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Fatma Kılınç-Karzan · Daniel E. Steffy

Submitted: December 2014; Revised: July 2015

Abstract This paper studies K-sublinear inequalities, a class of inequalities with strong relations
to K-minimal inequalities for disjunctive conic sets. We establish a stronger result on the suffi-
ciency of K-sublinear inequalities. That is, we show that when K is the nonnegative orthant or the
second-order cone, K-sublinear inequalities together with the original conic constraint are always

sufficient for the closed convex hull description of the associated disjunctive conic set. When K
is the nonnegative orthant, K-sublinear inequalities are tightly connected to functions that gen-
erate cuts—so called cut-generating functions. In particular, we introduce the concept of relaxed
cut-generating functions and show that each Rn+-sublinear inequality is generated by one of these.
We then relate the relaxed cut-generating functions to the usual ones studied in the literature.
Recently, under a structural assumption, Cornuéjols, Wolsey and Yıldız established the sufficiency
of cut-generating functions in terms of generating all nontrivial valid inequalities of disjunctive sets
where the underlying cone is nonnegative orthant. We provide an alternate and straightforward
proof of this result under the same assumption as a consequence of the sufficiency of Rn+-sublinear
inequalities and their connection with relaxed cut-generating functions.

Keywords Valid inequalities · Sublinear inequalities · Cut-generating functions · Mixed integer
conic programming

1 Introduction

In this paper, we consider disjunctive conic sets of the form

S(A,K,B) := {x ∈ E : Ax ∈ B, x ∈ K},

where K ⊂ E is a regular (full-dimensional, closed, convex, and pointed) cone in a finite dimensional
Euclidean space (E, 〈·, ·〉) with inner product 〈·, ·〉, A : E → Rm is a linear map, and ∅ 6= B ⊆ Rm is a
set of right hand side vectors. Important examples of regular cones include the nonnegative orthant

Rn+, the second-order cone Ln :=
{
x ∈ Rn : xn ≥

√
x21 + . . .+ x2n−1

}
, and the positive semidefinite
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cone Sn+ := {x ∈ Rn×n : aT x a ≥ 0 ∀a ∈ Rn}. Without loss of generality, we assume that B 6= ∅.
We make no structural assumptions on B, in particular, B may be either finite or infinite. We
are interested in studying the structure of valid linear inequalities defining the closed convex hull
of S(A,K,B), denoted by conv(S(A,K,B)). The cases S(A,K,B) = ∅ or conv(S(A,K,B)) = K are
trivial. Hence, throughout the paper, we often restrict our attention to the interesting cases, where
conv(S(A,K,B)) is nonempty and not equal to K.

The disjunctive conic sets S(A,K,B) can represent multi-term disjunctions on K and thus natu-
rally arise in relaxations for Mixed Integer Conic Programs (MICPs) with a regular cone K. There-
fore, these sets are instrumental in derivation and analysis of general cutting planes for MICPs
(see [21]). For example, such sets cover the simpler setups commonly studied such as the two-term
disjunctions or split disjunctions on regular cones or their cross-sections. The particular case of
two-term or split disjunctions on K = Ln has recently attracted a lot of attention [1,2,7,6,9,12,15,
23,24,25,26,30].

When K = Rn+ and B is a finite set, Johnson [20] initiated the study of S(A,Rn+,B) and intro-
duced and characterized Rn+-minimal valid linear inequalities for it. Prior to this, minimal inequal-
ities have been studied in a number of setups related to Mixed Integer Linear Programs (MILPs).
For example, in the context of group problem, a characterization of minimal inequalities via the
so-called subadditivity, symmetry, and periodicity conditions was given in [16,19]. Jeroslow [18]
extended this characterization from group theoretic framework to arbitrary MILPs under the as-
sumption that the feasible region of the MILP is bounded. In particular, an explicit characterization
of minimal inequalities based on the value functions of MILPs was given in [18]. Blair [10] broadened
the results from [18] to the case where the entries of the constraint matrix in MILP are rational.
Bachem et al. [3] further enhanced these characterizations by introducing b-complementarity con-
dition for a master group problem induced by an MILP. We refer the readers to [17] for a survey
on the literature for subadditive approach to MILP. The developments in these papers are mainly
based on the value functions of MILPs and therefore have strong connections to the subadditive
strong duality theory for MILPs. This body of earlier work, with the exception of [20], specifically
focus on feasible sets of MILPs in a finite dimensional setup [10,17,18,20] or the associated infinite
relaxations [3,16,17,19]. As a result, the framework of these papers are related to disjunctive sets
S(A,Rn+,B) with a specific B. More recently, Basu et al. [5], Borozan and Cornuéjols [11] and many
others have also studied minimal valid inequalities, but in the context of infinite relaxations asso-
ciated with MILPs. As opposed to the earlier literature, [5,11] studied more general sets where the
set B is composed of general lattice points [11] or lattice points contained in a rational polyhedron
[5] and established strong connections between the minimal inequalities and the gauge functions of
maximal lattice-free sets.

Kılınç-Karzan [21] followed up on the general and flexible disjunctive framework of [20] by gen-
eralizing the study of S(A,K,B) to general regular cones K and removing the finiteness assumption
on B. In particular, [21] introduced K-minimal inequalities for disjunctive conic sets and studied
their structure in detail in terms of their existence, sufficiency, necessary conditions and sufficient
conditions for K-minimality. It was shown in [21] that minimality notion of an inequality is a natural
result of identifying dominance relations among valid linear inequalities; and therefore, it should
be based on the smallest regular cone K that can be used to describe S(A,K,B). This point is
important even in the case of a disjunctive set associated with an MILP (see [21, Section 2.2 and
Remark 7]); yet it has been overlooked in all of the papers in this literature. Based on the neces-
sary conditions for K-minimality, Kılınç-Karzan [21] also introduced K-sublinear inequalities which
contain K-minimal inequalities as a subclass and have easier to characterize algebraic properties.

The purpose of this paper is to answer open questions surrounding K-sublinear inequalities,
their sufficiency status in important specific cases, and their connections to the cut-generating
functions. Previously, in [21], it was established that whenever there is at least one K-minimal in-
equality, K-minimal inequalities together with the original x ∈ K constraint are sufficient for describ-
ing conv(S(A,K,B)). However, the existence of K-minimal inequalities depends on certain struc-
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tural properties of S(A,K,B); and it is possible to have nontrivial and interesting sets S(A,K,B)
for which none of the describing inequalities are K-minimal (see [21, Example 6]). Despite this,
and the fact [21, Theorem 1] that K-sublinear inequalities subsumes K-minimal inequalities, the
question of whether K-sublinear inequalities would be sufficient in general (independent of any
structural assumption on S(A,K,B)) was left open in [21]. In this paper, we show that whenever
conv(S(A,K,B)) 6= K, K-sublinear inequalities always exist. Moreover, we establish a stronger con-
nection between K-sublinear inequalities and extreme inequalities. That is, for general regular cones
K, we show that every extreme inequality is either K-sublinear or can be captured by the conic
constraint x ∈ K along with all valid equations. On a related note, we also show that not every
extreme inequality is K-sublinear or captured by the constraint x ∈ K. This demonstrates that
there can be valid equations which are neither K-sublinear or implied by the constraint x ∈ K.
Nevertheless, we provide a positive answer to the open question on the sufficiency of K-sublinear
inequalities in two important cases of interest, namely when K = Rn+ or K = Ln. In the case of
K = Rn+, there is a strong connection between Rn+-sublinear inequalities and the functions that
generate cut coefficients—so called cut-generating functions (CGFs). Motivated by the connection
between Rn+-sublinear inequalities and the support functions of certain structured sets, we intro-
duce the concept of relaxed CGFs and relate them to the usual CGFs studied in [13]. Then, through
this connection and the sufficiency of Rn+-sublinear inequalities in defining conv(S(A,Rn+,B), we
also provide an alternative and simplified proof of a recent result by Cornuéjols et al. [14] on the
sufficiency of CGFs. The second part of the paper considers the case when K = Ln. In this case,
we show that Ln-sublinearity definition can be considerably simplified. As a consequence, we also
establish that any valid inequality for S(A,Ln,B) with n ≥ 3 is always Ln-sublinear.

