AAMAS Tutorial

Solving Games with Complex Strategy Spaces

Part II: Integrating Learning with Game Theory for

Strategic Decision Making

Fei Fang
Carnegie Mellon University

feifang@cmu.edu

Outline

- Game-Theoretic Reasoning and Its Applications
 - Wildlife Conservation
 - Cyber Security
 - Ridesharing
- End-to-End Learning and Decision Making in Games
 - A differentiable learning framework for learning game parameters
- Learning-Powered Strategy Computation in Large Scale Games
 - Leveraging Deep Reinforcement Learning

Security Challenges

Sustainability Challenges

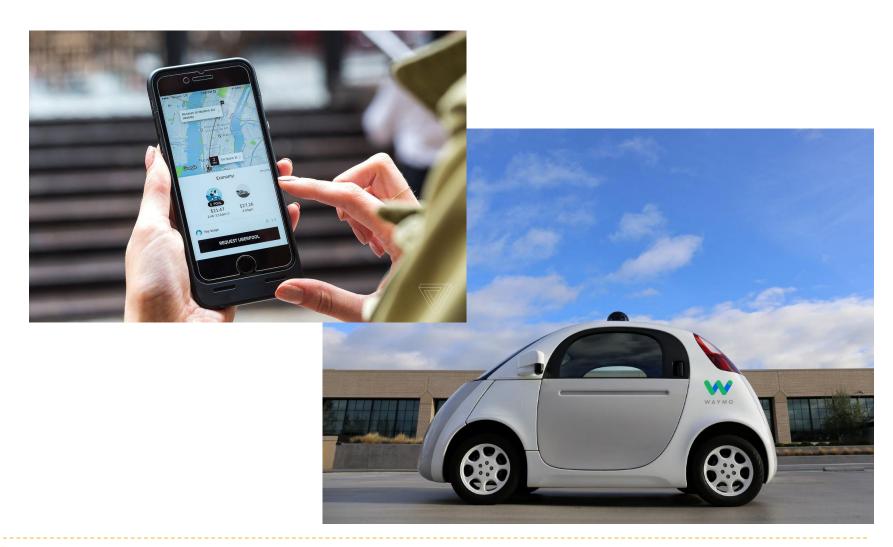
Today

≈ 3,200

100 years ago

≈ 60,000

Mobility Challenges



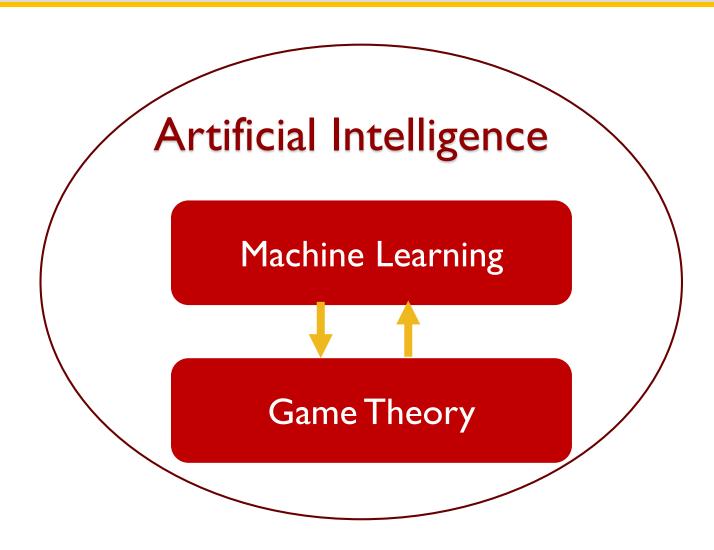
Societal Challenges

Security & Safety

Environmental Sustainability

Mobility

Solution Approaches



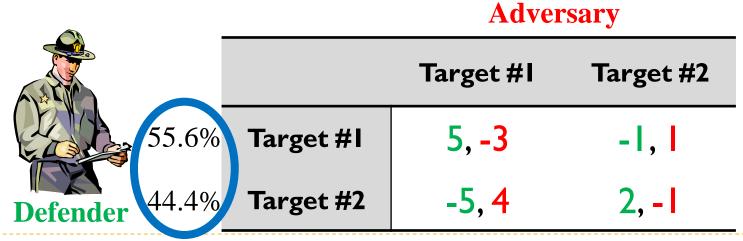
Recap: Security Games

- Strong Stackelberg Equilibrium
 - Defender: mixed strategy
 - Attacker: best response, break tie in favor of defender

Adversary Target #I Target #2 55.6% Target #I 5, -3 -1, I Defender 44.4% Target #2 -5, 4 2, -1

Quiz

How to get the defender's mixed strategy in SSE in this problem?



