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Societal Challenges
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Environmental 

Sustainability

Mobility



Solution Approaches
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Machine Learning / 

Reinforcement Learning

Game Theory



Recap: Security Games

 Strong Stackelberg Equilibrium

 Defender: mixed strategy

 Attacker: best response, break tie in favor of defender

8/12/20195

Target #1 Target #2

Target #1 5, -3 -1, 1

Target #2 -5, 4 2, -1

Adversary

Defender

55.6%

44.4%



Quiz

 How to get the defender’s mixed strategy in SSE in 

this problem?
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Quiz

 How to get the defender’s mixed strategy in SSE in 

this problem?

 AttEU1=𝑝 ∗ −3 + 1 − 𝑝 ∗ 4 = 𝑝 ∗ 1 + 1 − 𝑝 ∗
(−1)=AttEU2

 Equilibrium: DefStrat=(0.556,0.444), AttStrat=(1,0)
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Recap: SSE vs NE

 Zero-sum
 SSE=NE=minimax=maximin

 Approach 1: Single LP (minimax or maximin strategy)

 Approach 2: Greedy allocation for security games

 General-sum
 SSE≥NE

 Computing NE: PPAD Complete, LCP (linear complementarity 
problem) formulation, Gambit solver

 Computing SSE
 Approach 1: Multiple LPs (each solve a subproblem) 

 Approach 2: A single MILP that combines all the LPs

 Approach 3: Extended greedy allocation algorithm 𝑂(𝑛𝑙𝑜𝑔 𝑛) for security 
games
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Example: Protecting Staten Island Ferry

8/12/20199 Optimal Patrol Strategy for Protecting Moving Targets with Multiple Mobile Resources. Fei Fang, Albert Xin 

Jiang, Milind Tambe. In AAMAS-13
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Wildlife Conservation



Human Behavior in Games

 Not always perfectly rational or behave as expected!

 Task: Predict where the poachers place snares

8/12/201912/67



Learn from Human Subject Experiments

8/12/201913/67 ”A Game of Thrones”: When Human Behavior Models Compete in Repeated Stackelberg Security Games. 

Debarun Kar, Fei Fang, Francesco Maria Delle Fave, Nicole Sintov, Milind Tambe. In AAMAS-15



Collaborators:Wildlife Conservation Society, UgandaWildlife Authority,
Rangers Pictures: Trip to Indonesia withWorldWide Fund for Nature

Learn from Real-World Data

 Raw Dataset for Queen Elizabeth National Park
 Covers 2520 sq. km

 Patrol and poaching recorded
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Learn from Real-World Data

Each data point represent a 1km×1km area in a season



Attacked

Not Attacked

Challenge 1: Data Uncertainty



Challenge 2: Lack of Recorded Attacks

14 8.1 10.5 7.7 7 11.6

Per 100 cells

2010 2011 2012

2013 2014 2015

61.7 67.7 66.0 54.6 59.0 61.0

Per 100 cells

2010 2011 2012

2013 2014 2015
Patrolled Cells

(Year)

Attacked

Patrolled Cells

Not Attacked 

Patrolled Cells 86.0 91.9 89.5 92.3 93.0 88.4

Per 100 cells

2010 2011 2012

2013 2014 2015



Quantal Response Model

 Classical model in behavioral game theory

 Probability of attacking target 𝑗

 λ: represents error level (=0 means uniform random)

 Maximal likelihood estimation (λ=0.76)

 max
𝜆

𝑓 𝜆 =  𝑗 𝑁𝑗log(𝑞𝑗)

 Solved through gradient ascent 𝜆 ← 𝜆 + 𝛼𝛻𝜆𝑓(𝜆)

𝑞𝑗 =
𝑒𝜆∗AttEU𝑗(𝑥)

 𝑖 𝑒
𝜆∗AttEU𝑖(𝑥)

8/12/201918/67 McKelvey, R. D., & Palfrey, T. R. (1995). Quantal response equilibria for normal 

form games. Games and economic behavior, 10(1), 6-38.



Subjective Utility Quantal Response Model

 SEU𝑗 =  𝑘 𝑤𝑘𝑓𝑗
𝑘,  𝑞𝑗 =

𝑒
𝜆∗SEU𝑗(𝑥)

 𝑖 𝑒𝜆∗SEU𝑖(𝑥)

Coverage Probability 

+ Reward/Penalty

Attack Probability

SUQR

8/12/201919/67 Nguyen, T. H., Yang, R., Azaria, A., Kraus, S., & Tambe, M. Analyzing the 

Effectiveness of Adversary Modeling in Security Games. In AAAI, 2013.