The remainder of the paper is organized as follows. Section 2 introduces our notation and
describes previous results. Section 3 studies some properties of the K-sublinear inequalities for
general K. Section 4 presents our results on the sufficiency of Rn+-sublinear inequalities along with
the constraint x ≥ 0. In this section, we also discuss the connections with CGFs and the implications
of the sufficiency of Rn+-sublinear inequalities on the sufficiency of CGFs. Finally, Section 5 examines
K-sublinear inequalities for second-order cones K = Ln.

2 Notation and Preliminaries

We start by introducing our notation. For a set S, we denote its topological interior with int(S), its
closure with S and its boundary with ∂S = S \ int(S). We use conv(S) to denote the convex hull of
S, conv(S) for its closed convex hull, and cone(S) to denote the convex cone generated by the set
S. We define the kernel of a linear map A : E → Rm as Ker(A) := {u ∈ E : Au = 0} and its image
as Im(A) := {Au : u ∈ E}. We use A∗ to denote the conjugate linear map1) given by the identity

yTAx = 〈A∗y, x〉 ∀(x ∈ E, y ∈ Rm).

For a given cone K ⊂ E, we let Ext(K) denote the set of its extreme rays and K∗ denote its
dual cone given by K∗ := {y ∈ E : 〈x, y〉 ≥ 0 ∀x ∈ K} . Note that the cones Rn+, Ln, and Sn+ are all
self-dual, i.e., K∗ = K; and, in the first two cases, the corresponding Euclidean space E is just Rn
with dot product as the corresponding inner product.

Throughout the paper, we use Matlab notation to denote vectors and matrices and all vectors
are to be understood in column form. We will use ei for the ith unit vector of Rn. We use the
notation a �K b to denote the relation a− b ∈ K, that is, the conic inequality between vectors a and
b.

1 )Note that when E = Rn, and a linear map A : Rn → Rm is just an m×n real-valued matrix, and its conjugate
is given by its transpose, i.e., A∗ = AT .
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2.1 Classes of Valid Linear Inequalities

Given S(A,K,B), we are interested in the valid linear inequalities for conv(S(A,K,B)). Consider
the set of all vectors µ ∈ E such that ϑ(µ) defined as

ϑ(µ) := inf
x
{〈µ, x〉 : x ∈ S(A,K,B)} (1)

is finite. Then any nonzero vector µ ∈ E and a number µ0 ≤ ϑ(µ) gives a valid linear inequality of
the form 〈µ, x〉 ≥ µ0 for S(A,K,B). We denote the corresponding valid inequality by (µ;µ0). We
say that a valid inequality (µ;µ0) is tight2) if µ0 = ϑ(µ). If both (µ;µ0) and (−µ;−µ0) are valid
inequalities, then 〈µ, x〉 = µ0 holds for all x ∈ S(A,K,B); and in this case, we refer to (µ;µ0) as a
valid equation for S(A,K,B). For any vector δ ∈ K∗ \ {0}, the inequality (δ; 0) is always valid for
S(A,K,B). We refer to these inequalities as cone-implied inequalities. The constraint x ∈ K captures
all of the cone-implied inequalities. We define C(A,K,B) = {(µ;µ0) ∈ E×R : µ0 ≤ ϑ(µ)}, the convex
cone of all valid linear inequalities. We let L(A,K,B) be the largest linear subspace contained in
the cone C(A,K,B), also referred to as the lineality space of C(A,K,B). In order to understand
the linear inequalities necessary for the description of conv(S(A,K,B)), we study the generators of
C(A,K,B).

Note that any convex cone K can be written as the sum of its lineality space L and a pointed
convex cone C. A unique representation of K in the form of K = L+C can be obtained by requiring
that C is contained in the orthogonal complement of L. A generating set (GL, GC) for a cone K is
defined to be a minimal set of elements GL ⊆ L, GC ⊆ C such that

K =

 ∑
w∈GL

αww +
∑
v∈GC

λvv : λv ≥ 0

 .

Given a generating set (GL, GC) of C(A,K,B), we refer to the vectors in GL as generating valid

equalities and the vectors in GC as generating valid inequalities of C(A,K,B). Note that the trivial
inequality (0;−1) always belongs to C(A,K,B); thus we will always take it as one of the generators
of C(A,K,B). Other than this trivial vector, without loss of generality, we can assume that all of
the vectors in GL are orthogonal to each other; and each vector in GC is orthogonal to all vectors in
GL (see [21, Remark 2]). A nontrivial inequality (µ;µ0) ∈ C(A,K,B) is called an extreme inequality

if there exists a generating set for C(A,K,B) including (µ;µ0) as a generating inequality either in
GL or in GC .

Given two vectors, u, v ∈ K where K is a cone with lineality space L, u is said to be an L-multiple

of v if u = αv+ ` for some α > 0 and ` ∈ L. From this definition, it is clear that if u is an L-multiple
of v, then v is also an L-multiple of u. Thus, whenever the lineality space L(A,K,B) of the cone
C(A,K,B) is nontrivial, i.e., L(A,K,B) 6= {0}, the generating valid inequalities are only defined
uniquely up to the L-multiples.

Understanding the structure of extreme valid linear inequalities is critical in terms of under-
standing both the structure of conv(S(A,K,B)) and the dominance relations among valid inequal-
ities. On the other hand, characterizing all extreme valid inequalities can be quite difficult for an
arbitrary set S(A,K,B). A middle ground is obtained by studying the structure of slightly larger
classes of inequalities. In particular, classes of minimal and sublinear inequalities, where these no-
tions are defined with respect to the cone K, had received quite some interest in the recent years.
For example, such a study on the structure of tight, K-minimal inequalities underlies the develop-
ments of nonlinear disjunctive cuts in [23,24] for the case of two-term linear disjunctions applied
to a second-order cone.

2 )We note that our definition of tightness of an inequality does not require the corresponding hyperplane to
have a nonempty intersection with the feasible region, as is sometimes the definition used in the literature.
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The cone K in the description of S(A,K,B) plays a critical role in identifying dominance relations
among valid linear inequalities. Consider two valid linear inequalities for S(A,K,B) given by (µ;µ0)
and (ρ; ρ0) such that ρ �K∗ µ and ρ 6= µ. Then we say that (ρ; ρ0) dominates (µ;µ0) whenever
ρ0 ≥ µ0. In fact, when (ρ; ρ0) dominates (µ;µ0), we have µ = ρ + δ for some δ ∈ K∗ \ {0} and
ρ0 ≥ µ0. Moreover, in this case, the inequality (ρ; ρ0) together with the conic constraint x ∈ K
imply the inequality (µ;µ0) because

〈µ, x〉 = 〈ρ+ (µ− ρ), x〉 = 〈ρ, x〉︸ ︷︷ ︸
≥ρ0

+ 〈µ− ρ, x〉︸ ︷︷ ︸
≥0

≥ ρ0 ≥ µ0,

where the first inequality follows from x ∈ K and µ− ρ = δ ∈ K∗.
In the case of K = Rn+ and associated finite and infinite relaxations for MILPs, minimality of a

valid inequality is traditionally defined with respect to K = Rn+. That is, a valid inequality (µ;µ0) is
minimal if for all ρ ≤ µ and ρ 6= µ, the inequality given by (ρ;µ0) is not valid (see [20]). This means
reducing any µi for i ∈ {1, . . . , n} in a minimal inequality (µ;µ0) will lead to a strict reduction in its
right hand side value.3 The following natural extension of the minimality definition to disjunctive
conic sets, and thus to the MICP case, was introduced in [21]:

Definition 1 (K-minimal inequality) A valid linear inequality (µ;µ0) for S(A,K,B) with µ 6= 0 and
µ0 ∈ R is K-minimal if for all valid inequalities (ρ; ρ0) for S(A,K,B) satisfying ρ 6= µ, and ρ �K∗ µ,
we have ρ0 < µ0.

