Sufficient Conditions and Necessary Conditions for the Sufficiency of Cut-Generating Functions

Fatma Kılınç-Karzan∗ Boshi Yang†

December 2015

Abstract

Cut-generating functions (CGFs) have been studied since 1970s in the context of Mixed Integer Linear Programs (MILPs) and more general disjunctive programs and have drawn renewed attention recently. The sufficiency of CGFs to generate all valid inequalities for the convex hull description of disjunctive sets or all cuts that separate the origin from the convex hull of disjunctive sets is an indispensable question for the justification of this research focus on CGFs. While this question has been answered affirmatively in a number of setups and under a variety of structural assumptions; it still remains open in the most general case. In this paper, we pursue this question by providing the most general sufficient conditions for the sufficiency of CGFs and establishing necessary conditions that demonstrate that our sufficient conditions are almost necessary. Our approach relies on studying the properties of relaxed CGFs recently introduced by Kılınç-Karzan and Steffy.

1 Introduction

In this paper, we study disjunctive sets of form

$$S(A, \mathbb{R}_+^n, B) := \{ x \in \mathbb{R}^n : Ax \in B, x \in \mathbb{R}_+^n \},$$

where A is a linear map from \mathbb{R}^n to \mathbb{R}^m, and B is a nonempty subset of \mathbb{R}^m. Usually, B is a general nonempty, nonconvex set; and thus $S(A, \mathbb{R}_+^n, B)$ is nonconvex. We are interested in the valid inequalities describing the structure of $\text{conv}(S(A, \mathbb{R}_+^n, B))$ – the closed convex hull of $S(A, \mathbb{R}_+^n, B)$. Since the cases $S(A, \mathbb{R}_+^n, B) = \emptyset$ and $\text{conv}(S(A, \mathbb{R}_+^n, B)) = \mathbb{R}_+^n$ are trivial, in this paper, we only consider the cases where $\text{conv}(S(A, \mathbb{R}_+^n, B))$ is neither empty and nor equal to \mathbb{R}_+^n.

∗Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, 15213, USA. Email: fkipinc@andrew.cmu.edu.
†Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, 15213, USA. Email: boshiy@andrew.cmu.edu.
When \mathcal{B} is a finite set, $\mathcal{S}(A, \mathbb{R}_+^n, \mathcal{B})$ is simply a disjunctive set such as those introduced and studied by Balas (3). Furthermore, the set $\mathcal{S}(A, \mathbb{R}_+^n, \mathcal{B})$ with a closed set \mathcal{B} satisfying $0 \notin \mathcal{B}$ naturally arises in the context of separating a fractional solution from the feasible region of a Mixed Integer Linear Program (MILP) (17; 19). In this context, Johnson (19) introduced and characterized minimal valid linear inequalities for $\mathcal{S}(A, \mathbb{R}_+^n, \mathcal{B})$ where \mathcal{B} is a finite set; Jeroslow (17) provided an explicit characterization of minimal inequalities based on the value functions of MILPs for MILPs with bounded feasible regions; and Blair (7) extended this characterization to MILPs with rational data. This body of work has strong connections to the subadditive strong duality theory for MILPs; see (16) for a survey of the earlier literature on the subadditive approach to MILP.

Given \mathcal{B}, an important class of problems study an infinite family of sets of the form $\mathcal{S}(A, \mathbb{R}_+^n, \mathcal{B})$ by varying A and n. This line of research is primarily motivated by the infinite group relaxations studied in the MILP context. In these infinite relaxations, the family of sets $\mathcal{S}(A, \mathbb{R}_+^n, \mathcal{B})$ are characterized solely by \mathcal{B} and A is assumed to be composed of all possible column vectors from \mathbb{Q}^m. This line of research dates back to Gomory (14) where cut-generating functions (CGFs)—functions that generate cut coefficients c_i based on solely the data A_i associated with a particular variable x_i for the cuts of form $\sum_{i=1}^n c_i x_i \geq 1$—were introduced and studied for the first time. This was followed up by Gomory and Johnson (13) and others (18; 2; 1) for infinite group relaxations associated with MILPs. Recent work has studied these infinite relaxations under a variety of structural assumptions on \mathcal{B} and established strong connections between minimal inequalities and CGFs obtained from the gauge functions of maximal lattice-free sets for example when \mathcal{B} is a general lattice (8) and when \mathcal{B} is composed of lattice points contained in a rational polyhedron (12; 4). We refer the readers to (6; 5) for recent surveys related to these infinite relaxations.

Motivated by the infinite relaxations used in the MILP context and to eliminate various structural assumptions imposed on \mathcal{B} in the literature, Conforti et al. (9) studied the variant of $\mathcal{S}(A, \mathbb{R}_+^n, \mathcal{B})$ with varying n and $A \in \mathbb{R}^{m \times n}$ but a fixed nonempty closed set $\mathcal{B} \in \mathbb{R}^m$ under the assumption that $0 \notin \mathcal{B}$. This assumption immediately implies $0 \notin \text{conv}(\mathcal{S}(A, \mathbb{R}_+^n, \mathcal{B}))$ (see (9, Lemma 2.1)) and motivates the authors focus on generating cuts of form $\sum_{i=1}^n c_i x_i \geq 1$ that separate the origin from $\text{conv}(\mathcal{S}(A, \mathbb{R}_+^n, \mathcal{B}))$. In order to study disjunctive sets $\mathcal{S}(A, \mathbb{R}_+^n, \mathcal{B})$ with varying n and A, Conforti et al. (9) coined the term cut-generating function for these sets with general \mathcal{B} and studied their structure and their desirable properties, e.g., minimality, and their relation with \mathcal{B}-free neighborhoods of the origin.

The sufficiency of CGFs for generating all of the cuts separating the origin from $\text{conv}(\mathcal{S}(A, \mathcal{K}, \mathcal{B}))$ is vital to justify the recent research focus on CGFs. In the context of infinite relaxations associated with $\mathcal{S}(A, \mathbb{R}_+^n, \mathcal{B})$ where $m = 1$ and $\mathcal{B} = b + \mathbb{Z}$ for some $b \notin \mathbb{Z}$, such a sufficiency result can be traced back to Gomory and Johnson (13). For the more general infinite relaxation where \mathcal{B} is assumed to be a lattice of the form $\mathcal{B} = b + \mathbb{Z}^m$ for some $b \notin \mathbb{Z}^m$, Zambelli (23, Theorem 1) established that CGFs are sufficient to generate all cuts separating the origin. For the sets $\mathcal{S}(A, \mathbb{R}_+^n, \mathcal{B})$ arising in the context of
Gomory’s Corner Polyhedron and also for general $S(A, \mathbb{R}^n_+, B)$ under the assumption that $\text{conv. cone}(A) = \mathbb{R}^m$ where $\text{conv. cone}(A)$ is the convex cone generated by the columns of A, the sufficiency of CGFs were shown in (10) and (9, Theorem 6.3) respectively. On the other hand, this is no longer the case in the more general setup of Conforti et al. (9) which involves a varying matrix A and an arbitrary closed set $0 \notin B$, not a general lattice and without the assumption that $\text{conv. cone}(A) = \mathbb{R}^m$. Specifically, (9, Example 6.1) demonstrates a particular instance of $S(A, \mathbb{R}^n_+, B)$ where not all cuts separating the origin from $\text{conv}(S(A, K, B))$ can be generated by CGFs. Later on, in the framework of (9), Cornuёjols, Wolsey and Yıldız (11, Theorem 1.1) established that CGFs are sufficient to give all of the cuts separating the origin from $\text{conv}(S(A, \mathbb{R}^n_+, B))$ under the structural assumption that $B \subseteq \text{conv. cone}(A)$. In the cases of infinite relaxations, the assumption $B \subseteq \text{conv. cone}(A)$ is immediately satisfied. Nevertheless, to the best of our knowledge, the complete sufficiency status of CGFs for $S(A, \mathbb{R}^n_+, B)$, with or without varying matrices A, still remains an open question. This is also stated as an open question recently in Basu et al. (5), We pursue this question in this paper.

The sufficiency of CGFs for $S(A, \mathbb{R}^n_+, B)$ is intrinsically related to the subadditive duality theory for MILPs. The feasible region of an MILP has a natural representation in the form of $S(A, \mathbb{R}^n_+, B)$ where B possesses a specific structure. According to the subadditive strong duality theorem for MILPs, there exists a dual problem of the MILP based on functions that generate cut coefficients; and this dual achieves zero duality gap. In particular, the feasible region of the dual problem is defined by all finite-valued, subadditive functions that are nondecreasing with respect to \mathbb{R}^m_+. Such functions are indeed CGFs because they are finite-valued and they produce the coefficients μ_i of any valid inequality $\mu^T x \geq \mu_0$ by considering only the data A_i associated with each individual variable x_i. As a result, the strong MILP duality theorem implies the sufficiency of CGFs for generating all of the cuts of form $c^T x \geq 1$ valid for $\text{conv}(S(A, \mathbb{R}^n_+, B))$ where B may have a recession cone of \mathbb{R}^m_+. Morán et al. (22) has extended the strong duality theory for MILPs to MICPs of a specific form under a technical condition (22, Theorem 2.4)). The feasible sets of MICPs studied in (22) can be represented in disjunctive form $S(A, \mathbb{R}^n_+, B)$, where the conic structure is embedded in the definition of the set B (see (20, Example 3)). We refer the readers to (20, Remark 12) and (21, Remark 2) for additional discussion relating the work of Morán et al. (22) to CGFs. Nevertheless, the sets $S(A, \mathbb{R}^n_+, B)$ representing MILPs and these specific MICPs from (22) imposes a specific structure on B and their sufficiency is established under some technical assumptions. Thus, these results on strong MILP (or MICP) duals do not fully answer the question on the sufficiency of CGFs in the most general case.

Following up of the framework of (19), Kılınç-Karzan (20) introduced disjunctive conic sets $S(A, K, B)$ where B is an arbitrary nonconvex (possibly infinite) set and the cone \mathbb{R}^n_+ in $S(A, \mathbb{R}^n_+, B)$ is replaced with a general regular (full-dimensional, closed, convex, and pointed) cone K. In (20), K-minimal inequalities for these general disjunctive conic

1Regular cones K include, for example, the nonnegative orthant \mathbb{R}^n_+, the second-order cone, and the
sets were introduced; and their existence, sufficiency, necessary conditions and sufficient conditions for K-minimality were scrutinized. Based on the necessary conditions for K-minimality, (20) also introduced K-sublinear inequalities that have easier algebraical characterizations. Kılınç-Karzan and Steffy (21) further studied the existence, sufficiency, and properties of K-sublinear inequalities. Particularly, they examined the connection between \mathbb{R}^n_+-sublinear inequalities and CGFs and introduced relaxed cut-generating functions (relaxed CGFs) as the support functions of nonempty sets in the space of \mathcal{B}. Kılınç-Karzan and Steffy (21) showed that without any technical assumptions, the relaxed CGFs are sufficient to generate all necessary inequalities for the description of $\operatorname{conv}(S(A, \mathbb{R}^n_+, \mathcal{B}))$ even when n and A are varying. This is in contrast to the fact that establishing the sufficiency of regular CGFs requires additional structural assumptions. A major differentiating point between regular CGFs and relaxed CGFs is that regular CGFs are finite-valued everywhere while relaxed CGFs are not; and finite-valuedness of CGFs is crucial for them to produce nontrivial valid inequalities for all instances of $S(A, \mathbb{R}^n_+, \mathcal{B})$ with a fixed \mathcal{B} but varying A and n.

In this paper, we pursue open questions surrounding the sufficiency status of CGFs. As our main contribution, we provide general sufficient conditions under which all valid inequalities for the description of $\operatorname{conv}(S(A, \mathbb{R}^n_+, \mathcal{B}))$ can be generated by CGFs as well as sufficient conditions for CGFs to generate all cuts separating the origin from $\operatorname{conv}(S(A, \mathbb{R}^n_+, \mathcal{B}))$ when $0 \notin \operatorname{cl}(\mathcal{B})$. Our approach relies on constructing a specific subset of relaxed CGFs that are finite-valued everywhere and showing that under certain conditions, these relaxed CGFs are sufficient to generate all necessary inequalities. Our sufficient conditions include, but are not limited to, the cases where $\mathcal{B} \setminus \operatorname{conv} \operatorname{cone}(A)$ is compact and where $\mathcal{B} \setminus \operatorname{conv} \operatorname{cone}(A)$ is contained in a closed cone intersecting $\operatorname{conv} \operatorname{cone}(A)$ only at the origin. Our Corollary 5 gives a complete description of our sufficient conditions. To the best of our knowledge, the only sufficient condition studied in the previous literature in this context was $\mathcal{B} \subseteq \operatorname{conv} \operatorname{cone}(A)$. Such a condition does not necessarily hold for the separation problems arising in the MILP context. On the other hand, our sufficient conditions for example cover the case of \mathcal{B} being a compact set. This is immediately applicable in the MILP context when the integer variables are bounded as it leads to $S(A, \mathbb{R}^n_+, \mathcal{B})$ with a finite set \mathcal{B}. In our developments, we also establish in Proposition 7 that if an extreme inequality can be generated by a CGF, then it can as well be generated by the support function of a bounded set studied in the context of relaxed CGFs. This observation plays a critical role in establishing our necessary conditions for the sufficiency of CGFs (Corollary 7). Our sufficient conditions and necessary conditions are very close (see Corollaries 5 and 7); yet they do not match precisely. We conclude our study by providing examples to illustrate the gap between our sufficient conditions and necessary ones.