Quiz

- How to get the defender's mixed strategy in SSE in this problem?
 - AttEUI=p * (-3) + (1-p) * 4 = p * 1 + (1-p) * (-1)=AttEU2
 - Equilibrium: DefStrat=(0.556,0.444), AttStrat=(1,0)

Adversary Target #I Target #2 55.6% Target #I 5, -3 -1, | Defender 44.4% Target #2 -5, 4 2, -|

Recap: SSE vs NE

- Zero-sum
 - SSE=NE=minimax=maximin
 - Approach I: Single LP (minimax or maximin strategy)
 - Approach 2: Greedy allocation for security games
- General-sum
 - SSE≥NE
 - Computing NE: PPAD Complete, LCP (linear complementarity problem) formulation, Gambit solver
 - Computing SSE
 - Approach I: Multiple LPs (each solve a subproblem)
 - Approach 2:A single MILP that combines all the LPs
 - Approach 3: Extended greedy allocation algorithm $O(nlog\ n)$ for security games

Example: Protecting Staten Island Ferry

Outline

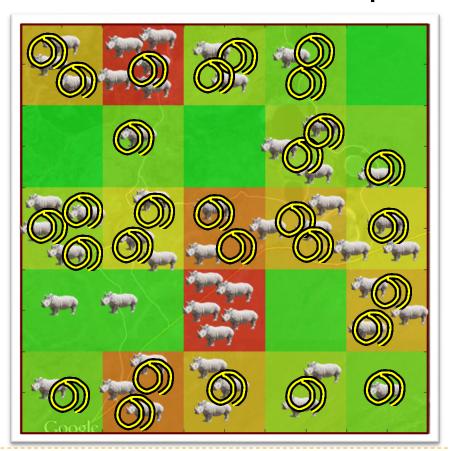
- Game-Theoretic Reasoning and Its Applications
 - Wildlife Conservation
 - Cyber Security
 - Ridesharing
- End-to-End Learning and Decision Making in Games
 - A differentiable learning framework for learning game parameters
- Learning-Powered Strategy Computation in Large Scale Games
 - Leveraging Deep Reinforcement Learning

Wildlife Conservation

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat Image IBCAO Google earth

Human Behavior in Games

- Not always perfectly rational or behave as expected!
- ▶ Task: Predict where the poachers place snares



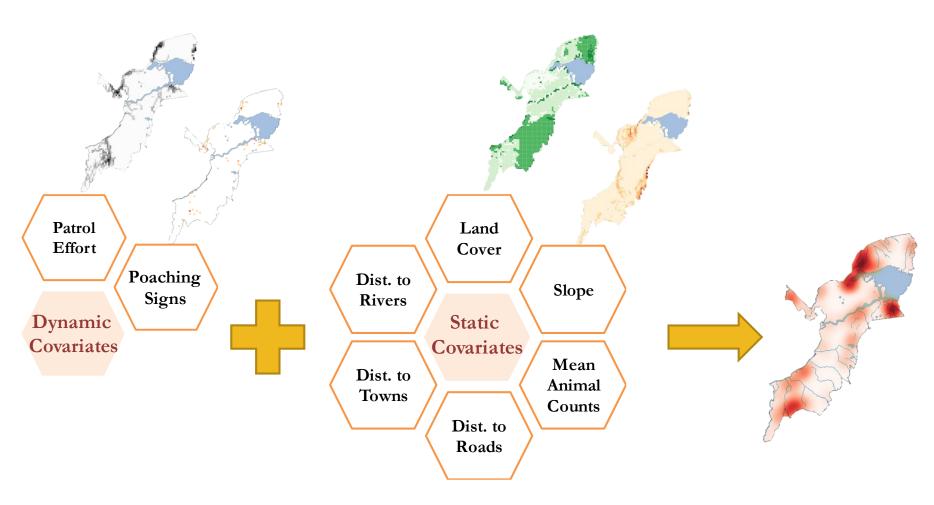
15/67 5/20/2019

Learn from Real-World Data

- Raw Dataset for Queen Elizabeth National Park
 - Covers 2520 sq. km
 - Patrol and poaching recorded

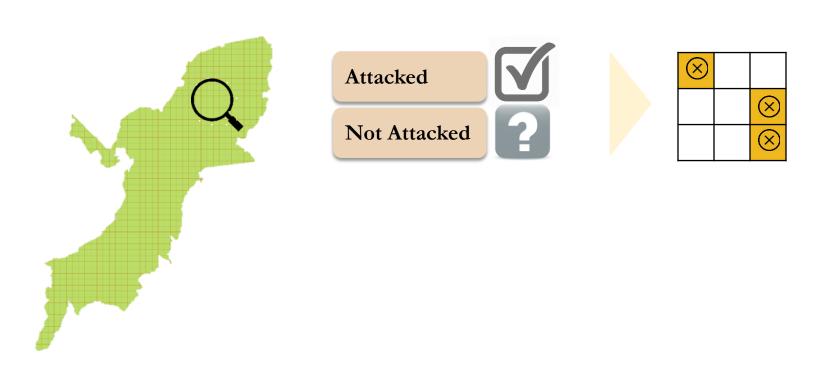
Collaborators: Wildlife Conservation Society, Uganda Wildlife Authority, Rangers Pictures: Trip to Indonesia with World Wide Fund for Nature