In particular, the definition of K-minimality implies that if (µ;µ0) with µ 6= 0 is valid but not
K-minimal then there exists another valid inequality (ρ; ρ0) that dominates it. That is, (µ;µ0) is
a consequence of the inequality (ρ; ρ0) and the conic constraint x ∈ K. Note that such dominance
relations are of great interest in obtaining smaller yet sufficient sets of valid linear inequalities.
In these dominance relations, the cone K plays a central role; as a result, the selection of cone K
in the representation of S(A,K,B) is critical in defining more refined dominance relations among
valid linear inequalities. For further discussion on the topic, we refer the reader to [21, Remarks
5 and 7]. On a related note, the concepts of tightness and K-minimality are intrinsically different.
Specifically, K-minimality of an inequality in general does not imply the tightness of the inequality
(see [21, Propositions 3 and 4, Example 7, and Remark 8] for further discussion and illustrations).

For a given S(A,K,B), we denote the set of all K-minimal inequalities by Cm(A,K,B). It was
shown in [21, Proposition 1] (see [20] for the case of K = Rn+) that Cm(A,K,B) 6= ∅ only if the
following assumption holds:

Assumption 1: For each δ ∈ K∗ \{0}, there exists some xδ ∈ S(A,K,B) such that 〈δ, xδ〉 > 0.

Moreover, by [21, Proposition 2 and Corollary 2], under Assumption 1, K-minimal inequalities
together with the original conic constraint x ∈ K, are sufficient to describe conv(S(A,K,B)). This
motivated the further study of the properties of K-minimal inequalities. By isolating a number of
algebraic necessary conditions for K-minimality, [21] suggested the following class of K-sublinear

inequalities:

Definition 2 (K-sublinear inequality) Given S(A,K,B), a linear inequality (µ;µ0) with µ 6= 0 and
µ0 ∈ R is K-sublinear if it satisfies the following conditions (A.1(α)) for all α ∈ Ext(K∗) and (A.2)
where

(A.1(α)) 0 ≤ 〈µ, u〉 for all u s.t. Au = 0 and 〈α, v〉u+ v ∈ K ∀v ∈ Ext(K),

(A.2) µ0 ≤ 〈µ, x〉 for all x ∈ S(A,K,B).

3 We note that the valid inequalities that are referred as minimal in [3,4,10,18] correspond to tight and Rn
+-

minimal inequalities with respect to the definitions in this paper.
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When an inequality satisfies (A.1(α)) for all α ∈ Ext(K∗), we say that it satisfies condition
(A.1). In this definition, while condition (A.2) is simply true for every valid inequality, condition
(A.1) is not very intuitive. A particular and simple case of (A.1) was identified in [21]; and it is of
interest: Any valid inequality (µ;µ0) satisfying (A.1) also satisfies the condition

(A.0) 0 ≤ 〈µ, u〉 for all u ∈ K such that Au = 0.

Note that condition (A.0) is in fact equivalent to

µ ∈ (K ∩Ker(A))∗ = K∗ + (Ker(A))∗ = K∗ + Im(A∗),

where the last equation follows from the facts that (Ker(A))∗ = Ker(A)⊥ = Im(A∗) and K∗+Im(A∗)
is closed whenever K is closed [29, Corollary 16.4.2]. In fact, it is known [21, Proposition 6] that
conditions (A.0) and (A.2) are satisfied by any valid inequality (µ;µ0) with µ 6= 0 and µ0 ∈ R.
Therefore, condition (A.1) is the main condition defining the interesting structure of K-sublinear
inequalities. When K = Rn+, conditions (A.0)-(A.2) underlie the definition of subadditive inequalities

from [20] (see e.g., [21, Remark 9]).
We next have the following immediate corollary regarding specific K-sublinear inequalities.

Corollary 1 Any valid inequality (µ;µ0) with µ ∈ Im(A∗) is K-sublinear.

Proof Condition (A.2) is satisfied since (µ;µ0) is valid. Because µ ∈ Im(A∗), using the fact that
all of the u’s in condition (A.1) are from Ker(A), we arrive at 〈µ, u〉 = 0; thus µ satisfies condition
(A.1) as well. ut

Let Cs(A,K,B) denote the cone of K-sublinear inequalities. Conditions (A.1)-(A.2) imply that
Cs(A,K,B) is indeed a convex cone. By [21, Theorem 1], we have Cm(A,K,B) ⊆ Cs(A,K,B) ⊆
C(A,K,B). Under Assumption 1, based on the sufficiency of K-minimal inequalities, this auto-
matically implies that the valid inequalities from Cs(A,K,B) together with x ∈ K are sufficient to
describe conv(S(A,K,B)). Nonetheless, the question of whether Assumption 1 is needed in this
sufficiency result for K-sublinear inequalities was not studied in [21]. We pursue this question in
the next section.

3 Relation between K-sublinear Inequalities and Extreme Inequalities

In this section, for general regular cones K, we study the connection between K-sublinear inequalities
and extreme inequalities describing conv(S(A,K,B)). Without relying on Assumption 1, we first
establish a stronger structural result between K-sublinear inequalities and extreme inequalities.
The following lemma from [20] is useful in our analysis:

Lemma 1 Let K = L+ C where C is a pointed cone and L is the largest linear subspace contained in

K. Suppose v is in a generating set for cone K and there exists v1, v2 ∈ K such that v = v1 + v2, then

v1, v2 are L-multiples of v.

Proposition 1 Every extreme inequality for S(A,K,B) is either K-sublinear or an L-multiple of a

cone-implied inequality.

Proof Suppose (µ;µ0) is an extreme inequality. Let (GC , GL) be a generating set for C(A,K,B)
containing (µ;µ0). We will show that if (µ;µ0) is not K-sublinear, then it is an L-multiple of a
cone-implied inequality. Assume that (µ;µ0) is valid but not K-sublinear. Then it violates condition
(A.1) and hence for some α ∈ Ext(K∗), there exists u satisfying 〈µ, u〉 < 0 such that Au = 0 and
〈α, v〉u+ v ∈ K ∀v ∈ Ext(K) holds.
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Define the linear map Z : E → E by

Zx = 〈x, u〉α+ x for any x ∈ E.

We first show that (Zµ;µ0) is a valid inequality. Since 〈Zµ, x〉 = 〈µ,Z∗x〉 ∀x ∈ E, it is enough to
show that Z∗x ∈ S(A,K,B) for any x ∈ S(A,K,B); then the validity of (µ;µ0) will give 〈Zµ, x〉 =
〈µ,Z∗x〉 ≥ µ0.