The remainder of the paper is organized as follows. Section 2 introduces our notation and describes previous results as they relate to minimal inequalities, sublinear inequalities, positive semidefinite cone.
CGFs, and relaxed CGFs. Sections 3 and 4 study the sufficient conditions and necessary conditions for the sufficiency of CGFs respectively.

2 Notation and Preliminaries

We start by introducing our notation. For a set \(S \subseteq \mathbb{R}^n \), we denote its topological interior by \(\text{int}(S) \), its closure by \(\text{cl}(S) \), and its boundary by \(\text{bd}(S) = \text{cl}(S) \setminus \text{int}(S) \). We use \(\text{conv}(S) \) to denote the convex hull of \(S \), \(\overline{\text{conv}}(S) \) for its closed convex hull, and \(\text{cone}(S) := \{ ts : s \in S, t > 0 \} \) to denote the cone generated by \(S \). Note that when \(S \) is nonconvex, \(\text{cone}(S) \) can be nonconvex as well. Besides, 0 is not necessarily in \(\text{cone}(S) \) and \(\overline{\text{cone}}(S) \) may not be closed. We use the notation \(\text{conv} \cdot \text{cone}(S) := \{ \alpha x + \beta y : x, y \in S, \alpha, \beta \geq 0 \} \) to denote the convex cone generated by \(S \). We also denote the recession cone of \(S \) by \(\text{Rec}(S) := \{ y \in \mathbb{R}^n : x + \lambda y \in S \text{ for all } x \in S \text{ and } \lambda \geq 0 \} \). The support function of \(S \) is defined as \(\sigma_S(z) := \sup_{s \in \mathbb{R}^n} \{ z^T s : s \in S \} \).

We define the kernel of a linear map \(A : \mathbb{R}^n \to \mathbb{R}^m \) as \(\text{Ker}(A) := \{ u \in \mathbb{R}^n : Au = 0 \} \) and its image as \(\text{Im}(A) := \{ Au : u \in \mathbb{R}^n \} \). For convenience, we also treat \(A \) as a real matrix and use \(\text{conv} \cdot \text{cone}(A) \) to represent the convex cone generated by the columns of \(A \). Given a cone \(K \subseteq \mathbb{R}^n \), we use \(K^* := \{ y \in \mathbb{R}^n : x^T y \geq 0 \forall x \in K \} \) for its dual cone.

Throughout the paper, we use Matlab notation to denote vectors and matrices and all vectors are to be understood in column form.

2.1 Classes of Valid Linear Inequalities

Given \(S(A, \mathbb{R}_+^n, B) \), we are interested in the valid linear inequalities for \(\overline{\text{conv}}(S(A, \mathbb{R}_+^n, B)) \). Consider the set of all vectors \(0 \neq \mu \in \mathbb{R}^n \) such that \(\vartheta(\mu) \) defined as

\[
\vartheta(\mu) := \inf_x \{ \mu^T x : x \in S(A, \mathbb{R}_+^n, B) \}
\]

is finite. Then any nonzero vector \(\mu \in \mathbb{R}^n \) and a number \(\mu_0 \leq \vartheta(\mu) \) gives a valid linear inequality of the form \(\mu^T x \geq \mu_0 \) for \(S(A, \mathbb{R}_+^n, B) \). As a shorthand notation, we denote the corresponding valid inequality by \((\mu; \mu_0) \). When \(\vartheta(\mu) = -\infty \), we say that the inequality generated by \(\mu \) is trivial. We refer to a valid inequality \((\mu; \mu_0) \) as tight \(\bigtriangleup \) if \(\mu_0 = \vartheta(\mu) \).

Remark 1. Given \(S(A, \mathbb{R}_+^n, B) \), it is shown in \([20], \text{Proposition 6}\) that all nontrivial valid inequalities \((\mu; \mu_0) \) satisfy \(\mu \in \mathbb{R}_+^n + \text{Im}(A^T) \). \(\bigtriangleup \)

\(\bigtriangleup \) We note that our definition of tightness of an inequality does not require the corresponding hyperplane to have a nonempty intersection with the feasible region, as is sometimes the definition used in the literature.
We define \(C(A, \mathbb{R}^n_+, \mathcal{B}) = \{ (\mu; \mu_0) \in \mathbb{R}^n \times \mathbb{R} : \mu_0 \leq \vartheta(\mu) \} \) as the convex cone of all valid linear inequalities. Note that any convex cone \(K \) can be written as the sum of a linear subspace \(L \) and a pointed cone \(C \). Here \(L \) represents the largest linear subspace contained in the cone \(K \), also referred to as the lineality space of \(K \). A unique representation of \(K \) in the form of \(K = L + C \) can be obtained by requiring that \(C \) is contained in the orthogonal complement of \(L \). A generating set \((G_L, G_C) \) for a cone \(K \) is defined to be a minimal set of elements \(G_L \subseteq L, G_C \subseteq C \) such that

\[
K = \left\{ \sum_{w \in G_L} \alpha_w w + \sum_{v \in G_C} \lambda_v v : \lambda_v \geq 0 \right\}.
\]

Given \(C(A, \mathbb{R}^n_+, \mathcal{B}) \), an inequality \((\mu; \mu_0) \in C(A, \mathbb{R}^n_+, \mathcal{B}) \) is called an extreme inequality if there exists a generating set for \(C(A, \mathbb{R}^n_+, \mathcal{B}) \) including \((\mu; \mu_0) \) as a generating inequality either in \(G_L \) or in \(G_C \).

Understanding the structure of extreme valid linear inequalities is critical in terms of understanding the structure of \(\text{conv}(S(A, K, \mathcal{B})) \). On the other hand, characterizing all extreme inequalities can be quite difficult for an arbitrary set \(S(A, K, \mathcal{B}) \). A middle ground is obtained by studying the structure of slightly larger classes of inequalities. In particular, classes of \(K \)-\textit{minimal} and \(K \)-\textit{sublinear} inequalities, where these notions are defined with respect to a regular cone \(K \), were introduced in [20] and further studied in [21]. A valid inequality \((\mu; \mu_0) \) is dominated with respect to the cone \(K \) by another valid inequality \((\rho; \rho_0) \) if \(\rho \neq \mu \) and \(\rho \preceq K, \mu \), but \(\rho_0 > \mu_0 \). A valid inequality \((\mu; \mu_0) \) is \(K \)-minimal if it is not dominated by any other valid inequality in this sense (see [20] for general regular cones \(K \) and [19] for \(K = \mathbb{R}^n_+ \)). Based on this domination notion, when \(K = \mathbb{R}^n_+ \), reducing any \(\mu_i \) for \(i \in \{1, \ldots, n\} \) in an \(\mathbb{R}^n_+ \)-minimal inequality \((\mu; \mu_0) \) will lead to a strict reduction in its right hand side value.\(^3\) These dominance relations are of great interest in obtaining smaller yet sufficient sets of valid linear inequalities. Therefore, the selection of cone \(K \) in the description of \(S(A, K, \mathcal{B}) \) plays a critical role; see [20], Remarks 5 and 7) for further discussion.

It is well-known [20], Proposition 2 and Corollary 2) that whenever \(K \)-minimal inequalities exist, they are sufficient to describe \(\text{conv}(S(A, K, \mathcal{B})) \) together with the original constraint \(x \in K \); and \(K \)-minimal inequalities exist when \(\text{conv}(S(A, K, \mathcal{B})) \) is full dimensional. By isolating a number of algebraic necessary conditions for \(K \)-minimality, [20] suggested the class of \(K \)-\textit{sublinear} inequalities that contain \(K \)-minimal inequalities (see [20] Theorem 1)). When \(K = \mathbb{R}^n_+ \), the \(\mathbb{R}^n_+ \)-\textit{sublinear inequalities} of [20] are indeed equivalent to the \textit{subadditive inequalities} introduced in [19] (see e.g., [20] Remark 9)). The existence, sufficiency, and properties of \(K \)-sublinear inequalities were further studied in [21] without making technical assumptions ensuring the existence of \(K \)-minimal inequalities. Moreover, [21] also examined the connection between \(\mathbb{R}^n_+ \)-sublinear inequalities and CGFs.

\(^3\) The valid inequalities that are referred as minimal in [12] correspond to tight and \(\mathbb{R}^n_+ \)-\textit{minimal} inequalities with respect to the definitions in this paper.
In this paper, we will focus on the concept of domination induced by the cone $\mathbb{K} = \mathbb{R}^n_+$. We will frequently use the notation and results from (20) and (21) related to \mathbb{R}^n_+-minimal and \mathbb{R}^n_+-sublinear inequalities. Because our focus in this paper is on the case of $\mathbb{K} = \mathbb{R}^n_+$, in order to simplify our terminology, we will refer to these inequalities simply as minimal and sublinear by dropping the \mathbb{R}^n_+-prefix. As far as this paper is concerned, we restate the definition of sublinear inequalities (see the related definition and the discussions in (20; 21) for general regular cones \mathbb{K}):

Definition 1. Given $S(A, \mathbb{R}^n_+, B)$, a linear inequality $(\mu; \mu_0)$ with $\mu \neq 0$ and $\mu_0 \in \mathbb{R}$ is sublinear if it is valid for $S(A, \mathbb{R}^n_+, B)$ and for $i = 1, \ldots, n$, $\mu^T u \geq 0$ holds for all u such that $Au = 0$ and $u + e_i \in \mathbb{R}^n_+$ where e_i denotes the ith unit vector in \mathbb{R}^n.

A number of entities and results from (20; 21) play critical roles in the characterization of sublinear inequalities and their connection with CGFs. Consider $S(A, \mathbb{R}^n_+, B)$ and a nontrivial valid inequality $(\mu; \mu_0)$ for it. By (20, Proposition 6), we have $\mu \in \mathbb{R}^n_+ + \text{Im}(A^T)$. This allows us to associate with μ the following nonempty set

$$D_\mu := \{ \lambda \in \mathbb{R}^m : A^T \lambda \leq \mu \},$$

and its support function $\sigma_{D_\mu}(\cdot)$. In addition to (20; 21) Proposition 6), (20; Propositions 8 and 10 and Theorem 4) are also functional in our analysis (see also (19, Theorems 9-10) and (20, Remarks 9, 10, and 11)). The following theorem summarizes these results in the context of $\mathbb{K} = \mathbb{R}^n_+$.

Theorem 1. Consider $S(A, \mathbb{R}^n_+, B)$. Then any nontrivial valid inequality $(\mu; \mu_0)$ satisfies $\mu \in \mathbb{R}^n_+ + \text{Im}(A^T)$, $\vartheta(\mu) = \inf_{b \in B} \sigma_{D_\mu}(b)$, and $\vartheta(\mu) \geq \mu_0$. Moreover, $(\mu; \mu_0)$ is a sublinear inequality if and only if it is valid ($\mu_0 \leq \vartheta(\mu)$) and $\sigma_{D_\mu}(A_i) = \mu_i$ for all $i = 1, \ldots, n$ where A_i denotes the ith column of the matrix A.

It is shown (21 Proposition 2) that as long as $\text{conv}(S(A, \mathbb{R}^n_+, B)) \neq \mathbb{R}^n_+$, sublinear inequalities must exist. Moreover, one of the main results of (21) establishes that sublinear inequalities are always sufficient to describe $\text{conv}(S(A, \mathbb{R}^n_+, B))$. We restate (21 Proposition 3) below.

Proposition 1. (27) Any nontrivial valid inequality $(\mu; \mu_0)$ for $S(A, \mathbb{R}^n_+, B)$ is equivalent to or dominated by a sublinear inequality given by $(\eta; \mu_0)$ where $\eta_i = \sigma_{D_\mu}(A_i)$ for all $i = 1, \ldots, n$ and the domination is defined with respect to the cone $\mathbb{K} = \mathbb{R}^n_+$.

We highlight that unlike the existence and sufficiency of minimal inequalities, Proposition 1 does not make any assumptions on $S(A, \mathbb{R}^n_+, B)$. Unfortunately, a result similar to Proposition 1 for general regular cones \mathbb{K} is not possible as demonstrated with a counter example in (21).
2.2 Cut-Generating Functions

Proposition 1 establishes the sufficiency of sublinear inequalities when \(K = \mathbb{R}^n_+ \). Because every sublinear inequality \((\mu; \mu_0)\) is generated by the support function of a nonempty set of form \(D_\mu = \{ \lambda \in \mathbb{R}^m : A^T\lambda \leq \mu \} \) (see Theorem 1), these support functions are sufficient to generate all necessary valid inequalities for \(\text{conv}(S(A, \mathbb{R}^n_+, B)) \). Motivated by this, Kılınç-Karzan and Steffy (21) introduced the relaxed cut-generating functions:

Definition 2. Given \(S(A, \mathbb{R}^n_+, B) \) and a set \(\emptyset \neq D \subset \mathbb{R}^m \), we say that the support function \(\sigma_D : \mathbb{R}^m \to (\mathbb{R} \cup +\infty) \) of \(D \) is a relaxed cut-generating function for \(S(A, \mathbb{R}^n_+, B) \).