Past Success/Failure 

Induced Features + 



Adapted Behavioral Game Theory Models

 CAPTURE
 Real-world Data

 Dynamic Bayes Net: Time Dependency & Imperfect Observation

8/12/201920/67

Attacking probability

Detection probability

Ranger observation

Ranger patrol

Animal density

Distance to rivers / 

roads / villages

Area habitat

Area slope

…

Limited Data, 

Predicting Everywhere, 

Slow Learning

Thanh H. Nguyen, Arunesh Sinha, Shahrzad Gholami, Andrew Plumptre, Lucas Joppa, Milind Tambe, Margaret 

Driciru, Fred Wanyama, Aggrey Rwetsiba, Rob Critchlow, Colin Beale. CAPTURE: A New Predictive Anti-

Poaching Tool for Wildlife Protection. In AAMAS, 2016.



Decision Tree

 PROS

 High speed

 Learn global poachers behavior

 Learn nonlinearity in geo-spatial 

predictor

 CONS

 No explicit temporal dimension

 No aspect for label uncertainty 



Markov Random Field

1 0 1

0 1 0

1 0 0

1 1 1

1 1 0

0 0 0

Time Step t

Time Step t-1

 PROS

 Explicit spatial dimension

 Explicit temporal dimension

 Addresses label uncertainty

 CONS

 Low speed

 Data greedy 



Hybrid Model

Gaussian Mixture ModelSpatial Coordinates

Static Covariates

Geo-clusters



Hybrid Model

Decision Tree 

+ 

Markov Random Fields

Markov Random FieldsBagging of Decision Trees

C

C1 C2 Cn

On Intensely Monitored Regions

Taking it for a Test Drive: A Hybrid Spatio-temporal Model for Wildlife Poaching Prediction Evaluated through a Controlled Field 

Test. Shahrzad Gholami, Benjamin Ford, Fei Fang, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey

Rwetsiba, Mustapha Nsubaga, Joshua Mabonga. In ECML-PKDD 2017



Augment Dataset With Expert Knowledge

 Negative sampling: sample from unpatrolled regions

 Positive sampling:  Estimate from rangers’ estimated scores
 Collect answers for several sets of clusters 𝐶1, 𝐶2

 Compute aggregated score a 𝑠 = min 𝑠1 𝐶𝑖
1 , 𝑠2 𝐶𝑗

1 , … , add unlabeled 
points as positive points if 𝑠 ≥ 6

8/12/201925 Exploiting Data and Human Knowledge for Predicting Wildlife Poaching. Swaminathan Gurumurthy, Lantao

Yu, Chenyan Zhang, Yongchao Jin, Weiping Li, Xiaodong Zhang, Fei Fang. In COMPASS-18



Field Test 1 in Uganda (1 month)

 Trespassing
 19 signs of litter, ashes, 

etc.

 Poached animals
 1 poached elephant

 Snaring
 1 active snare

 1 cache of 10 antelope 
snares

 1 roll of elephant snares

 Snaring hit rates
 Outperform 91% of 

months

8/12/201926/67

Historical 

Base 

Hit Rate

Our Hit 

Rate

Average: 0.73 3

Cloudy with a Chance of Poaching: Adversary Behavior Modeling and Forecasting with Real-World Poaching Data. 

Debarun Kar, Benjamin Ford, Shahrzad Gholami, Fei Fang, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred 

Wanyama, Aggrey Rwetsiba. In AAMAS-17



Field Test 1 in Uganda: Base rate comparison

8/12/2019Fei Fang27/67
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Field Test 1 in Uganda: % Months Exceeded Historical

8/12/2019Fei Fang28/67
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Field Test 2 in Uganda (8 months)

 27 areas (9-sq km each)

 454 km patrolled in total

 No point > 5 km from 

patrol post

 No area patrolled too 

much/rarely

 No overlapping areas

 <= 2 areas per patrol 

post

8/12/2019Fei Fang29/67



Field Test 2 in Uganda (8 months)

 2 experiment groups

 1: >= 50% attack 

prediction rate

 5 areas

 2: < 50% attack 

prediction rate

 22 areas

 Catch Per Unit Effort 

(CPUE)

 Unit Effort = km walked

8/12/2019Fei Fang30/67
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Field Test in China

 Two-day field test in October 2017: 22 snares

 34 patrols from November 2017 to February 2018

 7 snares

8/12/201931



Where to 
place snares?

Where 
to 

patrol?

Machine Learning

Game Theoretic 

Reasoning

From Prediction to Prescription

Route Planning



Game Theoretic Reasoning Based on Learned Model

 Find optimal patrol strategy given poachers respond 

to the patrol strategy according to learned model 

 Challenges

 Learned model is hard to represent using closed form 

function (e.g., decision tree)

 Hard to scale up when considering scheduling constraints

8/12/201934



Game Theoretic Reasoning Based on Learned Model

 Input: A machine learning model that predicts snares

 Output: an optimal patrolling strategy

 Goal: maximize catches of snares

8/12/201935
Optimal Patrol Planning for Green Security Games with Black-Box Attackers. Haifeng Xu, Benjamin Ford, Fei Fang, Bistra

Dilkina, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey Rwetsiba, Mustapha Nsubaga, Joshua 

