to $\#$ by sending $u : \# \int A$ to $x^\#$ where $\sigma x = u^\#$. This is well defined since we can map $y : \text{fib}_\sigma(\sigma x)$ to $\{0, 1\}$ according to whether or not $y \approx x$; this shows that every y in the fiber of σx is its neighbor, and therefore that $y^\# = x^\#$.
References