Moreover, it was showed in (21) that even though the relaxed CGF are associated with a given disjunctive set \(S(A, \mathbb{R}^n_+, B) \) defined by fixed \(n, A, \) and \(B \), their validity depends only on \(m \) and \(B \) but not on \(n \) and \(A \). That is, these functions can be used to generate valid inequalities for other instances \(S(A', \mathbb{R}^{n'}_+, B) \) with data \(A' \in \mathbb{R}^{m \times n'} \), i.e., varying \(A \) and \(n \), as long as the set \(B \) is kept the same. This is illustrated in (21, Proposition 4) as follows:

Proposition 2. (21) Suppose \(B \subset \mathbb{R}^m \) is given. Let \(\sigma_D(\cdot) \) be a relaxed CGF for \(S(A, \mathbb{R}^n_+, B) \) associated with a nonempty set \(D \subset \mathbb{R}^m \). Then, the inequality \(\sum_{i=1}^{n'} \sigma_D(A'_i)x_i \geq \inf_{b \in B} \sigma_D(b) \) is valid for any \(x \in S(A', \mathbb{R}^{n'}_+, B) \) where the dimension \(n' \) and the matrix \(A' \in \mathbb{R}^{m \times n'} \) are arbitrary, and \(A'_i \) denotes the \(i \)-th column of the matrix \(A' \).

Remark 2. We infer from Theorem 1, Proposition 1 and Proposition 2 that the relaxed CGFs, in particular the ones associated with the sets \(D_\mu \) with \(\mu \in \mathbb{R}^n_+ + \text{Im}(A^T) \), are sufficient to generate all of the nontrivial valid inequalities for \(\text{conv}(S(A, \mathbb{R}^n_+, B)) \) without any structural or technical assumptions, even when \(A \) and \(n \) are varying.

In this paper, for a given \(\mu \in \mathbb{R}^n_+ + \text{Im}(A^T) \) and \(\rho > 0 \), we will frequently study the relaxed CGFs obtained from specific bounded sets of the form \(D_{\mu, \rho} \) where

\[
D_{\mu, \rho} := \{ \lambda \in D_\mu : \|\lambda\|_\infty \leq \rho \}.
\]

We also note the following useful fact on the support functions of nonempty bounded sets.

Remark 3. Let \(D \subset \mathbb{R}^m \) be a nonempty, bounded set. Then, its support function \(\sigma_D \) is continuous everywhere. This is because support functions of nonempty sets are convex in general; and the support functions of nonempty bounded sets are finite-valued everywhere. Thus, the domain of \(\sigma_D \) is \(\mathbb{R}^m \); and using the fact that all convex functions are continuous in the interior of their domains (see for example (15, Lemma B.3.1.1)), we conclude that \(\sigma_D \) is continuous everywhere.
Conforti et al. (9) studied a variant of the set $S(A, \mathbb{R}_+^n, B)$ with a fixed, closed, nonempty set $B \in \mathbb{R}^m$, and varying n and $A \in \mathbb{R}^{m \times n}$ under the assumption that $0 \notin B$. This assumption immediately implies $0 \notin \text{conv}(S(A, \mathbb{R}_+^n, B))$ (see (9 Lemma 2.1)) and motivates the authors to focus on generating cuts that separate the origin from $\text{conv}(S(A, \mathbb{R}_+^n, B))$. For this particular setup, Conforti et al. (9) introduced the concept of a cut-generating function as follows:

Definition 3. Given a nonempty and closed set $B \in \mathbb{R}^m$ satisfying $0 \notin B$, a cut-generating function (CGF) for B is a function $f : \mathbb{R}^m \to \mathbb{R}$ such that for any natural number $n \in \mathbb{N}$ and any matrix $A \in \mathbb{R}^{m \times n}$, the linear inequality given by $\sum_{i=1}^n f(A_i)x_i \geq 1$ is valid for $S(A, \mathbb{R}_+^n, B)$ where A_i is the i-th column of the matrix A.

The definition of CGFs immediately leads to the following simple yet useful lemma.

Lemma 1. Given a nonempty set $B \subset \mathbb{R}^m$ such that $0 \notin B$, let $f(\cdot)$ be a CGF generating a valid inequality of the form $\sum_{i} f(A_i)x_i \geq 1$, then $\inf_{b \in B} f(b) \geq 1$.

Proof. Because $f(\cdot)$ is a CGF for the given set B, for any dimension n' and any matrix $A' \in \mathbb{R}^{m \times n'}$, the inequality $\sum_{i=1}^{n'} f(A'_i)x'_i \geq 1$ generated by $f(\cdot)$ for the set $S(A', \mathbb{R}_+^n, B)$ needs to be valid, i.e., it is satisfied for all $x' \in S(A', \mathbb{R}_+^n, B)$ (see Definition 3). For any $b \in B$, we construct an instance $S(A', \mathbb{R}_+^n, B)$ where $n' = 1$ and $A' = b$. Since $x' = 1 \in S(A', \mathbb{R}_+^n, B)$, $f(b) = \sum_{i=1}^{n'} f(A'_i)x'_i \geq 1$ holds, where the last inequality follows from $f(\cdot)$ being a CGF. Because this is true for all $b \in B$, we arrive at $\inf_{b \in B} f(b) \geq 1$. □

Relaxed CGFs are naturally related to regular CGFs. Along the lines of Remark 2, we note that an immediate corollary of Theorem 1 and Proposition 2 stated in the setup of Conforti et al. (9) is as follows:

Corollary 1. (21) Let A_i be the i-th column of the matrix A for all $i = 1, \ldots, n$. Then any valid inequality $c^t x \geq 1$ separating the origin from $\text{conv}(S(A, \mathbb{R}_+^n, B))$ is equivalent to or dominated by one of the form $\sum_{i=1}^n \sigma_{D_i}(A_i)x_i \geq 1$, obtained from a relaxed CGF $\sigma_{D_i} : \mathbb{R}^m \to (\mathbb{R} \cup +\infty)$.

Corollary 1 implies that the relaxed CGFs are sufficient to generate all of the cuts separating the origin from $\text{conv}(S(A, \mathbb{R}_+^n, B))$ without any structural or technical assumptions, even when A and n are varying. The difference between Corollary 1 and Remark 2 is that in Corollary 1 we focus on only the valid inequalities that separate the origin from $\text{conv}(S(A, \mathbb{R}_+^n, B))$. In contrast to the sufficiency of relaxed CGFs, there are sets of the form $S(A, \mathbb{R}_+^n, B)$ such that CGFs are not sufficient to generate all of the cuts separating the origin from $\text{conv}(S(A, \mathbb{R}_+^n, B))$ (see (9 Example 6.1)). In the framework of (9), the sufficiency of CGFs for generating all cuts separating the origin from $\text{conv}(S(A, \mathbb{R}_+^n, B))$ was established in (11) under the additional structural assumption that $B \subseteq \text{conv. cone}(A)$. This result on sufficiency of CGFs was also rephrased in (21 Proposition 5) by starting from
the sufficiency of sublinear inequalities and their connection with relaxed CGFs and then showing that a specific class of finite-valued relaxed CGFs are sufficient under the same structural assumption $B \subseteq \text{conv} \text{. cone}(A)$. In particular, given an inequality $c^T x \geq 1$ that is valid for $S(A, \mathbb{R}^n_+, B)$, (21, Proposition 5) establishes that when $B \subseteq \text{conv} \text{. cone}(A)$, we can always construct a relaxed CGF $\sigma_{D_c, \rho}(\cdot)$ based on the vector c and some $\rho > 0$ such that $\sigma_{D_c, \rho}(\cdot)$ generates a valid inequality which is equivalent to or dominates $c^T x \geq 1$. Because the relaxed CGFs of form $\sigma_{D_c, \rho}(\cdot)$ are finite-valued, they are indeed regular CGFs; and then this result implies that CGFs are also sufficient to generate all cuts separating the origin from $\text{conv}(S(A, \mathbb{R}^n_+, B))$ when $B \subseteq \text{conv} \text{. cone}(A)$.

There is a contrast between the sufficiency of relaxed CGFs and the insufficiency of regular CGFs. A major differentiating point between regular CGFs and relaxed CGFs is that regular CGFs are finite-valued everywhere while relaxed CGFs are not. In fact, in Proposition 2 and Corollary 1 the relaxed CGFs are simply support functions of some possibly unbounded sets; and thus are not guaranteed to be finite-valued everywhere. For a specific instance $S(A, \mathbb{R}^n_+, B)$ with a fixed matrix A, as long as a relaxed CGF is finite-valued for each column of A, it will generate nontrivial valid inequalities. As a result, a relaxed CGF being finite-valued is not necessary for this case. However, given a fixed B, a CGF has to work, i.e., generate nontrivial valid inequalities, for every instance of $S(A, \mathbb{R}^n_+, B)$ with varying n and A. Then, in these cases, it is critical to require the function to be finite-valued everywhere to serve as a regular CGF. This need for finite-valuedness of functions to be used for all instances of $S(A, \mathbb{R}^n_+, B)$ with varying A and n naturally brings up the question of in what circumstances CGFs are sufficient. In the next section, we explore conditions under which CGFs are sufficient.

3 Sufficient Conditions for the Sufficiency of CGFs

In this section, we study the sufficiency of finite-valued relaxed CGFs to generate valid inequalities in two different contexts. First, we examine the question of given $S(A, \mathbb{R}^n_+, B)$, whether we can generate all of the inequalities needed for $\text{conv}(S(A, \mathbb{R}^n_+, B))$ by finite-valued relaxed CGFs. Second, we look at the case of a given B satisfying $0 \notin B$ and ask: are all of the valid inequalities of the form $c^T x \geq 1$ that separate the origin from $\text{conv}(S(A, \mathbb{R}^n_+, B))$ generated by CGFs? The main distinction between these two cases is that the first one allows us to study all of the necessary valid inequalities for $\text{conv}(S(A, \mathbb{R}^n_+, B))$ while the second one focuses on only the ones that separate the origin from $\text{conv}(S(A, \mathbb{R}^n_+, B))$.

Since the sufficiency of CGFs (and finite-valued relaxed CGFs) is primarily related to the question of whether every extreme inequality can be generated by such a function, we will keep our focus in this section as well as the next one on the extreme inequalities when needed.

Our approach relies on showing that the subset of relaxed CGFs that are finite-valued everywhere are sufficient to generate all necessary valid inequalities under certain con-
ditions. In the previous literature, sufficiency of CGFs (and also the sufficiency of the subset of relaxed CGFs that are finite-valued) to generate all valid inequalities separating the origin from \(\text{conv}(S(A, \mathbb{R}^n_+, B)) \) is established under a blanket assumption that \(B \subseteq \text{conv}. \text{cone}(A) \). In this section, we will generalize these results to the cases where \(B \) intersects \(\text{conv}. \text{cone}(A) \). To this end, we partition the set \(B \) into two sets as

\[B_1 := B \cap \text{conv}. \text{cone} \quad \text{and} \quad B_2 := B \setminus B_1. \]

We next state a lemma that allows us to glue together these partitioned sets.

Lemma 2. Suppose \(B = \bigcup_{i=1}^k B_i \) and for \(i = 1, \ldots, k, \) we have sets \(\emptyset \neq D_i \subseteq \hat{D} \) for some \(\hat{D} \). Then, for any \(\eta \in \mathbb{R} \), \(\inf_{b \in B_i} \sigma_{D_i}(b) \geq \eta \) for \(i = 1, \ldots, k \) implies \(\inf_{b \in B} \sigma_{\hat{D}}(b) \geq \eta \).

Proof. For any \(i \in \{ 1, \ldots, k \} \) and \(b \in B_i \), we have \(\eta \leq \sigma_{D_i}(b) \). Moreover, because \(D_i \subseteq \hat{D} \), we have \(\sigma_{D_i}(z) \leq \sigma_{\hat{D}}(z) \) for all \(z \). Thus, \(\eta \leq \sigma_{D_i}(b) \leq \sigma_{\hat{D}}(b) \) for all \(b \in B_i \) and for all \(i \). As a result, \(\eta \leq \inf_{b \in B} \sigma_{\hat{D}}(b) \) since for any \(b \in B \), \(b \) is in \(B_i \) for some \(i \). \(\square \)

We will frequently use the following immediate corollary of this lemma stated in terms of sets of the form \(D_{\mu, \rho} \).

Corollary 2. Suppose \(B = \bigcup_{i=1}^k B_i \) and \(\inf_{b \in B} \sigma_{D_{\mu, \rho_i}}(b) \geq \eta \) for \(i = 1, \ldots, k \). Let \(\rho \geq \max_{i \in \{ 1, \ldots, k \}} \{ \rho_i \} \). Then \(\inf_{b \in B} \sigma_{D_{\mu, \rho}}(b) \geq \eta \).

For a complete description of the cases where CGFs are sufficient, we next restate and reprove part (b) of [21] Proposition 5) which covers the case of \(B_2 = \emptyset \). We present it in three parts – Lemma [3] Proposition [3] and Corollary [3] which will be convenient for us in our further developments.