Mabonga. In GameSec-17: The 8th Conference on Decision and Game Theory for Security

happened To be planned

. . . . . . 
Current periodPrevious period



Game Theoretic Reasoning Based on Learned Model

 Optimization problem: max
𝑥𝑖

 𝑖 𝑔𝑖(𝑥𝑖)

 However… 

8/12/201936

For each cell 𝒊:

𝑦𝑖 : Prob. of detecting a 

snare at 𝑖 in current period

𝑥𝑖: Current patrol 

effort at 𝑖
𝑔𝑖

8 7

6 5 4

3 2 1 Patrol post

(one patroller) 



Game Theoretic Reasoning

 Observe: a pure strategy 
= a path from 𝑣11 to 𝑣1𝑇

 Claim: a mixed strategy 
⟺ one-unit fractional 
flow from 𝑣11 to 𝑣1𝑇

 Patrol effort at cell 𝑖 =   
the aggregated flow 
through cell 𝑖

 Build a mixed integer 
linear program

8/12/201937
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Game Theoretic Reasoning Based on Learned Model

 A MILP formulation

8/12/201938

≈ max
𝑥𝑖

 

𝑖

𝑔𝑖(𝑥𝑖)

𝑥𝑖 = 𝑧𝑖
1 + 𝑧𝑖

2 + ⋯

𝑓 is a unit flow

Patrol effort at cell 𝑖 = the aggregated flow 

through cell 𝑖



Complex Terrain

8/12/2019Fei Fang39/67



Complex Terrain

Patrol Route (2D)

Patrol Route (3D)

8/12/2019Fei Fang40/67



Trial Patrol in the Field

 8-hour patrol in April 2015: patrolling is not easy!

8/12/2019Fei Fang41/67



Spatial Constraint

8/12/2019Fei Fang42/67



Spatial Constraint

 Grid based → Route based

 Hierarchical modeling: Focus on terrain features

 Build virtual street map

8/12/2019Fei Fang43/67



Spatial Constraint

 Hierarchical model: Focus on terrain feature

Ridgeline

Stream

Street Map

Patrol Route

8/12/2019Fei Fang44/67



Patrol Route Design

8/12/201945/67
Deploying PAWS: Field Optimization of the Protection Assistant for Wildlife 

Security. Fei Fang, Thanh H. Nguyen, Rob Pickles, Wai Y. Lam, Gopalasamy R. 

Clements, Bo An, Amandeep Singh, Milind Tambe, Andrew Lemieux. In IAAI-16



Field Test in Malaysia

 In collaboration with Panthera, Rimba

 Regular deployment since July 2015 (Malaysia)

8/12/2019Fei Fang46/67



Real-World Deployment

Grid Based Route Based

8/12/2019Fei Fang47/67



Real-World Deployment

Animal Footprint

Tiger Sign

Tree Mark

Lighter

Camping Sign

8/12/2019Fei Fang48/67



Real-World Deployment

0

0.2

0.4

0.6

0.8

1

1.2

Human Activity Sign/km Animal Sign/km

Previous Patrol PAWS Patrol Explorative PAWS Patrol

8/12/2019Fei Fang49/67



PAWS: Protection Assistant for Wildlife Security

8/12/2019Fei Fang50/67

Protected Area 
Information

Past Patrolling and 
Poaching Information

Patrol Routes
Poaching Data Collected

Learn Behavior Model

Game-theoretic 
Reasoning

Route Planning



PAWS: Protection Assistant for Wildlife Security

 PAWS is deployed in the field

 Saved animals!

8/12/2019Fei Fang51/67
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What game are we/they playing?

 Common criticism: game parameters are fully known 

 E.g. target importance

 How to learn parameters of 2-player zero sum 

games from opponents’ or players’ actions?

53 What game are we playing? End-to-end learning in normal and extensive form games. 

Chun Kai Ling, Fei Fang, J. Zico Kolter. In IJCAI-ECAI-18



0 −1 1

1 0 −1

−1 1 0

Forward Problem: Game Solving

54

Equilibrium strategies 

𝑢∗ = 𝑣∗ = [
1

3
,
1

3
,
1

3
]

Solve



? ? ?

? ? ?

? ? ?

Inverse Problem: Game Learning

55

Learn

i.i.d samples from 

equilibrium strategies

𝑎(1) =(       ,        )

𝑎(2) =(       ,        )

𝑎(3) =(       ,        )

…



What game are we/they playing?

 Previous work on this topic

 Directly learn good strategies from data (e.g. Letchford et al. 