Because A : E → Rm, its conjugate A∗ : Rm → E. Without loss of generality let A∗ei =: Ai ∈ E
for i = 1, . . . ,m, where ei is the ith unit vector in Rm. Then from u ∈ Ker(A), we have 〈Ai, u〉 = 0,
which implies ZA∗ei = 〈Ai, u〉α + Ai = Ai for all i = 1, . . . ,m. Therefore, we arrive at ZA∗ = A∗.
Moreover, because A : E → Rm and Z : E → E are linear maps, ZA∗ is a linear map and its
conjugate is given by AZ∗ = A.

Consider any x ∈ S(A,K,B); then we have Ax ∈ B and x ∈ K. Hence, AZ∗x = Ax ∈ B. Also,
because u satisfies 〈α, v〉u+v ∈ K ∀v ∈ Ext(K), we get 〈α, x〉u+x ∈ K holds for all x ∈ K. Thus, for all
w ∈ K∗, we have 〈w,Z∗x〉 = 〈Zw, x〉 = 〈(〈w, u〉α+ w), x〉 = 〈w, u〉〈α, x〉+〈w, x〉 = 〈w, 〈α, x〉u+ x︸ ︷︷ ︸

∈K

〉 ≥ 0.

Therefore, Z∗x ∈ K, proving that for any x ∈ S(A,K,B), we have Z∗x ∈ S(A,K,B).
Additionally, (µ − Zµ) = −〈µ, u〉α ∈ K∗ since 〈µ, u〉 < 0. So (µ − Zµ; 0) is a cone-implied

inequality. Finally, because µ = Zµ+(µ−Zµ), the original inequality (µ;µ0) is a conic combination
of the valid inequality (Zµ;µ0) and the cone-implied inequality (µ−Zµ; 0). Since we have assumed
that (µ;µ0) is extreme, by Lemma 1, these inequalities must be L-multiples of each other, implying
that (µ;µ0) is an L-multiple of a cone-implied inequality. ut

Consider S(A,K,B) and an inequality (µ;µ0) for it. We associate with µ the following set

Dµ := {λ ∈ Rm : A∗λ �K∗ µ}, (2)

and its support function given by σDµ(z) := supλ∈Rm{〈z, λ〉 : λ ∈ Dµ}. These entities play critical
roles in the characterization of K-sublinear inequalities.

We now show that as long as nontrivial valid linear inequalities for S(A,K,B) exist, K-sublinear
inequalities must exist as well.

Proposition 2 Suppose conv(S(A,K,B)) 6= K. Then, K-sublinear inequalities always exist.

Proof Because conv(S(A,K,B)) 6= K, there exists at least one extreme inequality (µ;µ0) that is non-
cone-implied. Then by Proposition 1, it is either K-sublinear or an L-multiple of a cone-implied
inequality. If it is K-sublinear, then we are done. So, suppose it is an L-multiple of a cone-implied
inequality, that is (µ;µ0) = (ρ; ρ0) + (δ; 0) where (ρ; ρ0) is a valid equation and δ ∈ K∗ \ {0}. Since
(µ;µ0) is non-cone-implied, we have (ρ; ρ0) is also non-cone-implied.

Because (ρ; ρ0) is a valid equation, both (ρ; ρ0) and (−ρ;−ρ0) satisfy condition (A.0). Thus,
ρ ∈ Im(A∗) + K∗ and −ρ ∈ Im(A∗) + K∗. Then there exists λ+, λ− ∈ Rm \ {0} and δ+, δ− ∈ K∗
such that ρ = A∗λ+ + δ+ = −A∗λ− − δ−. Therefore, −A∗(λ+ + λ−) = δ+ + δ− implying δ+ + δ− ∈
Im(A∗)∩K∗. If Im(A∗)∩K∗ = {0}, then δ+ = −δ−. Because K∗ is pointed and both δ+ = −δ− ∈ K∗
and δ− ∈ K∗, we have δ+ = δ− = 0. Then ρ ∈ Im(A∗); and using Corollary 1, we conclude that
(ρ; ρ0) is K-sublinear. When Im(A∗) ∩ K∗ 6= {0}, there exists 0 6= ξ ∈ Im(A∗) ∩ K∗. For that ξ, we
have 0 ∈ Dξ where the set Dξ is defined as in (2). Thus, the support function σDξ(·) is nonnegative,
i.e., σDξ(b) ≥ 0 for all b. From [21, Proposition 7], we have ϑ(ξ) ≥ infb∈B σDξ(b). Then using
infb∈B σDξ(b) ≥ 0 and by Corollary 1, this leads to (ξ; 0) is K-sublinear. ut

Proposition 1 suggests that a detailed study of the structure of valid equations for S(A,K,B)
is key to understanding the sufficiency of K-sublinear inequalities. In order to completely argue
for the sufficiency of K-sublinear inequalities for general regular cones K, one may conjecture that
every extreme valid equation is either K-sublinear or cone-implied. Unfortunately, this is not true
as we demonstrate with a counter example in the next section.
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4 Sufficiency of K-sublinear Inequalities for K = Rn
+

We first note that due to the decomposable structure of Rn+, following [21, Remark 9], the conditions
(A.1(α)) required for Rn+-sublinearity simplify and become (A.0) and the following conditions
(A.1i) for i = 1, . . . , n:

(A.1i) 0 ≤ µTu for all u such that Au = 0 and u+ ei ∈ Rn+,

where ei denotes the ith unit vector in Rn.
In addition, for a given µ ∈ Rn, µ satisfies condition (A.0) if and only if µ ∈ Rn+ + Im(AT ), and

thus, Dµ 6= ∅. We also recall the following result [21, Proposition 8]:

Remark 1 Consider S(A,Rn+,B). Then for any µ ∈ Rn+ + Im(AT ), we have ϑ(µ) = infb∈B σDµ(b). ♦

Furthermore, Theorem 4 and Proposition 10 from [21] are handy in our developments (see also [20,
Theorems 9-10] and [21, Remarks 9, 10, and 11]). We summarize these here:

Theorem 1 Consider S(A,Rn+,B). Then any nontrivial valid inequality (µ;µ0) satisfies µ ∈ Rn+ +
Im(AT ). Moreover, (µ;µ0) is an Rn+-sublinear inequality if and only if it is valid (µ0 ≤ ϑ(µ)) and

σDµ(Ai) = µi for all i = 1, . . . , n where Ai denotes the i-th column of the matrix A.

We start by considering an illustrative example of an extreme inequality that is not Rn+-
sublinear. Then we derive a Rn+-sublinear inequality that dominates it, using methods that are
later on generalized.

Example 1 Consider the set S(A,K,B) given by

A =

[
1 0 −1
0 1 1

]
, B =

{[
1
0

]}
and K = R3

+.

Note that S(A,K,B) = {[1; 0; 0]}. A generating set (GC ;GL) for the corresponding cone of valid
inequalities C(A,K,B) is given by GC = {(0;−1)} and GL = {(e1; 1), (e2; 0), (e3; 0)}. Consider the
valid inequality (µ;µ0) = (−e3; 0) ∈ GL. We will show that this extreme inequality is not R3

+-
sublinear. Given (µ;µ0) = (−e3; 0), let us examine condition (A.1i) for i = 2, which requires u2 ≥ 0
for all u such that Au = 0 and u + e2 ∈ R3

+. Yet, the vector u = [1;−1; 1] ∈ Ker(A) ∩ (−e2 + R3
+)

violates this condition, implying that (µ;µ0) = (−e3; 0) is a valid inequality that is not R3
+-sublinear.