Lemma 3. For any \(\mu \in \mathbb{R}^n_+ + \text{Im}(A^T) \), we have \(D_{\mu} \neq \emptyset \); and \(\sigma_{D_{\mu}}(b) \) is finite if and only if \(b \in \text{conv}. \text{cone}(A) \).

Proof. The nonemptiness of \(D_{\mu} \) is an immediate consequence of \(\mu \in \mathbb{R}^n_+ + \text{Im}(A^T) \); and the second statement is a direct consequence of Linear Programming strong duality theorem. \(\square \)

Proposition 3. Consider a nontrivial valid inequality \((\mu; \mu_0) \) for \(\text{conv}(S(A, \mathbb{R}^n_+, B)) \). Let \(\mathcal{V}_\mu \) denote the set of extreme points of the polyhedral set \(D_{\mu} \), and \(\rho_0 := \max \{ \max_{v \in V_\mu} \|v\|_\infty, 1 + \inf_{\lambda \in D_\mu} \|\lambda\|_\infty \} \). Then for any \(\rho \geq \rho_0 \),

1. \(D_{\mu, \rho} := \{ \lambda \in \mathbb{R}^m : A^T\lambda \leq \mu, \|\lambda\|_\infty \leq \rho \} \) is nonempty. Moreover, \(\sigma_{D_{\mu, \rho}} \), the support function of \(D_{\mu, \rho} \), is finite-valued everywhere and piecewise linear;
2. For any \(z \in \mathbb{R}^m \) such that \(\sigma_{D_{\mu}}(z) \) is finite, we have \(\sigma_{D_{\mu, \rho}}(z) = \sigma_{D_{\mu}}(z) \);
(iii) for all \(i = 1, \ldots, n \), \(\sigma_{D_{\mu,\rho}}(A_i) \leq \mu_i \) where \(A_i \) denote the \(i \)-th column of the matrix \(A \); and \(\sigma_{D_{\mu,\rho}} \) leads to a valid inequality that is equivalent to or dominates \(\mu^T x \geq \mu_0 \) whenever \(\inf_{b \in B} \sigma_{D_{\mu,\rho}}(b) \geq \mu_0 \).

Proof. Let \(B(0, \rho_0) := \{ \lambda \in \mathbb{R}^m : \|\lambda\|_\infty \leq \rho_0 \} \), where \(\rho_0 \geq 1 \) is as defined above. For any \(v \in \mathcal{V}_\mu \), from the definition of \(\rho_0 \), we have \(v \in B(0, \rho_0) \) as well. Since \(D_{\mu,\rho_0} = D_\mu \cap B(0, \rho_0) \), we get \(v \in D_{\mu,\rho_0} \) for any \(v \in \mathcal{V}_\mu \). Then \(D_{\mu,\rho_0} \) is nonempty whenever \(\mathcal{V}_\mu \neq \emptyset \). Also, if \(\mathcal{V}_\mu = \emptyset \), then \(\rho_0 = 1 + \inf_{\lambda \in D_\mu} \|\lambda\|_\infty = 1 + \min_{\lambda \in D_\mu} \|\lambda\|_\infty \) because \(D_\mu \) is nonempty and polyhedral. Hence, there exists \(\lambda \in D_\mu \) such that \(\|\lambda\|_\infty \leq \rho_0 \); thus \(D_{\mu,\rho_0} \neq \emptyset \) in this case as well. As a super set of \(D_{\mu,\rho_0} \), \(D_{\mu,\rho} \) is also nonempty. Because \(D_{\mu,\rho} \) is a nonempty and bounded set, its support function is finite-valued everywhere and piecewise linear.

Moreover, \(D_{\mu,\rho} \subseteq D_\mu \) implies \(\sigma_{D_{\mu,\rho}}(z) \leq 0 \) for every \(z \in \mathbb{R}^n \). For any \(z \in \mathbb{R}^n \) such that \(\sigma_{D_\mu}(z) \) is finite, by the definition of \(\rho_0 \), we have

\[
\sigma_{D_\mu}(z) = \max_{v \in \mathcal{V}_\mu} \{ z^T v \} = \sigma_{D_{\mu,\rho_0}}(z) \leq \sigma_{D_{\mu,\rho}}(z) = \sigma_{D_\mu}(z),
\]

which implies \(\sigma_{D_{\mu,\rho}}(z) = \sigma_{D_\mu}(z) \).

For part (iii), once again, \(\sigma_{D_{\mu,\rho}}(A_i) \leq \sigma_{D_\mu}(A_i) \leq \mu_i \) for all \(i = 1, \ldots, n \) where the last inequality follows from Proposition 0. When \(\inf_{b \in B} \sigma_{D_\mu}(b) \geq \mu_0 \), Proposition 2 indicates that the relaxed CGF \(\sigma_{D_{\mu,\rho}}(\cdot) \) leads to the valid inequality \(\sum_{i=1}^n \sigma_{D_{\mu,\rho}}(A_i) x_i \geq \mu_0 \). Taken together with \(\sigma_{D_{\mu,\rho}}(A_i) \leq \mu_i \) for all \(i \), we conclude that \(\sigma_{D_{\mu,\rho}}(\cdot) \) generates an inequality which is equivalent to or dominates \((\mu; \mu_0) \).

Proposition 3 together with Lemma 3 leads to the following corollary which handles the case of \(B_2 = \emptyset \) when \(B \) is partitioned as in (3). Then, this recovers (21, Proposition 5).

Corollary 3. Suppose \(B \subseteq \text{conv} \text{cone}(A) \). Consider a nontrivial inequality \((\mu; \mu_0) \) valid for \(\text{conv} \{S(A, \mathbb{R}^n_+, B)\} \). Let \(\mathcal{V}_\mu \) denote the set of extreme points of the polyhedral set \(D_\mu \), and \(\rho_0 := \max \{ \max_{v \in \mathcal{V}_\mu} \|v\|_\infty.1 + \inf_{\lambda \in D_\mu} \|\lambda\|_\infty \} \). Then for any \(\rho \geq \rho_0 \), \(\inf_{b \in B} \sigma_{D_{\mu,\rho}}(b) \geq \mu_0 \), and \(\sigma_{D_{\mu,\rho}} \) leads to a valid inequality that is equivalent to or dominates \(\mu^T x \geq \mu_0 \).

Proof. Since \(B \subseteq \text{conv} \text{cone}(A) \), Lemma 3 indicates that \(\sigma_{D_\mu}(b) \) is finite for all \(b \in B \). Thus, we have \(\inf_{b \in B} \sigma_{D_{\mu,\rho}}(b) = \inf_{b \in B} \sigma_{D_\mu}(b) = \vartheta(\mu) \geq \mu_0 \), where the first equality follows from Proposition 3 (ii), the second equality follows from Theorem 1, and the fact that \((\mu; \mu_0) \) is nontrivial, and the inequality follows from the definition of valid inequality. The proof then follows from Proposition 3 (iii).

From now on, we will consider the cases where \(B_2 \) may be nonempty. We start from the case where \(B_2 \) is a compact set and generalize \(B_2 \) step by step. Our most general conclusion is stated as Corollary 5.

In all of the cases we cover next, we will consider the support functions of bounded, nonempty, polyhedral sets of form \(D_{\mu,\rho} \). Hence, the resulting support functions will be finite-valued everywhere and piecewise linear. Moreover, they will satisfy the requirements of being a CGF due to their construction and finite-valuedness.
Proposition 4. Suppose \(B \) is partitioned as described in (3) and \(B_2 \) is a compact set. Consider a nontrivial valid inequality \((\mu; \mu_0)\) for \(\overline{\conv}(S(A, \mathbb{R}^n_+, B)) \). Then there exists \(\rho_1 \in (0, \infty) \) such that for any \(\rho \geq \rho_1 \), \(\inf_{b \in B} \sigma_{D_{\mu, \rho}}(b) \geq \mu_0 \), and \(\sigma_{D_{\mu, \rho}} \) leads to a valid inequality that is equivalent to or dominates \(\mu^T x \geq \mu_0 \).

Proof. By Corollary 3, we assume \(B_2 \neq \emptyset \) without loss of generality. Let \(\rho_0 \) be defined as in Proposition 3. For any \(\rho \geq \rho_0 \), Corollary 3 indicates that \(\sigma_{D_{\mu, \rho}}(b) \geq \mu_0 \) for all \(b \in B_1 \). Next, we show that there exists \(\rho_1 \geq \rho_0 \) such that \(\inf_{b \in B_2} \sigma_{D_{\mu, \rho_1}}(b) \geq \mu_0 \).

Given the recession cone of \(D_\mu \), i.e., \(\text{Rec}(D_\mu) = \{ d \in \mathbb{R}^m : A^T d \leq 0 \} \), let \(d_b := \text{Proj}_{\text{Rec}(D_\mu)}(b) \) be the projection of \(b \) onto \(\text{Rec}(D_\mu) \). Then, from the definition of \(d_b \), we have \(\langle b - d_b, d - d_b \rangle \leq 0 \) for all \(d \in \text{Rec}(D_\mu) \) (see [15, Theorem 3.1.1]). We claim that \(d_b \neq 0 \) for all \(b \in B_2 \). In fact, if \(d_b = 0 \) for some \(b \in B_2 \), then \(b^T d = \langle b - 0, d - 0 \rangle \leq 0 \) for all \(d \in \text{Rec}(D_\mu) \). Then, from Farkas’ Lemma, \(b \in \text{conv}(\text{cone}(A)) \), which contradicts the assumption \(B_2 \cap \text{conv}(\text{cone}(A)) = \emptyset \). Because \(\langle b - d_b, 0 - d_b \rangle \leq 0 \), we have \(b^T d_b \geq \|d_b\|^2 > 0 \) for all \(b \in B_2 \). Let \(\hat{\lambda} \) be a point in \(D_\mu \), and let \(t_b := \max \left\{ \frac{\mu_0 - b^T \hat{\lambda}}{b^T d_b}, 0 \right\} \). Then by definition of \(t_b \), we have \(b^T (\hat{\lambda} + t_b d_b) \geq \mu_0 \). By selecting \(\rho_b := \|\hat{\lambda} + t_b d_b\|_\infty \), we get \(\rho_b \), which continuously depends on \(b \) and satisfies \(\sigma_{D_{\mu, \rho_b}}(b) \geq b^T (\hat{\lambda} + t_b d_b) \geq \mu_0 \). As \(B_2 \) is compact, \(\rho_1 := \sup_{b \in B_2} \{ \rho_b \} \) is finite, and \(\inf_{b \in B_2} \sigma_{D_{\mu, \rho_1}}(b) \geq \mu_0 \). Then by Corollary 2 and Proposition 3 (ii), the result follows.

Note that Proposition 4 immediately covers the case when \(B \) is a compact set and thus implies the sufficiency of CGFs for all disjunctive sets of form \(S(A, \mathbb{R}^n_+, B) \) with a compact set \(B \).

Remark 4. In Proposition 4, we do not assume that \(0 \notin \overline{\conv}(S(A, \mathbb{R}^n_+, B)) \). Moreover, \(\mu_0 \) is not necessarily assumed to be 1 in Proposition 4; thus the inequalities \((\mu; \mu_0)\) considered in Proposition 4 covers all nontrivial valid inequalities including the ones that may or may not separate the origin even if \(0 \notin \overline{\conv}(S(A, \mathbb{R}^n_+, B)) \). Then, when \(B_2 \) is a compact set, Proposition 4 establishes that every nontrivial inequality \((\mu; \mu_0)\) can be generated by a relaxed CGF obtained from a set of form \(D_{\mu, \rho} \). Hence, when \(B_2 \) is a compact set, \(\overline{\conv}(S(A, \mathbb{R}^n_+, B)) \) can in fact be generated by finite-valued relaxed CGFs. Because valid inequalities with \(\mu_0 > 0 \) are also included in this list and finite-valued relaxed CGFs are indeed CGFs when \(\mu_0 > 0 \), this then implies CGFs are sufficient to generate all valid inequalities separating the origin from \(\overline{\conv}(S(A, \mathbb{R}^n_+, B)) \).

\[\diamond \]

In the rest of this section, instead of focusing on generating every nontrivial valid inequality for \(\overline{\conv}(S(A, \mathbb{R}^n_+, B)) \), we will keep our focus on the sufficiency of CGFs to generate valid inequalities of the form \(c^T x \geq 1 \) that separate the origin from \(\overline{\conv}(S(A, \mathbb{R}^n_+, B)) \). Therefore, from now on, we assume \(0 \notin \overline{\conv}(S(A, \mathbb{R}^n_+, B)) \). Note that this assumption implies \(0 \notin B \) as well.
Remark 5. The condition of Proposition 4, i.e., B_2 is a compact set, together with the definition of B_2 in (3) immediately implies that $0 \notin B_2 = \text{cl}(B_2)$. Moreover, we have $0 \notin B$ since we assumed $0 \notin \text{conv}(S(A, \mathbb{R}_+^n, B))$. Also, if $0 \in \text{cl}(B_1)$, then we would have $0 \in \text{conv}(S(A, \mathbb{R}_+^n, B))$. Therefore, when B_2 is a compact set, we have $0 \notin \text{cl}(B)$.