, 2009)

 Rely on special game structures (Vorobeychik et al. , 2007)

 Computational Rationalization framework (Waugh et al. , 

2011)

56 What game are we playing? End-to-end learning in normal and extensive form games. 

Chun Kai Ling, Fei Fang, J. Zico Kolter. In IJCAI-ECAI-18



Differentiable Learning

8/12/201957

0 −𝑏1 −𝑏2

𝑏1 0 −𝑏3

−𝑏1 𝑏3 0

i.i.d samples from 

equilibrium strategies

𝑎(1) =(       ,        )

𝑎(2) =(       ,        )

𝑎(3) =(       ,        )

Learn

 Guess the value of 𝑏𝑖

 Compute equilibrium of guessed game

 Check if the computed equilibrium consistent with data

 Adjust the value of 𝑏𝑖 to increase consistency

 Repeat until satisfied → Update 𝑏𝑖: = 𝑏𝑖 −
𝜕𝐿

𝜕𝑏𝑖



NE and QRE in Zero-Sum Games

 Captures bounded rationality

 Unique

 Continuous w.r.t. 𝑃

8/12/201958

Nash Equilibrium

Quantal Response Equilibrium

 Assumes perfect rationality

 May have multiple equilibria

 Discontinuous w.r.t. 𝑃

min
𝑢

max
𝑣

𝑢𝑇𝑃𝑣

s.t.

1𝑇𝑢 = 1, 𝑢 ≥ 0
1𝑇𝑣 = 1, 𝑣 ≥ 0

min
𝑢

max
𝑣

𝑢𝑇𝑃𝑣 −  

𝑖

𝑣𝑖 log 𝑣𝑖 +  

𝑖

𝑢𝑖 log 𝑢𝑖

s.t.

1𝑇𝑢 = 1, 𝑢 ≥ 0
1𝑇𝑣 = 1, 𝑣 ≥ 0

Recall Quantal Response

𝑞𝑗 =
𝑒𝜆∗AttEU𝑗(𝑥)

 𝑖 𝑒
𝜆∗AttEU𝑖(𝑥)

Recall LP for computing NE

min
𝑢,𝑥

𝑥

s.t. 𝑥 ≥  𝑖 𝑢𝑖𝑃𝑖𝑗 , ∀𝑗

 𝑖 𝑢𝑖 = 1, 𝑢𝑖 ≥ 0, ∀𝑖

𝑢𝑖
∗ =

exp 𝑃𝑣 𝑖

 𝑞 exp 𝑃𝑣 𝑞
, 𝑣𝑗

∗ =
exp 𝑃𝑇𝑢 𝑗

 𝑞 exp 𝑃𝑇𝑢 𝑞



Learning of normal form games

 QRE = solution of min-max convex-concave problem

 KKT conditions:

 Forward pass: Apply Newton’s Method

59

min
𝑢

max
𝑣

𝑢𝑇𝑃𝑣 −  

𝑖

𝑣𝑖 log 𝑣𝑖 +  

𝑖

𝑢𝑖 log 𝑢𝑖

1𝑇𝑢 = 1, 1𝑇𝑣 = 1

𝑃𝑣 + log 𝑢 + 1 + 𝜇1 = 0
𝑃𝑇𝑢 − log 𝑣 − 1 + 𝜈1 = 0

1𝑇𝑢 = 1, 1𝑇𝑣 = 1

Recall: Newton’s Method for 1-D:

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 𝑥𝑛

𝑓′(𝑥𝑛)
Generally, for nonlinear system

𝐽𝐹 𝑥𝑛 𝑥𝑛+1 − 𝑥𝑛 = −𝐹(𝑥𝑛)

𝑑𝑖𝑎𝑔(
1

𝑢
) 𝑃

𝑃𝑇 −𝑑𝑖𝑎𝑔
1

𝑣

1𝑇 0
0 1𝑇

1 0
0 1
0 0
0 0

Δ𝑢
Δ𝑣
Δ𝜇
Δ𝜈

= −

𝑃𝑣 + log 𝑢 + 1 + 𝜇1

𝑃𝑇𝑢 − log 𝑣 − 1 + 𝜈1

1𝑇𝑢 − 1
1𝑇𝑣 − 1



Learning of normal form games

 Backward pass: Gradients of 𝑃 may be obtained via 

the implicit function theorem

8/12/201960



0 −𝑏1(𝑥) 𝑏2(𝑥)

𝑏1(𝑥) 0 −𝑏3(𝑥)

−𝑏2(𝑥) 𝑏3(𝑥) 0

Learning in the presence of features

61

i.i.d samples from 

equilibrium strategies

𝑎(1) =(       ,        )

𝑎(2) =(       ,        )

𝑎(3) =(       ,        )

…
Context

𝑥(1) = [0.1, 0.5]
𝑥(2) = [0.3, 0.7]

…

Learn



Learning in the presence of features

 Figure out which features attract/discourage attackers

 Better understand attacker’s interests

 Design better configurations which favor defenders

 Predict each player’s mixed strategy given an new

environment

 In practice, environment is changing over time

62



Learning in the presence of features

 Context (feature) 𝑥(𝑖) and payoff matrix 𝑃Φ(𝑥(𝑖)), 
parameterized by Φ

 Each player acts according to a mixed strategy (𝑢, 𝑣)

given by the QRE of 𝑃Φ(𝑥(𝑖)), giving realizations 𝑎(𝑖)