Let us now construct an R3
+-sublinear inequality that dominates (µ;µ0) = (−e3; 0). Given µ,

we consider the set Dµ = {λ ∈ R2 : A∗λ ≤ µ} = {λ ∈ R2 : λ1 ≤ 0, λ2 ≤ 0, −λ1 + λ2 ≤ −1}.
Using the support function of Dµ, i.e., σDµ(b) = supλ{b

Tλ : A∗λ ≤ µ}, we construct a new
vector based on the value of this function for each column Ai of the matrix A, that is, η =
[σDµ(A1);σDµ(A2);σDµ(A3)] = [0;−1;−1]. The validity of (η;µ0) with µ0 = 1 is easily seen by the

fact that S(A,K,B) = {[1; 0; 0]}. Moreover, Dη = {λ ∈ R2 : A∗λ ≤ η} = {λ ∈ R2 : λ1 ≤ 0, λ2 ≤
−1, −λ1 + λ2 ≤ −1} = Dµ. Thus, ηi = σDη (Ai) for all i = 1, 2, 3. Then using Theorem 1, we

conclude that (η;µ0) with µ0 = 0 is an R3
+-sublinear inequality. Finally, note that µ = η + δ with

δ = e2 ∈ R3
+; and thus (η;µ0) dominates (µ;µ0). ♦

We next state our main result of this section which establishes that Rn+-sublinear inequalities
along with the constraint x ≥ 0 are sufficient to describe conv(S(A,Rn+,B)).

Proposition 3 Let K = Rn+. Then any nontrivial valid inequality (µ;µ0) for S(A,Rn+,B) is equivalent

to or dominated by an Rn+-sublinear inequality given by (η;µ0) where ηi = σDµ(Ai) for all i = 1, . . . , n
and the domination is defined with respect to K = Rn+.
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Proof Given a nontrivial valid inequality (µ;µ0) for S(A,Rn+,B), let us consider the set Dµ = {λ ∈
Rm : ATλ ≤ µ}, and its support function σDµ(·). Based on these, we will generate a new vector
η by setting ηi = σDµ(Ai) for all i = 1, . . . , n where Ai is the i-th column of the matrix A. First,
note that because (µ;µ0) is a nontrivial valid inequality, it satisfies condition (A.0). Then by [21,
Theorem 3], we have Dµ 6= ∅ and ηi = σDµ(Ai) ≤ µi. Thus, µ ≥ η. Moreover, since x ∈ Rn+ and
σDµ(·) is a support function and thus is positively homogeneous and subadditive, for any b, we
conclude

inf
x

{
ηT x : Ax = b, x ∈ Rn+

}
= inf

x

{ n∑
i=1

σDµ(Ai)xi︸ ︷︷ ︸
=σDµ (Aixi)

: Ax = b, x ∈ Rn+
}

≥ inf
x

{
σDµ(

n∑
i=1

Aixi︸ ︷︷ ︸
=b

) : Ax = b, x ∈ Rn+
}
≥ σDµ(b).

Also, from the validity of (µ;µ0) we have ϑ(µ) ≥ µ0. Then by Remark 1, we conclude ϑ(µ) =
infb∈B σDµ(b) ≥ µ0. This implies

inf
x
{ηT x : x ∈ S(A,Rn+,B)} = inf

b∈B
inf
x

{
ηT x : Ax = b, x ∈ Rn+

}
≥ inf
b∈B

σDµ(b) = ϑ(µ) ≥ µ0.

Hence, (η;µ0) is a valid inequality that dominates (µ;µ0).
In order to finish the proof, we need to show that (η;µ0) ∈ Cs(A,K,B). To see this, let us

consider the set Dη and its support function σDη (·). Once again using [21, Theorem 3], we have
Dη 6= ∅ and σDη (Ai) ≤ ηi for all i. Besides, from the definition of η, ηi = σDµ(Ai); and hence

Dµ ⊆ {λ ∈ Rm : ATi λ ≤ ηi} holds for any i. Thus, we reach to Dµ ⊆ Dη. Using the monotonicity
of the support functions, we then obtain σDµ(a) ≤ σDη (a) for all a ∈ Rm. In particular, ηi =
σDµ(Ai) ≤ σDη (Ai) for all i. Therefore, we conclude ηi = σDη (Ai) for all i. Then Theorem 1 implies
that (η;µ0) is an Rn+-sublinear inequality. ut

A few remarks are in order. The sufficiency result given in Proposition 3 leads to nice conse-
quences. When K = Rn+, based on the precise correspondence (see [21, Remark 9]) between subaddi-
tive inequalities of Johnson [20] and Rn+-sublinear inequalities, and the fact that every Rn+-sublinear
inequality is generated by the support function of a certain set (see Theorem 1 and Remark 1),
we conclude that the support functions of the nonempty sets of form Dµ = {λ ∈ Rm : A∗λ ≤ µ}
are sufficient to generate all valid inequalities for conv(S(A,Rn+,B)). As a result of this, we define
support functions of nonempty sets D ⊂ Rm as relaxed cut-generating functions.

Definition 3 Given S(A,Rn+,B) and a set ∅ 6= D ⊂ Rm, we say that the support function σD :
Rm → (R ∪+∞) of D is a relaxed cut-generating function for S(A,Rn+,B).

Note that for fixed n,A and B, and a vector µ ∈ Rn+ + Im(AT ), the relaxed CGF associated
with Dµ 6= ∅ leads to a valid inequality for S(A,Rn+,B) via Remark 1. At first sight, the relaxed
CGFs might seem to depend on all of the data A,n and B,m associated with the specific instance
S(A,Rn+,B) and therefore work only for the given S(A,Rn+,B). We next show that due to the
sublinearity of relaxed CGFs, their validity is indeed independent of A and n; and thus, they can
be used to generate valid inequalities for other instances S(A′,Rn

′

+ ,B) as long as the set B is kept
the same.

Proposition 4 Suppose B ⊂ Rm is given. Let σ(·) be a relaxed CGF for S(A,Rn+,B) associated

with a nonempty set D ⊂ Rm. Then, the inequality
∑n′

i=1 σ(A′i)xi ≥ infb∈B σ(b) is valid for any

x ∈ S(A′,Rn
′

+ ,B) where the dimension n′ and the matrix A′ ∈ Rm×n
′

are arbitrary, and A′i denotes the

i-th column of the matrix A′.
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Proof Because σ(·) is a relaxed CGF, it is a support function; and thus, it is sublinear (subadditive

and convex). Then for any x ∈ S(A′,Rn
′

+ ,B), we have
∑n′

i=1 σ(A′i)xi ≥ σ(
∑n′

i=1A
′
ixi) = σ(b) for

some b ∈ B, where the inequality is due to the sublinearity of σ(·) and the equation is due to

x ∈ S(A′,Rn
′

+ ,B). Hence,
∑n′

i=1 σ(A′i)xi ≥ infb∈B σ(b) holds for all x ∈ S(A′,Rn
′

+ ,B). ut

While relatively simple, Proposition 4 has an important consequence. Together with Remark 1,
Proposition 4 indicates that the relaxed CGFs σDµ obtained from Rn+-sublinear inequalities (µ;µ0)

for S(A,Rn+,B) can be used to generate cuts of the form
∑n′

i=1 σDµ(A′i)xi ≥ infb∈B σDµ(b) ≥ µ0 for

any set S(A′,Rn
′

+ ,B) where A′ and n′ are arbitrary, i.e., they can be taken as varying.
We now turn our attention to cuts of the form cT x ≥ 1 separating origin from conv(S(A,Rn+,B)).