Nevertheless, it is possible to have $0 \notin \text{conv}(S(A, \mathbb{R}_+^n, B))$ yet $0 \in \text{cl}(B)$. This happens when for example there is a sequence in B converging to 0 but every point in this sequence does not belong to $\text{conv}.\text{cone}(A)$, i.e., they are from B_2. In this case, either there is no extreme inequality separating the origin from $S(A, \mathbb{R}_+^n, B)$ or CGFs cannot be sufficient. In fact, suppose $0 \in \text{cl}(B_2)$, and let $b^i \in B_2$ be a nonzero sequence of points converging to 0. Then $\|b^i\|_2 \to 0$ as $i \to \infty$. Suppose that there exists an extreme inequality $c^T x \geq 1$ separating the origin from the set $S(A, \mathbb{R}_+^n, B)$. Let $\sigma(\cdot)$ be a CGF generating $c^T x \geq 1$. Without loss of generality, we can assume $\sigma(\cdot)$ to be sublinear (see (6, Remark 1.4 and Theorem 2.3)). Also, by Lemma 1, we have $\inf_{b \in B} \sigma(b) \geq 1$, which implies $\sigma(b^i) \geq 1$ for all i. Since CGFs are finite-valued, sublinear and thus convex functions, $\sigma(\cdot)$ is a continuous function (see (12, Lemma B.3.1.1)) and thus is bounded on any compact set in its domain. But then $\lim_{i \to \infty} \sigma(b^i) = \lim_{i \to \infty} \frac{\sigma(b^i)}{\|b^i\|_2} = +\infty$ contradicts the fact that $\sigma(\cdot)$ is bounded in the unit disk $\{b: \|b\|_2 \leq 1\}$. ◊

Based on Remark 5, from now on, we assume $0 \notin \text{cl}(B_2)$, which in particular implies $0 \notin \text{cl}(B)$.

In the following, we let

$$\mathcal{N}(z_0; \delta) := \{z: \|z - z_0\|_\infty < \delta\}$$

be the δ-neighborhood of x_0 under ℓ_∞-norm, and also define

$$\mathcal{CN}(z_0; \delta) := \{tz: z \in \mathcal{N}(z_0; \delta), t \geq 1\}.\quad (5)$$

Given a valid inequality of the form $c^T x \geq 1$, our next proposition gives a sufficient condition for generating a valid inequality equivalent to or dominating $c^T x \geq 1$ by a relaxed CGF of the form $\sigma_{D_c, \rho}$. Note that Proposition 6 recovers Proposition 4 when B_2 is compact.

Proposition 5. Suppose B is partitioned as described in (3), $0 \notin \text{cl}(B)$, and $\text{cl}(\text{cone}(B_2)) \cap \text{conv. cone}(A) \subseteq \{0\}$. Let $c^T x \geq 1$ be a valid inequality separating the origin from $\text{conv}(S(A, \mathbb{R}_+^n, B))$. Then there exists $\rho_2 \in (0, \infty)$ such that for any $\rho \geq \rho_2$, $\inf_{b \in B} \sigma_{D_c, \rho}(b) \geq 1$, and $\sigma_{D_c, \rho}$ leads to a valid inequality that is equivalent to or dominates $c^T x \geq 1$.

Proof. By Corollary 3, we assume $B_2 \neq \emptyset$ without loss of generality. Since $0 \notin \text{cl}(B_2)$, there exists $\delta > 0$ such that $\mathcal{N}(0; \delta) \cap B_2 = \emptyset$. Consider the compact set $G := \text{cl}(\text{cone}(B_2)) \cap \text{cl}(\mathcal{N}(0; 2\delta) \setminus \mathcal{N}(0; \delta))$. Note that $G \neq \emptyset$ because for any $b \in B_2$, by construction, there exists $b \in G$ and $t \geq 1$ such that $b = tb$. Applying Proposition 4 to $B_1 \cup G$, there exists $\rho_2 > 0$ such that for any $\rho \geq \rho_2$, $\sigma_{D_c, \rho}(b) \geq 1$ for all $b \in B_1 \cup G$. Also, for any $b \in B_2$, using
the existence of \(\hat{b} \in G \) and \(t \geq 1 \) such that \(b = \hat{t}b \) and the fact that support functions are positively homogeneous of degree 1, we arrive at \(\sigma_{D_{c,\rho}}(b) = t\sigma_{D_{c,\rho}}(\hat{b}) \geq 1 \). This completes the proof.

Note that the conditions of Propositions 4 and 5, e.g., \(B_2 \) is a compact set, are independent of the individual valid inequalities \(c^T x \geq 1 \) (yet the resulting \(\rho_1 \) and \(\rho_2 \) values might depend on \(c \)); and thus they apply uniformly to all valid inequalities separating the origin from \(\text{conv}(S(A, \mathbb{R}_+^n, B)) \). Then, from the point of sufficiency of CGFs, these propositions indicate that under the corresponding conditions every valid inequality separating the origin from \(\text{conv}(S(A, \mathbb{R}_+^n, B)) \) is equivalent to or dominated by an inequality generated by a relaxed CGF of the form \(\sigma_{D_{c,\rho}} \) that is finite-valued everywhere; and hence we have the following corollary:

Corollary 4. Suppose \(B \) is partitioned as described in (3). Whenever \(0 \notin \text{cl}(B) \) and \(\text{cl}(\text{cone}(B_2)) \cap \text{conv.} \text{cone}(A) \subseteq \{0\} \), CGFs are sufficient to generate all valid inequalities separating the origin from \(\text{conv}(S(A, \mathbb{R}_+^n, B)) \).

So far in this section, we have studied the cases where \(B_2 \) is bounded away from \(\text{conv.} \text{cone}(A) \) by a closed cone, i.e., \(\text{cl}(\text{cone}(B_2)) \cap \text{conv.} \text{cone}(A) \subseteq \{0\} \). In our next proposition, we allow nontrivial intersection of \(\text{cl}(\text{cone}(B_2)) \) and \(\text{conv.} \text{cone}(A) \). Although \(B_2 \cap \text{conv.} \text{cone}(A) = \emptyset \) by construction, there are at least two ways for a ray \(\{td : t \geq 0\} \) to be contained in \(\text{cl}(\text{cone}(B_2)) \cap \text{conv.} \text{cone}(A) \). First, there may exist \(\hat{t}d \in \text{cl}(B_2) \cap \text{conv.} \text{cone}(A) \) for some \(\hat{t} > 0 \). That is, \(\hat{t}d \) is a limit point of a sequence \(Q_1 \) in \(B_2 \). Second, when \(B_2 \) is unbounded, it is possible to have a sequence \(Q_2 \) in \(B_2 \) whose closure does not intersect
with \(\text{conv}(\text{cone}(A)) \) but \(\text{cl}(\text{cone}(Q_2)) \cap \text{conv}(\text{cone}(A)) \supseteq \{0\} \). We demonstrate these cases in Example 1 and Figure 1.

Example 1 (Figure 1). Suppose \(A \) is the \(2 \times 2 \) identity matrix and \(\mathcal{B} = \{(1; 0), (0; 1)\} \cup Q_1 \cup Q_2 \), where \(Q_1 := \{[2; -1/n] : n \in \mathbb{Z}_{++}\} \) and \(Q_2 := \{[-1; n] : n \in \mathbb{Z}_{++}\} \). Then \(\text{conv}(\mathcal{S}(A, \mathbb{R}^n_+, \mathcal{B})) = \text{conv}(\{(1; 0), (0; 1)\}) \) and \(c^T x \geq 1 \) is valid for \(\mathcal{S}(A, \mathbb{R}^n_+, \mathcal{B}) \) if and only if \(c := (c_1; c_2) \) satisfy \(c_1, c_2 \geq 1 \). Following the partition of \(\mathcal{B} \) given in (3), we have \(\mathcal{B}_1 = \{(1; 0), (0; 1)\} \) and \(\mathcal{B}_2 = Q_1 \cup Q_2 \).

The sequences \(Q_1 \) and \(Q_2 \) have different characteristics. \(Q_1 \) is not closed, and \([2; 0] \) is its limit point. On the other hand, \(Q_2 \) is closed while \(\text{cone}(Q_2) \) is not, and \(\{(b_1; b_2) : b_1 = 0, b_2 \geq 0\} \) is the limit ray of \(\text{cone}(Q_2) \). See Figure 1 plotted in the \(\mathcal{B} \) space.

Our next proposition generalizes Proposition 5 however it involves a number of nontrivial conditions, some of which have to be checked for each valid inequality \((c; 1)\) separately. We first state the proposition and then explain the conditions involved in it.

Proposition 6. Suppose \(\mathcal{B} \) is partitioned as described in (3). Let \(c^T x \geq 1 \) be a valid inequality separating the origin from \(\text{conv}(\mathcal{S}(A, \mathbb{R}^n_+, \mathcal{B})) \). If there exists a set \(\mathcal{D} \subseteq \text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv}(\text{cone}(A)) \) such that:

(i) \(\text{cone}(\mathcal{D}) \cup \{0\} \supseteq \text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv}(\text{cone}(A)) \),

(ii) \(td \notin \text{cl}(\mathcal{B}_2) \cap \text{conv}(\text{cone}(A)) \) for any \(d \in \mathcal{D} \) and \(0 \leq t < 1 \),

(iii) \(\sigma_{\mathcal{D}_e}(d) > 1 \) for all \(d \in \mathcal{D} \).

Then there exists \(\rho_3 \in (0, \infty) \) such that for any \(\rho \geq \rho_3, \inf_{b \in \mathcal{B}} \sigma_{\mathcal{D}_e, \rho}(b) \geq 1 \), and \(\sigma_{\mathcal{D}_e, \rho} \) leads to a valid inequality that is equivalent to or dominates \(c^T x \geq 1 \).

The intuition behind the conditions of Proposition 6 is roughly as follows. When \(\text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv}(\text{cone}(A)) \supseteq \{0\} \), for each ray \(\{td : t \geq 0\} \) in \(\text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv}(\text{cone}(A)) \), a representative \(\tilde{t}d \) with \(\tilde{t} > 0 \) can be chosen to form a basis \(\mathcal{D} \) [(i)]. For a relaxed CGF \(\sigma_{\mathcal{D}_e}(\cdot) \) to generate \(c^T x \geq 1 \), it is essential to require \(\sigma_{\mathcal{D}_e}(b) \geq 1 \) for all \(b \in \mathcal{B} \). Therefore, if \(\tilde{t}d \) is a limit point of \(\mathcal{B}_2 \), we care about the relation between \(\sigma_{\mathcal{D}_e}(\tilde{t}d) \) and 1; this amounts to condition [(iii)]. Whenever \(\sigma_{\mathcal{D}_e}(d) > 0 \), if \(t_1d \) and \(t_2d \) are both limit points of \(\mathcal{B}_2 \), from the sublinearity of \(\sigma_{\mathcal{D}_e}(\cdot) \), we have \(\sigma_{\mathcal{D}_e}(t_1d) \geq \sigma_{\mathcal{D}_e}(t_2d) \) for all \(t_1 > t_2 \). Therefore, when choosing the representatives for \(\mathcal{D} \) in Proposition 6 we pick the one with the smaller norm in condition [(ii)].

The conditions of Proposition 6 admit an interpretation in the space of \(x \) variables, i.e., \(\mathbb{R}^n \), as well: Figure 2 depicts two examples where \(A \) is a \(2 \times 2 \) invertible matrix. In this case, each point \(b \in \mathcal{B} \) corresponds to a unique point \(\bar{x}_b = A^{-1}b \in \mathbb{R}^2 \). The shaded area in these pictures corresponds to all of the points \(\bar{x}_b \) for some \(b \in \mathcal{B} \). We denote this set by \(A^{-1}(\mathcal{B}) := \{x : Ax \in \mathcal{B}\} \). Note that \(\mathcal{S}(A, \mathbb{R}^n_+, \mathcal{B}) = \mathcal{S}(A, \mathbb{R}^n_+, \mathcal{B}_1) = \mathcal{S}(A, \mathbb{R}^n_+, \mathcal{B}_2) \).
\(A^{-1}(B_1) = A^{-1}(B) \cap \mathbb{R}_+^n \). In particular, \(\bar{x}_b \geq 0 \) if and only if \(b \in B_1 \); and \(\bar{x}_b \) is on the boundary of \(\mathbb{R}_+^2 \) if and only if \(b \in \text{bd}(\text{conv. cone}(A)) \). Therefore, the intersection of \(\mathbb{R}_+^2 \) and the shaded area, i.e., \(S(A, \mathbb{R}_+^2, B) \), corresponds to \(B_1 \) in the space of \(B \), and the rest of the shaded area is the counterpart of \(B_2 \). We will next examine the point marked as \(\bar{x}_d \). Note that \(\bar{x}_d \) is in the shaded area on the left figure; but it is not in the shaded area on the right one. The nonnegative \(x_1 \)-axis \(\{x : x_1 \geq 0\} = \text{cone}(\bar{x}_d) \) corresponds to \(\text{cl}(\text{cone}(B_2)) \cap \text{conv. cone}(A) \) in the space of \(B \), and the fact that \(\bar{x}_d \) is a limit point of the lower part of the shaded area represents that \(d \) is a limit point of \(B_2 \). In addition, in both pictures, \(D = \{d\} \) satisfies Proposition 6 (ii) because no point between \(\bar{x}_d \) and the origin is in the closure of the lower part of the shaded area – the part under \(x_1 \)-axis. Recall that \(\sigma_{D_c}(d) = \min\{c^T x : Ax = d, x \geq 0\} = c^T \bar{x}_d \) since \(\bar{x}_d \in \text{conv. cone}(A) \). For \(l_0 := \{x : c^T x = 0\} \) and \(l_1 := \{x : c^T x = 1\} \), the left picture shows the case where \(\sigma_{D_c}(d) = c^T \bar{x}_d > 1 \) and the right picture shows the case where \(\sigma_{D_c}(d) = c^T \bar{x}_d < 1 \). Then, in the context of these particular examples, we observe that when the conditions of Proposition 6 is violated, the inequality given by \(c^T x \geq 1 \) cuts off a part of \(S(A, \mathbb{R}_+^n, \text{cl}(B)) \) in the space of \(x \) variables.