 Objective: Learn Φ from {𝑥 𝑖 , 𝑎(𝑖)}

63



Context

Parameters

Φ𝑥(𝑖)
𝑃Φ(𝑥(𝑖))

Payoff Matrix

Game 

Solver

(𝑢, 𝑣)

Equilibrium

strategies

Loss

𝑎(𝑖)

Actions

End-to-end learning

64

Main contribution

𝛻𝑃𝐿 (𝛻𝑢𝐿, 𝛻𝑣𝐿)

𝛻Φ𝐿



Extensive form Games

 Let (𝑢, 𝑣) be strategies in sequence form

 Equilibrium is expressed as solution using dilated 

entropy regularization (Equivalent to solving QRE for 

the reduced normal form)

65

min
𝑢

max
𝑣

𝑢𝑇𝑃𝑣 −  

𝑖

 

𝑎

𝑣𝑎 log(
𝑣𝑎

𝑣𝑝𝑖

) +  

𝑖

 

𝑎

𝑢𝑎 log(
𝑢𝑎

𝑢𝑝𝑖

)

𝐸𝑢 = 𝑒, 𝐹𝑣 = 𝑓



Resource Allocation Security Game

 Defender: 𝑟 resources, 𝑛 targets
 Can allocate multiple resources to one target

 Attacker choose a target to attack

 Each target has value 𝑅𝑖

 If target 𝑖 is protected by 𝑥 resources and is attacked: 

𝑈𝑎 =
𝑅𝑖

2𝑥 = −𝑈𝑑

 Attacker may learn 𝑅𝑖 from observed defender 
actions

 Extend to 𝑇-stage game

8/12/201966



Resource Allocation Security Game

 𝑛 = 2, 𝑟 = 5

67

T= 1 T= 2



One-Card Poker

 Learn players’ belief of card distribution

 Variant of Kuhn Poker with 4 cards, with non-uniform

card distributions

 Observe actions of each player (e.g. raise, fold)

 Probabilities for chance nodes are embedded in 𝑃Φ

68



Featurized Rock Paper Scissors

69

R P S

R 0 −𝑏1 𝑏2

P 𝑏1 0 −𝑏3

S −𝑏2 𝑏3 0

𝑃 =

𝑏 = Φ𝑥,
𝑥 ∈ 0, 1 2

Φ ∈ 0, 10 3 ×2

Objective is to 

learn Φ



Improve Scalability using FOM

 Recall in the basic approach, each step in the 

Newton’s method of each forward pass requires 

solving a linear system → Time consuming

 Solution: Use first-order iterative method (FOM) to 

solve the forward pass directly

8/12/201970

𝑑𝑖𝑎𝑔(
1

𝑢
) 𝑃

𝑃𝑇 −𝑑𝑖𝑎𝑔
1

𝑣

1𝑇 0
0 1𝑇

1 0
0 1
0 0
0 0

Δ𝑢
Δ𝑣
Δ𝜇
Δ𝜈

= −

𝑃𝑣 + log 𝑢 + 1 + 𝜇1

𝑃𝑇𝑢 − log 𝑣 − 1 + 𝜈1

1𝑇𝑢 − 1
1𝑇𝑣 − 1

min
𝑢

max
𝑣

𝑢𝑇𝑃𝑣 −  

𝑖

𝑣𝑖 log 𝑣𝑖 +  

𝑖

𝑢𝑖 log 𝑢𝑖

1𝑇𝑢 = 1, 1𝑇𝑣 = 1
Large Scale Learning of Agent Rationality in Two-Player Zero-Sum Games. 

Chun Kai Ling, Fei Fang, Zico Kolter. In AAAI-19



Improve Scalability using FOM

 The problem in the forward pass is a problem of the 

following min-max format, where the last two terms 

are strictly convex functions

 This problem can be solved using various FOMs

8/12/201971

BR is smoothed best response



Improve Scalability using FOM

 Surprisingly, solving each step in the backward pass 

can also be converted to solving a problem with the 

min-max format. So same FOM can be applied.