This setup naturally arises in the context of separating a fractional solution from the feasible
region of an MILP [13] and has attracted some attention in the recent literature. In particular,
some of the previous literature, including [13,14], has specifically focused on the separation of
the origin from conv(S(A,Rn+,B)) under the assumption that B is closed and 0 6∈ B. In this case,
0 /∈ conv(S(A,Rn+,B)), which ensures the existence of valid inequalities separating the origin from
conv(S(A,Rn+,B)). Our analysis to follow does not depend on the closedness of B; and thus we
will not make this assumption. Instead, we simply assume that 0 /∈ conv(S(A,Rn+,B)). Proposition
3 implies that for any cut cT x ≥ 1 separating the origin from conv(S(A,Rn+,B)), we either have
(c; 1) ∈ Cs(A,K,B) or there will be at least one Rn+-sublinear inequality that dominates (c; 1).
Therefore, by focusing on the associated relaxed CGFs, we arrive at the following corollary of
Proposition 3.

Corollary 2 Let Ai be the i-th column of the matrix A for all i = 1, . . . , n. Consider the case with

K = Rn+, B ⊂ Rm and 0 /∈ conv(S(A,Rn+,B)). Then any valid inequality cT x ≥ 1 separating the origin

from conv(S(A,Rn+,B)) is equivalent to or dominated by one of the form
∑n
i=1 σ(Ai)xi ≥ 1, obtained

from a relaxed CGF σ : Rm → (R ∪+∞).

Proof Since (c; 1) separates the origin from conv(S(A,Rn+,B)), any valid inequality that is equivalent
to or dominates (c; 1) will also separate the origin from conv(S(A,Rn+,B)). Because Rn+-sublinear
inequalities along with x ≥ 0 are sufficient to describe conv(S(A,Rn+,B)) (see Proposition 3), and
the cone-implied inequalities xi ≥ 0 do not separate the origin, there exists (µ;µ0) ∈ Cs(A,K,B)
that is equivalent to or dominates (c; 1). Thus, µ0 ≥ 1 and (µ;µ0) is a nontrivial valid inequality.
Then, from [21, Proposition 6], (µ;µ0) satisfies condition (A.0), i.e., µ ∈ Rn+ + Im(AT ). Finally,
from Theorem 1, we have, for every Rn+-sublinear inequality (µ;µ0), the support function σDµ of
the associated nonempty set Dµ generates the coefficients of this inequality, i.e., σDµ(Ai) = µi for
all i. ut

Recently, Conforti et al. [13] studied a variant of the set S(A,Rn+,B) where B ∈ Rm is a fixed
nonempty and closed set such that 0 6∈ B, yet n and A ∈ Rm×n are varying. It is easy to see [13,
Lemma 2.1] that in such a setup, 0 6∈ conv(S(A,Rn+,B)). For this particular setup, the authors are
interested in generating cuts that separate the origin from conv(S(A,Rn+,B)) and introduce the
concept of a cut-generating function as follows:

Definition 4 Given a nonempty and closed set B ∈ Rm satisfying 0 6∈ B, a cut-generating function

for B is a function f : Rm → R such that for any natural number n ∈ N and any matrix A ∈ Rm×n,
the linear inequality given by

∑n
i=1 f(Ai)xi ≥ 1 is valid for S(A,Rn+,B) where Ai is the i-th column

of the matrix A.

In this setup, various properties of cut-generating functions and their relations to B-free sets
were studied in [13]. One question left open in [13] was whether or not CGFs are sufficient to give
all of the cuts separating the origin from conv(S(A,Rn+,B)). In the follow up work [14], by using the
value functions of linear programs and arguments from convex analysis, a positive answer to this
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question was provided under an additional structural assumption. From Remark 1, Proposition 4,
and Corollary 2, we immediately deduce a related result. That is, without any further technical
assumptions, the relaxed CGFs are always sufficient to generate all cuts separating the origin
from conv(S(A,Rn+,B)) and A and n can be taken as varying exactly as in the framework of [13].
In contrast to this, Example 6.1 of [13] shows that there are sets of the form S(A,Rn+,B) such
that CGFs are not sufficient to generate all cuts separating the origin. This disparity between the
sufficiency of relaxed CGFs and the insufficiency of regular CGFs is due to the fact that regular
CGFs are required to be finite valued everywhere while relaxed CGFs are not. In particular, the
relaxed CGFs used in Proposition 4 and Corollary 2 are simply support functions of certain sets;
and therefore they may not be finite valued everywhere. We note that it is not necessary to require
a function to be finite valued everywhere in order to use it to generate cuts for a given problem
instance S(A,Rn+,B). As long as the function is finite valued on the set of columns of A, it will lead
to nontrivial valid inequalities. Nevertheless, for a function to work (i.e., generate nontrivial valid
inequalities) for all instances of the form S(A,Rn+,B) with varying A and n, the finite valuedness of
the function is important. Within the framework of [13], the sufficiency of CGFs was established
in [14] under the additional structural assumption that B ⊆ cone(A). We next show that under the
same assumption, we can in fact guarantee finite valuedness of relaxed CGFs as well.

Proposition 5 Suppose 0 6∈ conv(S(A,Rn+,B)) and B ⊆ cone(A). Let cT x ≥ 1 be a valid inequality

separating the origin from conv(S(A,Rn+,B)). Then

(a) Dc := {λ ∈ Rm : A∗λ ≤ c} is nonempty and the support function of Dc leads to a relaxed CGF,

which then leads to a valid inequality that is equivalent to or dominates cT x ≥ 1.

(b) Let V denote the set of extreme points of the polyhedral set Dc, and ρ be such that ρ ≥
max

{
maxv∈V ‖v‖∞, 1 + infλ∈Dc ‖λ‖∞

}
. Then Dc,ρ := {λ ∈ Rm : A∗λ ≤ c, ‖λ‖∞ ≤ ρ} is

nonempty. Moreover, the support function of Dc,ρ is finite valued everywhere, piecewise linear, and

leads to a valid inequality that is equivalent to or dominates cT x ≥ 1.

Proof (a) This part immediately follows from Corollary 2 and Proposition 3.
(b) Let B(0, ρ) := {λ ∈ Rm : ‖λ‖∞ ≤ ρ}, where ρ ≥ 1 is as defined above. For any v ∈ V, using

the definition of ρ, we have v ∈ B(0, ρ) as well. Since Dc,ρ = Dc ∩ B(0, ρ), we get v ∈ Dc,ρ
for any v ∈ V, which also proves that Dc,ρ is nonempty whenever V 6= ∅. Also, if V = ∅, then
ρ = 1 + infλ∈Dc ‖λ‖∞ = 1 + minλ∈Dc ‖λ‖∞ because Dc is nonempty and polyhedral. Hence,
there exists λ̄ ∈ Dc such that ‖λ̄‖∞ ≤ ρ; thus Dc,ρ 6= ∅ in this case as well. Because Dc,ρ is
a nonempty bounded set, its support function is finite valued everywhere. Also, Dc,ρ ⊆ Dc
implies σDc,ρ(z) ≤ σDc(z) for every z ∈ Rn. Therefore, σDc,ρ(Ai) ≤ σDc(Ai) ≤ ci where the last
inequality follows from part (a) and Ai denote the i-th column of the matrix A.
To finish the proof, we need to show that the cut generated using σDc,ρ(·) with a right hand side

value of 1 is valid (this will also show that this cut is equivalent to or dominates cT x ≥ 1). Note
that, for any z ∈ Rn such that σDc(z) is finite, we have σDc(z) = maxv∈V{zT v} ≤ σDc,ρ(z) ≤
σDc(z), which implies σDc(z) = σDc,ρ(z). Also, the set of recessive directions of Dc are given by
Rec(Dc) = {d ∈ Rn : A∗d ≤ 0}. So, σDc(z) = +∞ if and only if there exists 0 6= d ∈ Rec(Dc)
such that dT z > 0. Next, we show that under the assumption that B ⊆ cone(A), for every
b ∈ B, we have dT b ≤ 0 for all d ∈ Rec(Dc), implying σDc(b) < +∞. Because B ⊆ cone(A),
for any b ∈ B, ∃xb ∈ Rn+ such that b = Axb. Also, d ∈ Rec(Dc) if and only if A∗d ∈ Rn−. Then