![Figure 2: Interpretation of conditions in Proposition 6 in the space of \(x \) variables](image)

Proof. Let \(\rho_0 \) be as defined in Corollary 3. Then \(\inf_{b \in B_1} \sigma_{D_{c,\rho_0}}(b) \geq 1 \).

From Lemma 3, we have \(\sigma_{D_c}(d) \) is finite for all \(d \in \text{conv. cone}(A) \), in particular for all \(d \in D \). Then from Proposition 3 (ii) and using the premise (iii) of the proposition, we conclude \(\sigma_{D_{c,\rho_0}}(d) = \sigma_{D_c}(d) > 1 \) for all \(d \in D \). For each \(d \in D \subseteq \text{conv. cone}(A) \), because \(\sigma_{D_{c,\rho_0}}(\cdot) \) is a continuous function (see Remark 3), there exists \(\delta_d > 0 \) such that \(\sigma_{D_{c,\rho_0}}(b) \geq 1 \) for all \(b \in N(d; \delta_d) \). Without loss of generality, we will assume \(\delta_d \leq 1 \) for all \(d \in D \). Let

\[
E_1 = \bigcup_{d \in D} \text{CN}(d; \delta_d),
\]

17
where $\mathcal{CN}(d; \delta_d)$ is as defined in $[5]$. Since support functions are positively homogeneous of degree 1 and $\sigma_{D_c,\rho_0}(b) \geq 1$ for all $b \in \mathcal{N}(d; \delta_d)$ and $d \in \mathcal{D}$, we have $\sigma_{D_c,\rho_0}(b) \geq 1$ for all $b \in E_1$, i.e., $\inf_{b \in E_1} \sigma_{D_c,\rho_0}(b) \geq 1$.

Next, we define

$$E_2 := B_2 \setminus E_1 = B_2 \setminus \left(\bigcup_{d \in \mathcal{D}} \mathcal{CN}(d; \delta_d) \right).$$

We first show $\text{cl}(E_2) \cap \text{conv.cone}(A) = \emptyset$. If not, there exists $d \in \text{conv.cone}(A)$ and $\{b_n\} \subseteq E_2$ such that $b_n \to d$ as $n \to \infty$. Because $\text{cone}(d) \subseteq \text{cone}(\text{cl}(E_2)) \subseteq \text{cone}(\text{cl}(\text{cone}(E_2))) = \text{cl}(\text{cone}(E_2)) \subseteq \text{cl}(\text{cone}(B_2))$ and $\text{cone}(d) \subseteq \text{conv.cone}(A)$,

$$\text{cone}(d) \subseteq \text{cl}(\text{cone}(B_2)) \cap \text{conv.cone}(A) \subseteq \text{cone}(\mathcal{D}) \cup \{0\},$$

which implies $\text{cone}(d) \subseteq \text{cone}(\mathcal{D})$. Therefore, there exists $t > 0$ such that $\bar{d} = d/t \in \mathcal{D}$. If $t \geq 1$, then $d \in \mathcal{CN}(d; \delta_d)$. Then, because $\mathcal{CN}(d; \delta_d)$ is an open set and thus $d \in \text{int}(\mathcal{CN}(d; \delta_d))$, this contradicts the assumption that $\{b_n\} \subseteq E_2 = B_2 \setminus \left(\bigcup_{d \in \mathcal{D}} \mathcal{CN}(d; \delta_d) \right)$ and $b_n \to d$. On the other hand, if $t < 1$, then

$$d = t\bar{d} \in \text{cl}(E_2) \cap \text{conv.cone}(A) \subseteq \text{cl}(B_2) \cap \text{conv.cone}(A),$$

which contradicts to premise (ii).

Now we show $\text{cl}(\text{cone}(E_2)) \cap \text{conv.cone}(A) \subseteq \{0\}$; and then, we conclude from Proposition $[5]$ that there exists $\rho_2 \in (0, \infty)$ such that for any $\rho \geq \rho_2$, $\inf_{b \in E_2} \sigma_{D_c,\rho}(b) \geq 1$. In fact, if $\text{cl}(\text{cone}(E_2)) \cap \text{conv.cone}(A) \supseteq \{0\}$, there exists $d \in \text{cl}(\text{cone}(E_2)) \cap \text{conv.cone}(A)$ and $\{b_n\} \subseteq E_2$ such that $\frac{b_n}{\|b_n\|_\infty} \to \frac{d}{\|d\|_\infty}$ as $n \to \infty$. Since $\text{cone}(d) \subseteq \text{cone}(\mathcal{D})$, we can assume $d \in \mathcal{D}$ without loss of generality. If $\{b_n\}$ is bounded, then there exists a subsequence $\{b_{n_k}\}$ of $\{b_n\}$ and $K > 0$ such that $\|b_{n_k}\|_\infty \to K$ as $k \to \infty$. Therefore,

$$b_{n_k} = \frac{b_{n_k}}{\|b_{n_k}\|_\infty} \cdot \|b_{n_k}\|_\infty \to K \cdot \frac{d}{\|d\|_\infty},$$

as $k \to \infty$. However, this contradicts with our conclusion in the previous paragraph that $\text{cl}(E_2) \cap \text{conv.cone}(A) = \emptyset$. As a result, we conclude $\|b_n\|_\infty \to \infty$. For the predefined $\delta_d > 0$, as $\|b_n\|_\infty \to \|d\|_\infty$, there exists $N > 0$ such that $\|b_N\|_\infty > \|d\|_\infty$ and

$$\left\| \frac{b_N}{\|b_N\|_\infty} - \frac{d}{\|d\|_\infty} \right\|_\infty < \frac{\delta_d}{\|d\|_\infty}.$$

Therefore,

$$\left\| \frac{b_N}{\|b_N\|_\infty} \right\|_\infty \|d\|_\infty < \left\| \frac{b_N}{\|b_N\|_\infty} \right\|_\infty \delta_d \quad (6)$$

Note that $\mathcal{CN}(d; \delta_d) = \left\{ b \in \bigcup_{t \geq 1} \mathcal{N}(td; t\delta_d) \right\}$. Moreover, $\|b_N\|_\infty > 1$; and thus inequality (6) implies $b_N \in \mathcal{CN}(d; \delta_d)$. Then, this contradicts the assumption $b_N \in E_2$.

As $\mathcal{B} = B_1 \cup E_1 \cup E_2$, Corollary $[2]$ implies that $\inf_{b \in \mathcal{B}} \sigma_{D_c,\rho}(b) \geq 1$ for any $\rho \geq \rho_3 := \max\{\rho_0, \rho_2\}$. It follows from Proposition $[3]$ (iii) that $\sigma_{D_c,\rho}$ leads to a valid inequality that is equivalent to or dominates $c^T x \geq 1$.

\[\square \]
Note that Proposition 6 recovers Proposition 5 as a trivial case with $\mathcal{D} = \emptyset$. The condition that $\sigma_{D_c}(d) > 1$ for all $d \in \mathcal{D}$ can be further generalized by separating \mathcal{D} into two parts. The following corollary slightly generalizes Proposition 6.

Corollary 5. Suppose \mathcal{B} is partitioned as described in (3). Let $c^T x \geq 1$ be a valid inequality separating the origin from $\text{conv}(\mathcal{S}(A, \mathbb{R}^n_+, \mathcal{B}))$. If there exist sets $\mathcal{D}_1 \subseteq \text{cl}(\mathcal{B}_2) \cap \text{conv. cone}(A)$ and $\mathcal{D}_2 \subseteq (\text{cl}(\text{cone}(\mathcal{B}_2)) \setminus \text{cl}(\mathcal{B}_2)) \cap \text{conv. cone}(A)$ such that:

(i) $\text{cone}(\mathcal{D}_1 \cup \mathcal{D}_2) \cup \{0\} \supseteq \text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv. cone}(A),$

(ii) $td \notin \text{cl}(\mathcal{B}_2) \cap \text{conv. cone}(A)$ for any $d \in \mathcal{D}_1$ and $0 \leq t < 1,$

(iii) $\sigma_{D_c}(d) > 1$ for all $d \in \mathcal{D}_1$ and $\sigma_{D_c}(d) > 0$ for all $d \in \mathcal{D}_2.$

Then there exists $\rho_4 \in (0, \infty)$ such that for any $\rho \geq \rho_4,$ $\inf_{b \in \mathcal{B}} \sigma_{D_c, \rho}(b) \geq 1,$ and $\sigma_{D_c, \rho}$ leads to a valid inequality that is equivalent to or dominates $c^T x \geq 1.$

Proof. Let $\mathcal{D}_3 := \left\{ \frac{d}{\sigma_{D_c}(d)/2} : d \in \mathcal{D}_2 \setminus \text{cone}(\mathcal{D}_1) \right\}.$ Then the corollary follows from applying Proposition 6 to $\mathcal{D}_1 \cup \mathcal{D}_3.$

The collection of conditions in Corollary 5 is equivalent to the ones in Proposition 6. If a set \mathcal{D} satisfying the requirements of Proposition 6 exists, one can simply set $\mathcal{D}_1 = \mathcal{D}$ and $\mathcal{D}_2 = \emptyset,$ and the conditions in Corollary 5 will be satisfied. On the other hand, as shown in the proof of Corollary 5, \mathcal{D} in Proposition 6 can be constructed from \mathcal{D}_1 and \mathcal{D}_2 in Corollary 5.

Similar to Figure 2, Figure 3 shows an interpretation of the conditions in Corollary 5 in the space of x variables. We still assume that A is a 2×2 invertible matrix. In both of the pictures below, we use the shaded area to represent $A^{-1}(\mathcal{B}) := \{x : Ax \in \mathcal{B}\}.$ In particular, $A^{-1}(\mathcal{B}_1) = \mathcal{S}(A, \mathbb{R}^2_+, \mathcal{B})$ is the upper part of the shaded area, and $A^{-1}(\mathcal{B}_2)$ is the lower part in these pictures. Moreover, in these pictures, $\text{cone}(\mathcal{B}_2), A^{-1}(\text{cone}(\mathcal{B}_2))$ is the fourth quadrant and $A^{-1}(\text{cl}(\text{cone}(\mathcal{B}_2)))$ is the fourth quadrant with its boundary. Note that \bar{x}_d is not a limit point of the lower part of the shaded area, and correspondingly, d is not a limit point of $\mathcal{B}_2.$ However, $\text{cone}(\bar{x}_d) = \{x : x_1 \geq 0\} \subseteq A^{-1}(\text{cl}(\text{cone}(\mathcal{B}_2))) \cap \mathbb{R}^2_+$, which corresponds to $\text{cone}(d) \subseteq \text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv. cone}(A)$ in the space of $\mathcal{B}.$ By letting $\mathcal{D}_1 = \emptyset$ and $\mathcal{D}_2 = \{d\},$ conditions (i) and (ii) in Corollary 5 are satisfied. The left picture shows the case where $\sigma_{D_c}(d) = c^T \bar{x}_d > 0; \text{ and thus (iii) is also satisfied.}$ The right one shows the case where $\sigma_{D_c}(d) = c^T \tilde{x}_d < 0$ and condition (iii) fails. In the case when Corollary 5(iii) fails, we observe that $c^T x \geq 0$ cuts off $\text{cone}((\bar{x}_d),$ which is a part of $\mathcal{S}(A, \mathbb{R}^2_+, \text{cl}(\text{cone}(\mathcal{B})))$ in the space of x variables. On the other hand, such a situation cannot be observed for any valid inequality in the left picture because the distance between $\text{cone}(\bar{x}_d)$ and $\mathcal{S}(A, \mathbb{R}^2_+, \mathcal{B})$ is zero; and thus these sets cannot be separated by any valid inequality.