8/12/201972

KKT Conditions



Speedup in Forward Pass
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Speedup in Backward Pass
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Outline

 Games with Human Players for Real-world Applications

 Wildlife Conservation

 End-to-End Learning and Decision Making in Games

 A differentiable learning framework for learning game parameters

 Learning-Powered Strategy Computation in Large Games

 Leveraging Deep Reinforcement Learning

 Other Applications and Summary
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Solving Game through Learning from Self Play

8/12/201976

Compute Optimal Defender Strategy

Self Play

Update Strategy

https://www.youtube.com/watch?v=Ue4A2Y_i3ZQ



More Complex Games: Patrol with Real-Time Information

 Sequential interaction

 Players make flexible decisions instead of sticking to a plan

 Players may leave traces as they take actions

 Example domain: Wildlife protection

8/12/201977

Tree markingLighters Old poacher campFootprints

Deep Reinforcement Learning for Green Security Games with Real-Time Information Yufei Wang, Zheyuan

Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, Fei Fang In AAAI-19



Multi-Agent Reinforcement Learning

8/12/201978
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attacker
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Compute Best Response by Training a Deep Q-Network

 Q Network: Game state → Q-value

 Use Deep Reinforcement learning to train the network and 
find optimal patrol policy (assuming fixed attacker)

8/12/201979

Up Down Left Right Still



Compute Best Response by Training a Deep Q-Network

8/12/201980

Defender

Snares

Attacker

Start from 

Patrol Base

Start from one of the corners

DQN Defender

vs

Non-Adaptive Attacker



Compute Equilibrium: DQN + Double Oracle

8/12/201981

Compute 𝜎𝑑 , 𝜎𝑎 =
𝑁𝑎𝑠ℎ(𝐺𝑑 , 𝐺𝑎)

Train 𝑓𝑑 = 𝐷𝑄𝑁(𝜎𝑎)

Find Best Response to 

defender’s strategy

Compute Nash / Minimax 

Train𝑓𝑎 = 𝐷𝑄𝑁(𝜎𝑎)

Find Best Response to 

attacker’s strategy

Add 𝑓𝑑 ,𝑓𝑎 to 

𝐺𝑑 , 𝐺𝑎

Update basic strategy set



Enhancements

 Use local modes for efficient and parallized training

 Start with domain-specific heuristic strategies
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Solving Game through Learning from Self Play

 Green dots: Valuable trees

 Blue dots: Defender location

 Red dots: Logging locations

 Zero-sum game

 Goal: Find defender strategy or 
defender policy

8/12/201983 Policy Learning for Continuous Space Security Games using Neural Networks. Nitin 

Kamra, Umang Gupta, Fei Fang, Yan Liu, Milind Tambe. In AAAI-18



Solving Game through Learning from Self Play

 Key idea 1: Represent mixed strategy using logit 

normal distribution in polar coordinate system

8/12/201984

𝜃

𝑟~𝑃 𝒩 𝜇𝑟 , 𝜎𝑟
2

𝜃~𝑃(𝒩 𝜇𝜃 , 𝜎𝜃
2 )



Solving Game through Learning from Self Play

 Key idea 2: Represent a “policy” with Convolutional 

Neural Network

 Policy: mapping from game setting to strategy

 CNN: Tree Distribution →Mean/Std of 𝑟 and 𝜃
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Solving Game through Learning from Self Play

 Key idea 3: Approximate Fictitious Play

 Fictitious Play: Best responds to opponent's average strategy

 Average strategy → Random samples from history

 Best response → Update neural network

8/12/201986



Solving Game through Learning from Self Play

8/12/201987

 Put them together



Solving Game through Learning from Self Play

8/12/201988

Cournot Adjustment StackGrad OptGradFP

 Single game setting

 Multiple game setting
 Train on 1000 forest states, predict on unseen forest state

 7 days for training, Prediction time 90 ms

 Shift computation from online to offline



Enhancement

 DeepFP

 Generative network for approx. BR + game model network

 Allow to use mathematical programming-based approach to 

compute BR for one or both players

8/12/201989 DeepFP for Finding Nash Equilibrium in Continuous Action Spaces. Nitin Kamra, 

Umang Gupta, Kai Wang, Fei Fang, Yan Liu, Milind Tambe. In GameSec-19



Enhancement
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Outline

 Games with Human Players for Real-world Applications

 Wildlife Conservation

 End-to-End Learning and Decision Making in Games

 A differentiable learning framework for learning game parameters

 Learning-Powered Strategy Computation in Large Games

 Leveraging Deep Reinforcement Learning

 Other Applications and Summary
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How Valuable is This Car?
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Deception
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Deception
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Cyber Deception

8/12/201995

Enterprise Network

Attacker

Send probes to 

systems to gather 

information

Give information 

about systems on 

network

 What can the defender do without “patrol boats”?

 Use deception to confuse the attackers!

Deceiving Cyber Adversaries: A Game Theoretic Approach. Aaron Schlenker, 

Omkar Thakoor, Haifeng Xu, Fei Fang, Milind Tambe, Long Tran-Thanh, Phebe 

Vayanos, Yevgeniy Vorobeychik. In AAMAS-18



Cyber Deception

 How should the defender disguise the systems to 

induce the adversary to attack the least valuable 

systems?