0 ≥
(
A∗d

)T︸ ︷︷ ︸
∈Rn−

xb︸︷︷︸
∈Rn+

= dTAxb = dT b, which implies that σDc(b) < +∞. Hence, σDc(b) = σDc,ρ(b)

for all b ∈ B. Thus, we have infb∈B σDc,ρ(b) = infb∈B σDc(b) ≥ 1, where the last inequality
follows from part (a). Therefore, using Proposition 4, the relaxed CGF σDc,ρ(·) leads to the
valid inequality

∑n
i=1 σDc,ρ(Ai)xi ≥ 1. Then, because σDc,ρ(·) leads to an inequality which is

equivalent to or dominates (c; 1), this concludes the proof. ut
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Proposition 5 establishes that the relaxed CGF σDc,ρ(·) is actually finite valued whenever B ⊆
cone(A). Considering this together with Proposition 4, we conclude that σDc,ρ(·) is a CGF in the
usual sense. Therefore, Proposition 5 recovers the main result, Theorem 1.1, of [14].

Note that when we ignore the restriction of a CGF being finite valued, the existence of an
Rn+-sublinear inequality equivalent to or dominating (c; 1) and hence a relaxed CGF leading to
the corresponding Rn+-sublinear inequality, i.e., Corollary 2, is independent of the condition B ⊆
cone(A); and in the proof of Proposition 5, the condition B ⊆ cone(A) is used only to ensure that
the support function used for the relaxed CGF is finite valued everywhere. We refer the readers
to Kılınç-Karzan and Yang [22] for recent developments on more general conditions ensuring the
sufficiency of CGFs.

Remark 2 The sufficiency of CGFs for S(A,Rn+,B) has strong connections with the subadditive
(superadditive) duality theory for MILPs as well. The feasible set of any MILP problem can be
converted into the form of optimizing a linear function over S(A,Rn+,B) by appropriately selecting
A and B. Specifically, we can write the set of feasible solutions of an MILP in disjunctive conic
form as follows:

{x ∈ Rn+ : Āx ≥ b̄, xi ∈ Z+ ∀i = 1, . . . , `} =

{
x ∈ Rn+︸︷︷︸

:=K

:

(
Ā

I` 0

)
︸ ︷︷ ︸

:=A

x ∈
(
b̄+ Rm+
Z`+

)
︸ ︷︷ ︸

:=B

}
.

The subadditive (superadditive) strong duality theorem for MILPs states that when there is at
least one feasible solution, that is, S(A,Rn+,B) 6= ∅, then one can write a dual optimization prob-
lem over all finite valued functions f that are nondecreasing with respect to Rm+ and subadditive
(superadditive); and this dual attains the same objective value as the primal MILP problem (see
[17,19,28]). Indeed, the functions appearing in the strong dual formulation of MILPs are CGFs
because these functions act locally on each individual variable by only considering the associated
data Ai and producing the cut coefficient ci. As a result, strong MILP duality theorem implies the
sufficiency of these functions for the corresponding specific sets S(A,Rn+,B) associated with the set
of feasible solutions of MILPs.

Recently, under a technical condition, Morán et al. [27] has extended this strong duality theory
to MICPs of a specific form (see [27, Theorem 2.4]). The structure of MICPs studied in [27] leads
to specific disjunctive conic sets S(A,K,B) where the domination is defined with respect to a
nonnegative orthant and the cone involved in MICP appears in the definition of the set B (see [21,
Example 3]). We refer the reader to [21, Remark 12] for additional discussion relating the work of
[27] to CGFs. ♦

5 Characterization of K-sublinear Inequalities for K = Ln

In this section, we refine the K-sublinearity conditions (A.0)-(A.2) for the case of second-order cone
K = Ln. In particular, for Ln with n ≥ 3, we show that condition (A.1) is equivalent to condition
(A.0); and hence one does not need to verify condition (A.1) explicitly. One of the consequences
of this is the sufficiency of Ln-sublinear inequalities along with x ∈ Ln constraint for describing
conv(S(A,Ln,B)). Note that K = L2 is just a rotation of the nonnegative orthant which can be
covered by the analysis in the previous section.

In the case of K = Ln for a fixed n and a given α ∈ Ext(Ln), we define the following sets for
convenience in our analysis:

Vα =

{
v ∈ Rn : αT v = 1, v2n =

n−1∑
i=1

v2i , vn ≥ 0

}
and

Xα =
{
x ∈ Rn : x ∈ Ln − v ∀v ∈ Vα

}
.
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The following lemma gives an alternative statement of condition (A.1(α)).

Lemma 2 Consider S(A,Ln,B). Let α ∈ Ext(Ln). Then the linear inequality (µ;µ0) satisfies

0 ≤ 〈µ, u〉 for all u ∈ Ker(A) ∩Xα, (3)

if only if it satisfies condition (A.1(α)).

Proof Let u be any vector as in (A.1(α)), that is, Au = 0 and 〈α, v〉u+ v ∈ Ln ∀v ∈ Ext(Ln). We
first show that u ∈ Ker(A) ∩ Xα. Clearly u ∈ Ker(A). To see that u ∈ Xα, let v′ be an arbitrary
vector in Vα. Since v′ ∈ Ext(Ln) and u is as in (A.1(α)), we have 〈α, v′〉u+v′ ∈ Ln. Then 〈α, v′〉 = 1
implies u ∈ Ln − v′/〈α, v′〉 = Ln − v′ implying that u ∈ Xα. Now, consider u ∈ Ker(A) ∩Xα. Then
Au = 0. Moreover, for any v ∈ Ext(Ln) such that 〈α, v〉 = 0, we have 〈α, v〉u+ v = v ∈ Ln. Also, for
any v ∈ Ext(Ln) such that 〈α, v〉 > 0, let v′ := v

〈α,v〉 . Then v′ ∈ Ext(Ln) and 〈α, v′〉 = 1; and thus

v′ ∈ Vα. Because u ∈ Xα, u + v′ ∈ Ln. From the definition of v′ and since 〈α, v〉 > 0 and Ln is a
cone, we have 〈α, v〉u+ v ∈ Ln. Thus, for all v ∈ Ext(Ln), we have 〈α, v〉u+ v ∈ Ln proving that u
is a vector described in (A.1(α)).

ut

We next show that in fact Xα ⊆ Ln; and thus condition (3) is already covered by condition
(A.0). Because condition (A.0) is a consequence of condition (A.1), this proves their equivalence.
As a result, the definition of Ln-sublinearity is significantly simplified.

Proposition 6 When K = Ln where n ≥ 3, any valid inequality that satisfies conditions (A.0) and

(A.2) is K-sublinear.

Proof To establish this result, given any α ∈ Ext(Ln), we will prove that Xα ⊆ Ln.

Claim If x ∈ Xα, then xn ≥ 0.