Remark 6. We would like to highlight the fact that the conditions in Proposition 6 and Corollary 5 do depend on specific valid inequalities $c^T x \geq 1$ via the relaxed CGF $\sigma_{D_c}.$ In
order to conclude the sufficiency of CGFs with Proposition 6 or Corollary 5, one needs to verify that the associated conditions involving the relaxed CGF σ_{D_c} are satisfied by every extreme valid inequality. This is in contrast to the earlier results such as Proposition 5 and Corollary 4. For example, in the case where $B_2 = \emptyset$ (resp. $\text{cl}(\text{cone}(B_2)) \cap \text{conv. cone}(A) \subseteq \{0\}$), Corollary 3 (resp. Proposition 5) can be uniformly applied to every valid inequality; so the sufficiency of CGFs can be concluded independent of c in those cases. ♦

Example 1 (Continued). Let $D_1 = \{[2; 0]\}$ and $D_2 = \{[0; 1]\}$. Then Conditions (i) and (ii) in Corollary 5 are satisfied; and it is clear that $\sigma_{D_c}([2; 0]) = 2c_1 > 1$ and $\sigma_{D_c}([0; 1]) = c_2 > 0$. Therefore, based on Corollary 5, for each valid inequality $c^T x \geq 1$, there exists $\rho_c > 0$ such that for any $\rho \geq \rho_c$, $\inf_{b \in B} \sigma_{D_c, \rho}(b) \geq 1$. Thus, in this example, CGFs are sufficient to generate all valid inequalities separating the origin from $S(A, \mathbb{R}^n_+, B)$. In fact, we can get the same conclusion without using Corollary 5: For any valid inequality $c^T x \geq 1$ and $n \in \mathbb{Z}_{++}$, by setting $\rho \geq \max\{c_1, c_2\} \geq 1$, we have

$$
\sigma_{D_c, \rho}\left([2; -\frac{1}{n}]\right) = \max\left\{2\lambda_1 - \frac{\lambda_2}{n} : -\rho \leq \lambda_1 \leq c_1, \ -\rho \leq \lambda_2 \leq c_2\right\} = 2c_1 + \frac{\rho}{n} \geq 1, \text{ and}$$

$$
\sigma_{D_c, \rho}\left([-1; n]\right) = \max\left\{-\lambda_1 + n\lambda_2 : -\rho \leq \lambda_1 \leq c_1, \ -\rho \leq \lambda_2 \leq c_2\right\} = \rho + c_2n \geq 1;
$$
and thus $\inf_{b \in B} \sigma_{D_c, \rho}(b) \geq 1$ whenever $\rho \geq 1$. ♦
4 Necessary Conditions for the Sufficiency of CGFs

In this section, we first show that if an extreme inequality can be generated by a cut-generating function, then it can as well be generated by the support function of a bounded set, i.e., a finite-valued relaxed CGF. Then, inspired by the conditions given in Corollary 5, we provide two necessary conditions for the sufficiency of CGFs that almost match with our sufficient conditions given in Corollary 5. We close by providing examples that highlight the gap between our sufficient conditions from Section 3 and our necessary conditions from this section.

Proposition 7. Consider any extreme inequality $c^T x \geq 1$ separating the origin from $\text{conv}(S(A, \mathbb{R}^n_+, B))$. Assume that there exists a CGF $\sigma(\cdot)$ generating a valid inequality that is equivalent to $c^T x \geq 1$, then there exists a finite $\rho > 0$ such that the set $D_{c,\rho}$ is nonempty; and its support function $\sigma_{D_{c,\rho}}(\cdot)$ generates a valid inequality that is equivalent to $c^T x \geq 1$.

Proof. Because $c^T x \geq 1$ is extreme and all extreme inequalities are tight and sublinear, it is also sublinear and $\vartheta(c) = 1$. Suppose that there exists a CGF $\sigma(\cdot)$ generating an inequality equivalent to $c^T x \geq 1$. Thus, $\sigma(\cdot)$ is finite-valued and $\sigma(A_i) = c_i$ for all i.

Moreover, $\sigma(\cdot)$ is a CGF generating an extreme inequality, in view of [9] Remark 1.4 and Theorem 2.3), without loss of generality, we can assume that $\sigma(\cdot)$ is a sublinear function.

Let $D_\sigma := \{ \lambda \in \mathbb{R}^m : z^T \lambda \leq \sigma(z) \ \forall z \in \mathbb{R}^m \}$. Then by [15] Theorem C.3.1.1 (see also [15] Corollary C.3.1.2), we have $\sigma(\cdot)$ is the support function of D_σ; and because $\sigma(\cdot)$ is a CGF and hence is finite-valued; by [15] Proposition C.2.1.3), D_σ is a bounded set. D_σ is also nonempty, because otherwise $\sigma(z) = -\infty$ for all z and $\sum_i \sigma(A_i) x_i \geq 1$ is invalid as long as $S(A, \mathbb{R}^n_+, B) \neq \emptyset$. Using the definition of D_σ and the fact that $\sigma(A_i) = c_i$, we conclude that the inequalities $A_i^T \lambda \leq \sigma(A_i) \leq c_i$ are valid for D_σ. Thus, $D_\sigma \subseteq D_c$.

Let $\rho := 1 + \sup_{\lambda \in D_\sigma} ||\lambda||_\infty$. Because D_σ is nonempty and bounded, $\rho \in (0, \infty)$. Also, by construction, $D_\sigma \subseteq D_{c,\rho} \subseteq D_c$ implying $\sigma_{D_\sigma}(z) \geq \sigma_{D_{c,\rho}}(z) \geq \sigma_{D_c}(z)$ for all z. From the definition of D_c, we immediately have $c_i \geq \sigma_{D_c}(A_i)$ for all i. Furthermore, $\sigma_{D_c}(A_i) = c_i$ since $\sigma(\cdot)$ generates $c^T x \geq 1$. Therefore, $c_i \geq \sigma_{D_{c,\rho}}(A_i) \geq \sigma_{D_{c,\rho}}(A_i) \geq \sigma_{D_\sigma}(A_i) = c_i$ for all i. In addition, from Lemma 1, we have $1 \leq \inf_{b \in B} \sigma(b)$, which then implies that $1 \leq \inf_{b \in B} \sigma(b) \leq \inf_{b \in B} \sigma_{D_{c,\rho}}(b)$. Finally, because $\sigma_{D_\sigma}(\cdot) = \sigma(\cdot)$ and $\vartheta(c) = 1 \leq \inf_{b \in B} \sigma(b)$, we have $\inf_{b \in B} \sigma_{D_{c,\rho}}(b) \geq \inf_{b \in B} \sigma_{D_\sigma}(b) = \inf_{b \in B} \sigma(b) \geq \vartheta(c)$. Thus, the function $\sigma_{D_{c,\rho}}$ generates $c^T x \geq 1$ as well.

In particular, Proposition 7 implies the following corollary:

Corollary 6. Whenever CGFs are sufficient to generate all valid inequalities that separate the origin from $\text{conv}(S(A, \mathbb{R}^n_+, B))$, then the relaxed CGFs obtained from the support functions of sets of form $D_{c,\rho}$ are also sufficient.

Our necessary conditions given in the following two propositions are inspired by the two sets D_1 and D_2 described in Corollary 5.
Proposition 8. Let \mathcal{B} be partitioned as described in (3). Suppose there exists a valid inequality $c^T x \geq 1$ separating the origin from $\text{cone}(\mathcal{S}(A, \mathbb{R}^n_+, \mathcal{B}))$ and either there exists a nonzero vector $d \in \text{cl}(\mathcal{B}_2) \cap \text{conv} \text{cone}(A)$ satisfying $\sigma_{D_c}(d) < 1$ or there exists a vector $d \in \text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv} \text{cone}(A)$ satisfying $\sigma_{D_c}(d) < 0$. Then, for any finite ρ such that the set $D_{c,\rho}$ is nonempty, the support function $\sigma_{D_{c,\rho}}(\cdot)$ cannot generate a valid inequality that is equivalent to or dominates $c^T x \geq 1$.

Proof. Consider any $\rho \in (0, \infty)$ such that $D_{c,\rho} \neq \emptyset$. Then $\sigma_{D_{c,\rho}}(z) \leq \sigma_{D_c}(z)$ for all z because $D_{c,\rho} \subseteq D_c$.

Suppose there exists a nonzero vector $d \in \text{cl}(\mathcal{B}_2) \cap \text{conv} \text{cone}(A)$ such that $\sigma_{D_c}(d) < 1$, then $\sigma_{D_{c,\rho}}(d) \leq \sigma_{D_c}(d) < 1$. Moreover, from Remark 3, the function $\sigma_{D_{c,\rho}}(\cdot)$ is continuous; and thus, there exists $\delta > 0$ such that for all $b \in \mathcal{N}(d; \delta)$, we have $\sigma_{D_{c,\rho}}(b) < 1$. Because $d \in \text{cl}(\mathcal{B}_2)$, there exists a sequence $\{b^t\}$ in \mathcal{B}_2 converging to d. Hence, there exists $\bar{b} \in \mathcal{B}_2 \cap \mathcal{N}(d; \delta)$, implying $\inf_{b \in \mathcal{B}_2} \sigma_{D_{c,\rho}}(b) \leq \sigma_{D_{c,\rho}}(\bar{b}) < 1$.

On the other hand, if there exists a vector $d \in \text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv} \text{cone}(A)$ such that $\sigma_{D_c}(d) < 0$, then $\delta \neq 0$ because σ_{D_c} is the support function of a nonempty set (see (15, Section C.2) and (20, Section 4)). Moreover, $\sigma_{D_{c,\rho}}(d) \leq \sigma_{D_c}(d) < 0$ and there exists $\delta > 0$ such that for all $b \in \mathcal{N}(d; \delta)$, we have $\sigma_{D_{c,\rho}}(b) < 0$. Because $d \in \text{cl}(\text{cone}(\mathcal{B}_2))$, there exists a sequence $\{b^t\}$ in \mathcal{B}_2 and a sequence of positive scalars $\{t^i\}$ such that $t^i b^t$ converges to d. Hence, there exists $t > 0$ and $\bar{b} \in \mathcal{B}_2$ such that $t \bar{b} \in \mathcal{N}(d; \delta)$, implying $\inf_{b \in \mathcal{B}_2} \sigma_{D_{c,\rho}}(b) \leq \sigma_{D_{c,\rho}}(\bar{b}) < 0$.

Therefore, by Lemma 1, we cannot generate an inequality that is equivalent to or dominates $c^T x \geq 1$ using the support function of $D_{c,\rho}$.

Proposition 8 also leads to the following result.

Corollary 7. Let \mathcal{B} be partitioned as described in (3). Suppose there exist an extreme inequality $c^T x \geq 1$ separating the origin from $\text{cone}(\mathcal{S}(A, \mathbb{R}^n_+, \mathcal{B}))$ and either there exists a nonzero vector $d \in \text{cl}(\mathcal{B}_2) \cap \text{conv} \text{cone}(A)$ satisfying $\sigma_{D_c}(d) < 1$ or a vector $d \in \text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv} \text{cone}(A)$ satisfying $\sigma_{D_c}(d) < 0$. Then there is no CGF that can generate the inequality $c^T x \geq 1$; and hence CGFs are not sufficient to generate all valid inequalities separating the origin from $\text{cone}(\mathcal{S}(A, \mathbb{R}^n_+, \mathcal{B}))$.

Proof. Assume for contradiction that there exists a CGF $\sigma(\cdot)$ that generates the extreme inequality $c^T x \geq 1$. Then by Proposition 7, there exists a finite ρ such that the support function of the set $D_{c,\rho}$ also generates the inequality $c^T x \geq 1$. But, this contradicts Proposition 8.

Conforti et al. (9) introduced the following example (see (9, Example 6.1)) to show that CGFs are not sufficient to generate all valid inequalities separating the origin from $\text{cone}(\mathcal{S}(A, \mathbb{R}^n_+, \mathcal{B}))$. In the following, we revisit this example and its slight variant studied in (20) (see Section 4.3, Example 10 and remarks afterwards in (20)).
Corollary 4, CGFs are sufficient.

separates the origin from \(\overline{\text{conv}}(S(A, \mathbb{R}_+^2, \mathcal{B})) \). Let \(d = [1; 0] \). Then \(d \in \text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv} \). cone\((A) \) = \(\{b : b_1 \geq 0, b_2 = 0\} \) and \(\sigma_{D_2}(d) = \max\{\lambda^T d : A^T \lambda \leq 1\} = \max\{\lambda_1 : \lambda_1 \leq -1\} = -1 < 0 \). By Corollary 7, there is no CGF that can generate this inequality; and thus CGFs are not sufficient to generate all cuts separating the origin from \(\overline{\text{conv}}(S(A, \mathbb{R}_+^2, \mathcal{B})) \).

On the other hand, (20) has examined the variant of this example by setting \(B = \{0; 1\} \cup \{n; -1 : n \in \mathbb{Z}_-\} \). In this case, \(\text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv} \) cone\((A) = \{0\} \); and thus by Corollary 4, CGFs are sufficient.

We conclude this section with two pairs of examples. These examples illustrate the gap between our sufficient conditions from Section 3 and our necessary conditions presented in this section. In particular, Examples 3 and 4 show that our sufficient condition stated in Corollary 5 has room for improvement. That is, it is possible to have a CGF generating an extreme inequality \(c^T x \geq 1 \) even when \(\sigma_{D_2}(d) = 1 \) for the only point \(d \neq 0 \) in \(\text{cl}(\mathcal{B}_2) \cap \text{conv} \). cone\((A) \) or \(\sigma_{D_2}(d) = 0 \) for all points in \(\text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv} \). cone\((A) \). In contrast to these, Examples 5 and 6 demonstrate cases of an extreme inequality of the form \(c^T x \geq 1 \) that cannot be generated by any CGF when there exists a 0 \(\neq d \in \text{cl}(\mathcal{B}_2) \cap \text{conv} \). cone\((A) \) such that \(\sigma_{D_2}(d) = 1 \) or 0 \(\neq d \in \text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv} \). cone\((A) \) such that \(\sigma_{D_2}(d) = 0 \).