 Cyber Domain Challenges:

 Intelligent adversary; could perceive deception occurring

 Large number of system configurations and ways to disguise

 Arbitrary deception may not be feasible or may affect 

performance
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Cyber Deception Game: Setting

 𝐾 systems, each has true configuration (TC) 𝑓 ∈ 𝐹

 Successful attack on system with TC 𝑓 yields utility 

𝑈𝑓 to attacker; defender loses 𝑈𝑓 (gains – 𝑈𝑓)

8/12/201997
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Cyber Deception Game: Setting

 Defender disguise the systems through deceptive 

responses

 Each system gets observed configuration (OC)  𝑓 ∈  𝐹

8/12/201998
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Cyber Deception Game: Defender

 Know true configuration (TC) 𝑓

 Need to decides observed 

configuration (OC)  𝑓

 Systems with same TC are 

indifferent to the defender

 𝑁𝑓 = Number of systems having 

TC 𝑓 ∈ 𝐹
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Cyber Deception Game: Defender

 Deception strategy encoded via integer matrix 𝜙

 𝜙𝑓,  𝑓 = number of systems with TC 𝑓 and OC  𝑓

8/12/2019100
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Cyber Deception Game: Defender

 Deception strategy encoded via integer matrix 𝜙

 𝜙𝑓,  𝑓 = number of systems with TC 𝑓 and OC  𝑓

 TC 𝑓 may not be masked with OC  𝑓 (𝜋𝑓,  𝑓 = 0)

 Showing deceptive responses incur costs 𝑐(𝑓,  𝑓); budget 𝐵

8/12/2019101

𝜋𝑓1,  𝑓1
= 0

𝑐𝑓3, 𝑓2
= 3

1

1

1

𝐵 = 5



Cyber Deception Game: Attacker

 Can observe OC of each system

 Cannot differentiate systems with same OC

 Uniformly randomly attacks systems with most 

attractive OC

8/12/2019102

How much does the attacker know 

about the deception?



Cyber Deception Game: Attacker

 Powerful attacker: Knows deception strategy 𝜙
 Computes expected payoff for all OCs and best-responds

 Robust assumption to minimize worst-case loss

8/12/2019103
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Cyber Deception Game: Attacker

 Powerful attacker: Knows deception strategy 𝜙
 Computes expected payoff for all OCs and best-responds

 Robust assumption to minimize worst-case loss

 Naive attacker: Not aware of deception

 Believe what they observe

 Preset preferences (utilities) for attacking OCs

8/12/2019104



Quiz

 With powerful attacker, when there are no budget 

constraint and feasibility constraint, what is the 

optimal defender strategy?
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Quiz

 With powerful attacker, when there are no budget 

constraint and feasibility constraint, what is the 

optimal defender strategy?

 Trivial case (no constraints): assign to same OC

8/12/2019106



Against Powerful Attacker

 Powerful attacker: Knows deception strategy 𝜙
 Computes expected payoff for all OCs and best-responds

 Robust assumption to minimize worst-case loss

 When some masking infeasible or budget limited

 Proven via reduction to Partition problem

 NP-hard even with just feasibility or just budget constraint

8/12/2019107

Theorem: NP-hard to compute optimal strategy for defender 

against powerful adversary.



Against Powerful Attacker

 Solve through mathematical programming

8/12/2019108

Feasibility Constraints

Budget Constraint

Expected Utility 

for attacking f̃

 
 𝑓

𝜙𝑓,  𝑓 = 𝑁𝑓

 

𝑓

𝜙𝑓,  𝑓 = 𝑁  𝑓

𝜙𝑓,  𝑓 ≤ 𝜋𝑓,  𝑓

𝜙𝑓,  𝑓 ∈ ℤ≥0

 

𝑓

 
 𝑓

𝜙𝑓,  𝑓𝑐𝑓,  𝑓 ≤ 𝐵

Non-linear



Against Powerful Attacker

 Solve through mathematical programming

 Reformulate to MILP: Guaranteed to find optimal 

solution

 Remove the non-linear constraint

 Adds 𝐾  𝐹 auxiliary variables

 Adds 4 𝐾 |  𝐹| additional constraints

 Approximation algorithm: Solve sequential MILPs

 Heuristic algorithm: Greedy MiniMax (GMM)

 A fast heuristic which greedily minimizes attacker utility
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Against Naïve Attacker

 Naive attacker: Not aware of deception

 Simply believes OCs (or just not reasoning about the actual 

TC→OC mapping strategy used by the defender)

 Preset preferences (utilities) for attacking OCs

 When no budget constraints; but just the 

feasibility constraints

 When both budget and feasibility constraints present

8/12/2019110

Theorem: NP-hard to compute optimal strategy for defender 

against naïve adversary.

Theorem: can be solved in 𝑂( 𝐹  𝐹 ) time



Simulation Results

 20 TCs, 20 Systems

 Attacker Utility = 10 without deception
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Simulation Results

 Attacker model and belief of attacker model matters

8/12/2019112

Against Powerful Attacker Against Naive Attacker



Evolution of Surge Pricing

 Surge price interface

8/12/2019Fei Fang113



Evolution of Surge Pricing

 Coarse → Fine grained in space

8/12/2019Fei Fang114



Quiz

 What are the potential strategic behavior of a driver 

(with old or new interface)?
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Market Failure - 1
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Market Failure - 2
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Market Failure - 3

8/12/2019Fei Fang118

Bad draw dispatches: “after accepting, drivers are able to contact the rider. 