Proof of Claim: Consider the n− 2 dimensional subspace {x ∈ Rn : xTα = 0, xn = 0}, and
let û be any nonzero vector from this subspace. Without loss of generality we may assume
that û is scaled such that

∑n−1
i=1 û

2
i = 1/αn. Next, we construct two vectors u,w by setting

ui = ûi and wi = −ûi for i ∈ {1, . . . , n− 1} and un = wn =
∑n−1
i=1 û

2
i . Then by construction

u,w ∈ Ext(Ln), αTu = αTw = 1, i.e., u,w ∈ Vα, and ui = −wi for i ∈ {1, . . . , n−1}, un = wn.
Because u,w ∈ Vα, Xα ⊆ (Ln − u) ∩ (Ln − w). Next, we show that if x ∈ Xα ⊆ (Ln − u) ∩
(Ln − w), we must have xn ≥ 0. Note that

Ln − v =

{
x ∈ Rn :

n−1∑
i=1

(xi + vi)
2 ≤ (xn + vn)2, xn + vn ≥ 0

}
.

Therefore, x ∈ Xα satisfies xn + un = xn + wn ≥ 0 as well as the following two conditions:

n−1∑
i=1

(xi + ui)
2 ≤ (xn + un)2,

n−1∑
i=1

(xi − ui)2 =
n−1∑
i=1

(xi + wi)
2 ≤ (xn + wn)2 = (xn + un)2.

These two inequalities lead to:

(xn + un)2 ≥ max

{
n−1∑
i=1

(xi + ui)
2,

n−1∑
i=1

(xi − ui)2
}

=
n−1∑
i=1

x2i +
n−1∑
i=1

u2i + max

{
n−1∑
i=1

2xiui, −
n−1∑
i=1

2xiui

}
︸ ︷︷ ︸

≥0

.
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Because u ∈ Ext(Ln), the above inequality implies that x2n + 2xnun = xn(xn + 2un) ≥∑n−1
i=1 x

2
i ≥ 0. Also, 0 ≤ xn + un < xn + 2un since un > 0. Thus, xn(xn + 2un) ≥ 0 can hold

only if xn ≥ 0, which establishes our claim that xn ≥ 0. ut

The nonnegativity of xn implies xn + vn ≥ 0 for any v ∈ Vα. Therefore, for x with xn ≥ 0,
x ∈ Xα if and only if:

n−1∑
i=1

x2i − x
2
n ≤ v2n −

n−1∑
i=1

v2i︸ ︷︷ ︸
=0 ∀v∈Vα

−2

( n−1∑
j=1

xjvj − xnvn
)
∀v ∈ Vα. (4)

Moreover, using the definition of Vα, (4) can be rewritten as

n−1∑
i=1

x2i − x
2
n ≤ 2 inf

v∈Rn

{
xnvn −

n−1∑
j=1

xjvj : αT v = 1, v2n =
n−1∑
i=1

v2i , vn ≥ 0

}
.

The right-hand side of this inequality involves optimizing a linear function over a nonconvex
set. Nevertheless, note that

conv

{
v ∈ Rn : αT v = 1, v2n =

n−1∑
i=1

v2i , vn ≥ 0

}
=

{
v ∈ Rn : αT v = 1, v2n ≥

n−1∑
i=1

v2i , vn ≥ 0

}
=
{
v ∈ Rn : αT v = 1, v ∈ Ln

}
.

Moreover, optimizing a linear function over a set is equivalent to optimizing it over its closed convex
hull. Therefore, we arrive at the following inequality with a conic optimization problem

n−1∑
i=1

x2i − x
2
n ≤ 2 inf

v∈Rn

{
xnvn −

n−1∑
j=1

xjvj : αT v = 1, v ∈ Ln
}
.

Note that the above conic optimization problem is bounded below; and v = α
‖α‖2 is a feasible

solution to it. Next, we show that this problem is strictly feasible. Because α is an extreme ray of
Ln, there exists a unique ray γ ∈ Ln such that αT γ = 0, that is, γi = −αi for i = 1, . . . , n − 1 and
γn = αn. Let v be any feasible solution to this optimization problem. Then v + γ is also feasible
because v and γ are both in the cone and are not collinear and αT (v + γ) = αT v = 1. Moreover,
since Ln is strictly convex, summing up any two distinct extreme rays from Ln results in an interior
point of Ln. Thus, v+γ is a strictly feasible solution to the above optimization problem. Therefore,
the strong conic duality theorem [8] together with (Ln)∗ = Ln implies

n−1∑
i=1

x2i − x
2
n ≤ 2 sup

τ∈R

τ :


−x1 − α1τ

...
−xn−1 − αn−1τ

xn − αnτ

 ∈ Ln


= 2 sup
τ∈R

{
τ :

n−1∑
i=1

(−xi − αiτ)2 ≤ (xn − αnτ)2, xn − αnτ ≥ 0

}

= 2 sup
τ∈R

{
τ :

n−1∑
i=1

x2i − x
2
n + 2(αT x)τ +

( n−1∑
i=1

α2
i − α

2
n

)
︸ ︷︷ ︸
=0 as α∈Ext(Ln)

τ2 ≤ 0, τ ≤ xn
αn

}

= 2 sup
τ∈R

{
τ : 2(αT x)τ ≤ x2n −

n−1∑
i=1

x2i , τ ≤
xn
αn

}
.
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In order to finish the proof, it is sufficient to show that the above requirement is equivalent to
x ∈ ±Ln. We will consider the following two cases separately:

Case 1: αT x > 0.
In this case we have

n−1∑
i=1

x2i − x
2
n ≤ min

{
2xn
αn

,

∑n−1
i=1 x

2
i − x

2
n

−(αT x)

}
≤
∑n−1
i=1 x

2
i − x

2
n

−(αT x)
,

equivalently
(∑n−1

i=1 x
2
i − x

2
n

)(
1 +

1

(αT x)

)
︸ ︷︷ ︸

>0

≤ 0, which holds if and only if x∈±Ln. Because xn ≥ 0,

this is possible only if x ∈ Ln.

Case 2: αT x ≤ 0.
In this case we establish the result by showing that the optimization problem above is feasible
only when x ∈ Ln. Using the nonpositivity of αT x, we rewrite the constraints of the optimization
problem as

n−1∑
i=1

x2i − x
2
n ≤ −2(αT x)τ ≤ −2(αT x)

xn
αn

.

Then this implies
n−1∑
i=1

x2i − x
2
n + 2x2n +

2xn
αn

n−1∑
i=1

αixi ≤ 0.

Because α ∈ Ext(Ln), we have α2
n =

∑n−1
i=1 α

2
i , leading to:

0 ≥
n−1∑
i=1

(
x2i +

2xn
αn

αixi +
α2
i

α2
n
x2n

)
=
n−1∑
i=1

(
xi +

αi
αn

xn

)2
.

This is possible only if xi = −αi
αn

xn ∀i = 1, ..n− 1 and thus:

n−1∑
i=1

x2i =

(
x2n
α2
n

) n−1∑
i=1

α2
i = x2n,

which holds if and only if x ∈ ±∂Ln.
Finally, combining x ∈ ±∂Ln with xn ≥ 0, we conclude that x ∈ Ln. ut

Lemma 2 and Proposition 6 imply that for K = Ln with n ≥ 3, conditions (A.0) and (A.1) are
equivalent; and hence any valid inequality satisfying conditions (A.0) and (A.2) is Ln-sublinear.
In particular, by [21, Proposition 6], we arrive at the following corollary.

Corollary 3 When n ≥ 3, any valid inequality for S(A,Ln,B) is Ln-sublinear.
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21. F. Kılınç-Karzan. On minimal inequalities for mixed integer conic programs. Mathematics of Operations

Research, 2015. http://dx.doi.org/10.1287/moor.2015.0737.
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