The main difference in these examples is in the way the sequence of points in \(\mathcal{B}_2 \) approach to a point in \(\text{conv} \). cone\((A) \) (Examples 3 and 4) or the way they go to infinity (Examples 5 and 6).

Example 2. Let \(A \) be the 2 \(\times \) 2 identity matrix and \(\mathcal{B} = \{[0; 1] \cup [1; 0] : n \in \mathbb{Z}\} \). Then \(\text{conv} (\mathcal{S}(A, \mathbb{R}_+^2, \mathcal{B})) = \mathcal{S}(A, \mathbb{R}_+^2, \mathcal{B}) = \{[0; 1]\} \). The valid inequality \(c^T x \geq 1 \) with \(c = [1; 0] \) separates the origin from \(\text{conv}(\mathcal{S}(A, \mathbb{R}_+^2, \mathcal{B})) \). Let \(d = [1; 0] \). Then \(d \in \text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv} \) cone\((A) \) = \(\{b : b_1 \geq 0, b_2 = 0\} \) and \(\sigma_{D_2}(d) = \max\{\lambda^T d : A^T \lambda \leq 1\} = \max\{\lambda_1 : \lambda_1 \leq -1\} = -1 < 0 \). By Corollary 7, there is no CGF that can generate this inequality; and thus CGFs are not sufficient to generate all cuts separating the origin from \(\overline{\text{conv}}(S(A, \mathbb{R}_+^2, \mathcal{B})) \).

On the other hand, (20) has examined the variant of this example by setting \(B = \{0; 1\} \cup \{n; -1 : n \in \mathbb{Z}_-\} \). In this case, \(\text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv} \) cone\((A) = \{0\} \); and thus by Corollary 4, CGFs are sufficient.

Example 3. Suppose \(A \) is the 2 \(\times \) 2 identity matrix and \(\mathcal{B} = \{[1; 0], [0; 1] \cup [1; -1/n] : n \in \mathbb{Z}_{++}\} \). Then \(\mathcal{B}_1 = \{[1; 0], [0; 1] \cup [1; -1/n] : n \in \mathbb{Z}_{++}\} \), \(\mathcal{B}_2 = \{[1; 0], [0; 1] : n \in \mathbb{Z}_{++}\} \), \(\text{cl}(\mathcal{B}_2) \cap \text{conv} \) cone\((A) = \{[1; 0]\} \) and \(\text{cl}(\text{cone}(\mathcal{B}_2)) \cap \text{conv} \) cone\((A) = \text{conv} \) cone\(([1; 0]) \). Consider a valid inequality \(c^T x \geq 1 \) separating the origin from \(\overline{\text{conv}}(S(A, \mathbb{R}_+^2, \mathcal{B})) \). Because \(\overline{\text{conv}}(S(A, \mathbb{R}_+^2, \mathcal{B})) = \overline{\text{conv}}(\{[1; 0], [0; 1]\}) \), \(c^T x \geq 1 \) is valid if and only if \(c := [c_1; c_2] \) satisfies \(c_1, c_2 \geq 1 \). Note that \(\sigma_{D_2}([1; 0]) = \max\{\lambda_1 : \lambda_1 \leq c\} = c_1 \). When \(c_1 > 1 \), we have \(\sigma_{D_2}([1; 0]) > 1 \); and from Corollary 3, by taking \(D_1 = \{[1; 0]\} \) and \(D_2 = \emptyset \), we obtain \(\inf_{b \in \mathcal{B}} \sigma_{D_2,c}(b) \geq 1 \) for some \(0 < \rho < +\infty \). On the other hand, the conditions in Corollary 5 are not satisfied when \(c_1 = 1 \) because \(\text{cl}(\mathcal{B}_2) \cap \text{conv} \) cone\((A) = \{[1; 0]\} \) and \(\sigma_{D_2}([1; 0]) = 1 \). However, in this case, for any \(\rho \geq 1 \) and \(n \in \mathbb{Z}_{++} \), we have \(\sigma_{D_2,c}(1; -1/n) = \max\{\lambda_1 - \lambda_2 : -\rho \leq \lambda_1 \leq 1, -\rho \leq \lambda_2 \leq \min\{\rho, c_2\}\} = 1 + \frac{\rho}{n} \geq 1 \).

Hence, \(\inf_{b \in \mathcal{B}} \sigma_{D_2,c}(b) \geq 1 \) even when \(c_1 = 1 \). This establishes the sufficiency of CGFs in this example even though the conditions in Corollary 5 are not satisfied for the extreme inequality \(x_1 + x_2 \geq 1 \).
Example 4. Suppose A is the 2×2 identity matrix, $B = \{(1; 0), (0; 1)\} \cup \{[1 - 1/\sqrt{n}; -1/n] : n \in \mathbb{Z}_{++}\}$. Then $B_1 = \{(1; 0), (0; 1)\}$, $B_2 = \{[1 - 1/\sqrt{n}; -1/n] : n \in \mathbb{Z}_{++}\}$, $\text{cl}(B_2) \cap \text{conv}(\text{cone}(A)) = \{(1; 0)\}$ and $\text{cl}(\text{cone}(B_2)) \cap \text{conv}(\text{cone}(A)) = \text{conv}(\{(1; 0)\})$. Consider the extreme inequality $c^T x \geq 1$ with $c = [1; 1]$ separating the origin from $\text{conv}(S(A, \mathbb{R}^2_+, B)) = \text{cl}(\text{cone}(A, \mathbb{R}^2_+, B))$. Note that the conditions in Corollary 7 are not satisfied because $\sigma_{D_c}([1; 0]) = c_1 = 1$ and $\sigma_{D_c}(b) > 0$ for any $b \in \text{cone}(B_1)$. On the other hand, for any $\rho > 0$ and $n \in \mathbb{Z}_{++}$, we have

$$\sigma_{D_{c, \rho}} \left([1 - \frac{1}{\sqrt{n}}; -\frac{1}{n}]\right) = \max \left\{ \left(1 - \frac{1}{\sqrt{n}}\right) \lambda_1 - \frac{\lambda_2}{n} : -\rho \leq \lambda_1 \leq \min\{\rho, 1\}, -\rho \leq \lambda_2 \leq \min\{\rho, 1\} \right\}$$

$$= \left(1 - \frac{1}{\sqrt{n}}\right) \min\{\rho, 1\} + \frac{\rho}{n} = \min \left\{ \rho - \frac{\rho}{\sqrt{n}} + \frac{\rho}{n}, 1 - \frac{1}{\sqrt{n}} + \frac{\rho}{n} \right\}.$$

For any fixed $\rho > 0$, when $n > \rho^2$, we immediately have $1 - \frac{1}{\sqrt{n}} + \frac{\rho}{n} < 1$. Hence, $\sigma_{D_{c, \rho}}([1 - \frac{1}{\sqrt{n}}; -\frac{1}{n}]) < 1$, which implies $\inf_{b \in B} \sigma_{D_{c, \rho}}(b) < 1$. Therefore, for any finite ρ such that the set $D_{c, \rho} := \{\lambda \in \mathbb{R}^m : A^T \lambda \leq c, \|\lambda\|_\infty \leq \rho\}$ is nonempty, the support function $\sigma_{D_{c, \rho}}(\cdot)$ cannot generate a valid inequality that is equivalent to or dominates $c^T x \geq 1$. Then by Proposition 7, there is no CGF that generates this inequality or another one that dominates it. This demonstrates a case where even though the conditions in Corollary 7 are not satisfied, there is an extreme inequality which cannot be generated by any CGF. ♦

![Figure 4: Two ways to approach [1; 0] as in Examples 3 and 4](image)

Example 5. Suppose A is the 2×2 identity matrix, $B = B_1 \cup B_2$ where $B_1 = \{b : b_1 \geq 1, b_2 \geq 1\}$ and $B_2 = \{[n; -1] : n \in \mathbb{Z}_{++}\}$. Then $\text{cl}(B_2) \cap \text{conv}(\text{cone}(A)) = \emptyset$ and $\text{cl}(\text{cone}(B_2)) \cap \text{conv}(\text{cone}(A)) = \text{conv}(\text{cone}(B_1))$. Consider a valid inequality $c^T x \geq 1$ separating the origin from $\text{conv}(S(A, \mathbb{R}^2_+, B))$. Because the recession cone of $\text{conv}(S(A, \mathbb{R}^2_+, B)) = \emptyset$,
\[\{ x : x_1 \geq 1, x_2 \geq 1 \} \text{ is valid only if } c := [c_1; c_2] \text{ satisfies } c_1, c_2 \geq 0. \]

For any \(d = [d_1; d_2] \in \text{cone}([1; 0]), \) \(\sigma_{D_c}(d) = \max \{ \lambda_1 d_1 : \lambda \leq c \} = c_1 d_1. \) When \(c_1 > 0, \) we have \(\sigma_{D_c}(d) > 0 \) for any \(d \in \text{cone}([1; 0]); \) and from Corollary 5, by taking \(D_1 = \emptyset \) and \(D_2 = \{[1; 0]\}, \) we obtain that there exists \(0 < \rho < +\infty \) such that \(\inf_{b \in \mathbb{B}} \sigma_{D_{c, \rho}}(b) \geq 1. \)

On the other hand, the conditions in Corollary 7 are not satisfied when \(c_1 = 0 \) because \(\text{cl}((\text{cone}(B_2)) \cap \text{conv. cone}(A)) = \text{cone}([1; 0]) \cup \{0\} \) and \(\sigma_{D_c}(d) = 0 \) for all \(d \in \text{cone}([1; 0]). \)

However, even in this case, for any \(\rho \geq 1 \) and \(n \in \mathbb{Z}_{++}, \) we have

\[\sigma_{D_{c, \rho}}([n; -1]) = \max \{ n\lambda_1 - \lambda_2 : -\rho \leq \lambda_1 \leq 0, -\rho \leq \lambda_2 \leq \min\{\rho, c_2\} \} = 0 + \rho \geq 1. \]

Hence, \(\inf_{b \in \mathbb{B}} \sigma_{D_{c, \rho}}(b) \geq 1 \) even when \(c_1 = 0. \) This establishes the sufficiency of CGFs in this example even though the conditions in Corollary 5 are not satisfied for the extreme inequality \(x_2 \geq 1. \) \[\diamond \]

Example 6. Suppose \(A \) is the \(2 \times 2 \) identity matrix, \(\mathbb{B} = B_1 \cup B_2 \) where \(B_1 = \{ b : b_1 \geq 1, b_2 \geq 1 \} \) and \(B_2 = \{ [n; -1/n] : n \in \mathbb{Z}_{++} \}. \) Then \(\text{cl}(B_2) \cap \text{conv. cone}(A) = \emptyset \) and \(\text{cl}((\text{cone}(B_2)) \cap \text{conv. cone}(A) = \text{conv. cone}([1; 0]). \)

Consider the extreme inequality \(c^T x \geq 1 \) where \(c = [0; 1] \) separating the origin from \(\text{conv}(S(A, \mathbb{R}^n_+, B)) = \{ x : x_1 \geq 1, x_2 \geq 1 \}. \) Note that the conditions in Corollary 7 are not satisfied because \(\text{cl}(B_2) \cap \text{conv. cone}(A) = \emptyset \) and \(\sigma_{D_c}(d) = 0 \) for any \(d \in \text{cl}(\text{cone}(B_2)) \cap \text{conv. cone}(A). \) On the other hand, for any fixed \(\rho > 0 \) and \(n \in \mathbb{Z}_{++}, \) we have

\[\sigma_{D_{c, \rho}}([n; -1]) = \max \left\{ n\lambda_1 - \frac{\lambda_2}{n} : -\rho \leq \lambda_1 \leq 0, -\rho \leq \lambda_2 \leq \min\{\rho, 1\} \right\} = 0 + \frac{\rho}{n}. \]

For any fixed \(\rho > 0, \) we have \(\sigma_{D_{c, \rho}}([n; -\frac{1}{n}]) < 1 \) when \(n > \rho. \) Thus, \(\inf_{b \in \mathbb{B}} \sigma_{D_{c, \rho}}(b) < 1 \) for any fixed \(\rho > 0. \) Therefore, for any finite \(\rho \) such that the set \(D_{c, \rho} := \{ \lambda \in \mathbb{R}^m : A^T \lambda \leq 0, \|\lambda\|_\infty \leq \rho \} \) is nonempty, the support function \(\sigma_{D_{c, \rho}}(\cdot) \) cannot generate a valid inequality that is equivalent to or dominates \(c^T x \geq 1, \) i.e., \(x_2 \geq 1. \) Then by Proposition 7, there is no CGF that generates this inequality or another one that dominates it. This demonstrates a case where even though the conditions in Corollary 7 are not satisfied, there is an extreme inequality which cannot be generated by any CGF. \[\diamond \]

Acknowledgments

This research is supported in part by NSF grant CMMI 1454548.

References

Figure 5: Two unbounded sequences as in Examples 5 and 6.