Learn from Real-World Data

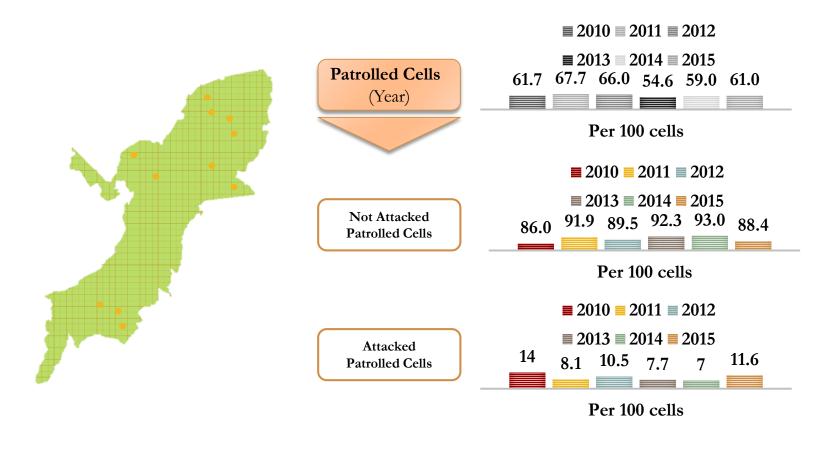


Each data point represent a 1km×1km area in a season

Challenge I: Data Uncertainty



Challenge 2: Lack of Recorded Attacks



Quantal Response Model

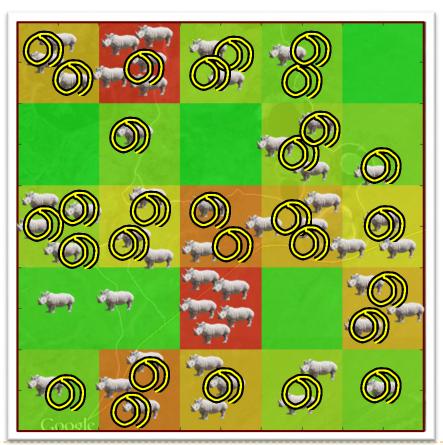
- Classical model in behavioral game theory
- Probability of attacking target j

$$q_j = \frac{e^{\lambda * \text{AttEU}_j(x)}}{\sum_i e^{\lambda * \text{AttEU}_i(x)}}$$

- λ: represents error level (=0 means uniform random)
 - Maximal likelihood estimation (λ =0.76)
 - $\max_{\lambda} f(\lambda) = \sum_{j} N_{j} \log(q_{j})$
 - ▶ Solved through gradient ascent $\lambda \leftarrow \lambda + \alpha \nabla_{\lambda} f(\lambda)$

Subjective Utility Quantal Response Model

$$\blacktriangleright \text{ SEU}_j = \sum_k w_k f_j^k, \ q_j = \frac{e^{\lambda * \text{SEU}_j(x)}}{\sum_i e^{\lambda * \text{SEU}_i(x)}}$$



Past Success/Failure Induced Features +

Coverage Probability + Reward/Penalty

Attack Probability

Adapted Behavioral Game Theory Models

CAPTURE

- Real-world Data
- Dynamic Bayes Net: Time Dependency & Imperfect Observation

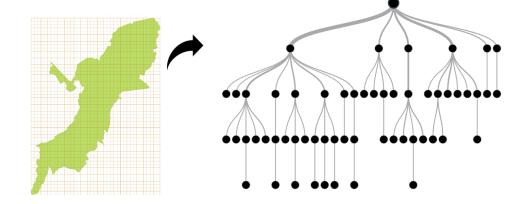
Decision Tree

PROS

- High speed
- Learn global poachers behavior
- Learn nonlinearity in geo-spatial predictor