Some may [] learn [the] destination [] and canceling if [] the trip will not be 

worth the time.”



Competitive Equilibrium

 Competitive Equilibrium (CE)

 Also called Walrasian equilibrium

 Traditional concept in economics

 Commodity markets with flexible prices and many traders

8/12/2019Fei Fang119



Competitive Equilibrium

 A very simple setting

 A set of items 𝑛 = {1,2,… 𝑛}

 A set of buyers 𝑚 = 1,2,… , 𝑚

 Each buyer 𝑖 has a valuation for each item 𝑗: 𝑣𝑖𝑗

 Given a price vector 𝑝 ∈ ℝ𝑛, agent 𝑖’s utility is: 𝑢𝑖 𝑥; 𝑝 = 𝑣𝑖

⋅ 𝑥 − 𝑝 ⋅ 𝑥 where 𝑥 ∈ 0,1 𝑛 indicates which items the agent 

gets

 Each agent can get at most one item

8/12/2019Fei Fang120



Competitive Equilibrium

 A CE consists of:
 A price vector 𝑝 ∈ ℝ+

𝑛

 A valid allocation matrix 𝑥
 𝑥𝑖𝑗 ∈ {0,1} indicates whether or not item 𝑗 is allocated to agent 𝑖

 Each item is allocated at most once  𝑖 𝑥𝑖𝑗 ≤ 1, ∀𝑗

 Each buyer can get at most one item  𝑗 𝑥𝑖𝑗 ≤ 1, ∀𝑖

 Use 𝑥𝑖 to denote the binary vector for agent 𝑖

 𝑝 and 𝑥 satisfy the following constraints
 Best response

 𝑥𝑖 ∈ argmax
𝑥:𝑥∈ 0,1 𝑛, 𝑗 𝑥𝑗≤1

𝑢𝑖 𝑥; 𝑝 , ∀𝑖

 Market clearance

 ∀𝑗,  𝑖 𝑥𝑖𝑗 = 1 or 𝑝𝑗 = 0
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Super Bowl Example
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Myopic Pricing

 At current time 𝑡, each location has a sub-market

 Allocate cars to the riders with highest valuations

 Driver-pessimal price shown in black

8/12/2019Fei Fang130



Quiz

 With Myopic Pricing, at most, how much more can the 
purple driver earn if he deviates from the system’s 
assignment and all other drivers always follow the 
system’s assignment? (Options: $100, $90, $80, $0)

8/12/2019Fei Fang131



Useful Deviation

 Purple driver rejects the assigned ride at 9:50am to 

earn more money

8/12/2019Fei Fang132



Spatial-Temporal Pricing

 Model: Discrete time/location, Impatient riders, 
Anonymous origin-destination trip price

 One-shot assignment
 Assignment plan: Decompose a min-cost flow

 Pricing: Dual of flow LP

 Form competitive equilibrium (CE)
 Welfare optimal

 Maximize total payment for each driver

 Maximize utility for each rider

 Envy free

 All feasible driver payments in CE form a lattice

8/12/2019134 Spatio-Temporal Pricing for Ridesharing Platforms. Hongyao Ma, Fei Fang, David C. Parkes. In EC-19



ILP for Computing Optimal Assignment Plan

8/12/2019135

𝑥𝑗 ≤ 1

𝑥𝑗 ≥ 0

𝑦𝑖,𝑘 ≥ 0

LP Relaxation 

Dual Variables

𝑝𝑎,𝑏,𝑡

𝜋𝑖

𝑢𝑗



Dual Problem to Compute CE Pricing
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Spatial-Temporal Pricing

 However…Drivers can deviate and trigger 

recomputation!

 Solution: Driver-Pessimal CE

 Trip price = welfare gain difference

𝑝𝑎,𝑏,𝑡 = Φ𝑎,𝑡 − Φ𝑏,𝑡+𝑑𝑖𝑠𝑡 𝑎,𝑏

Φ𝑎,𝑡 ≜ 𝑊 𝐷 ∪ 𝑡, 𝑇, 𝑎 , 𝑅 − 𝑊(𝐷, 𝑅)

 Incentive compatible subgame perfect equilibrium

 No driver want to deviate from assigned action!
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Spatial-Temporal Pricing

 SPT vs Naïve surge
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Summary

 Games with Human Players for Real-world 

Applications

 End-to-End Learning and Decision Making in Games

 Learning-Powered Strategy Computation in Large 

Games
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Thank you!

Fei Fang

Carnegie Mellon University

feifang@cmu.edu
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Security Challenges
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Sustainability Challenges

Today

≈ 3,200

100 years ago

≈ 60,000
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Mobility Challenges
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