CONS

- No explicit temporal dimension
- No aspect for label uncertainty



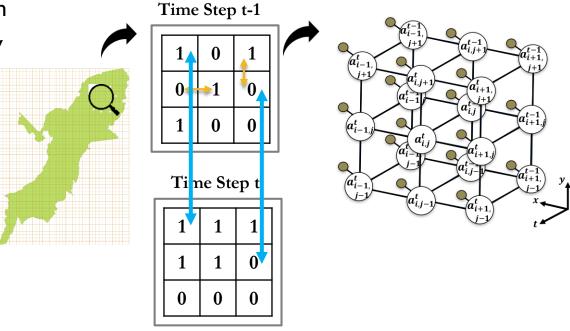
Markov Random Field

PROS

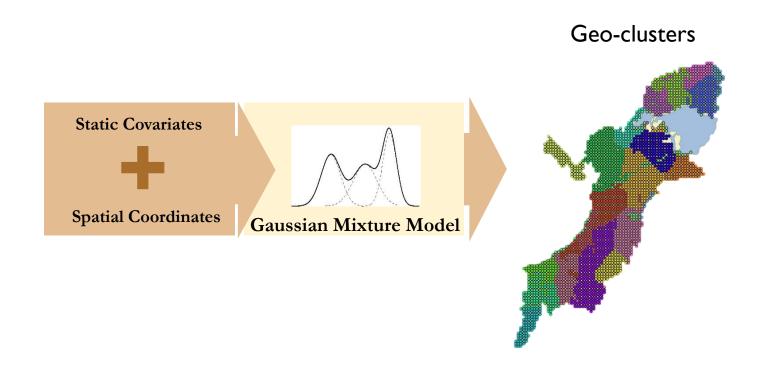
- Explicit spatial dimension
- Explicit temporal dimension
- Addresses label uncertainty

CONS

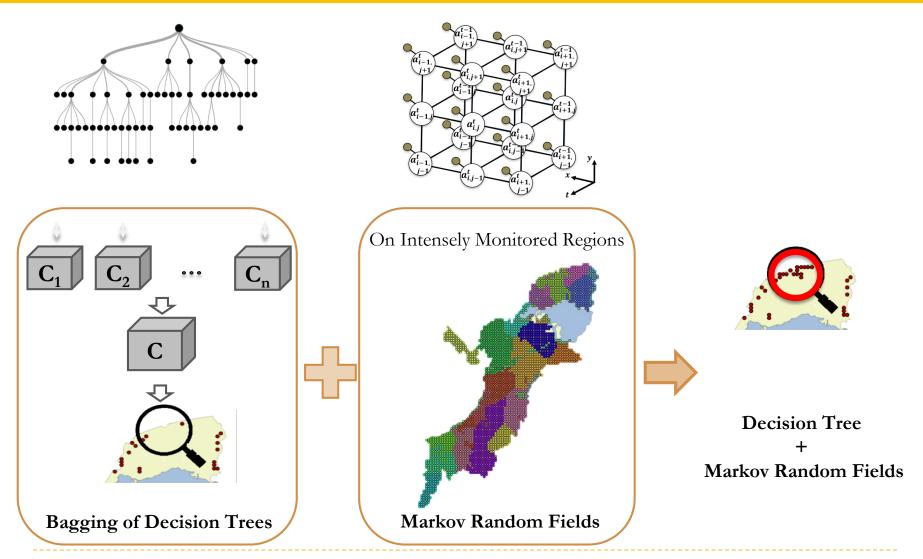
- Low speed
- Data greedy



Our Solution: Hybrid Model

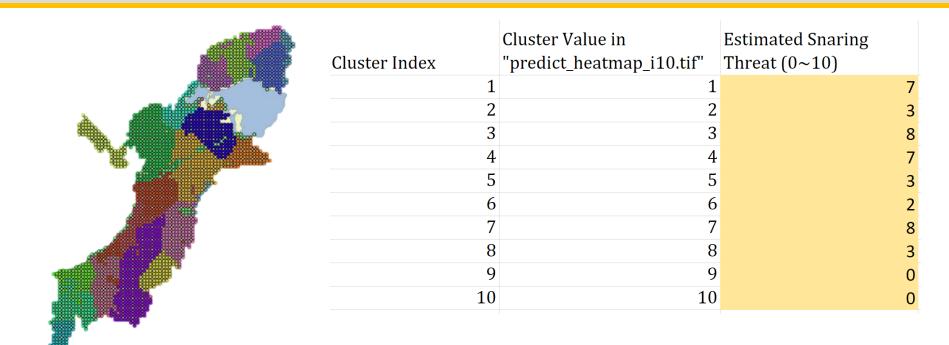


Our Solution: Hybrid Model



Taking it for a Test Drive: A Hybrid Spatio-temporal Model for Wildlife Poaching Prediction Evaluated through a Controlled Field Test. Shahrzad Gholami, Benjamin Ford, Fei Fang, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey Rwetsiba, Mustapha Nsubaga, Joshua Mabonga. In ECML-PKDD 2017

Augment Dataset With Expert Knowledge



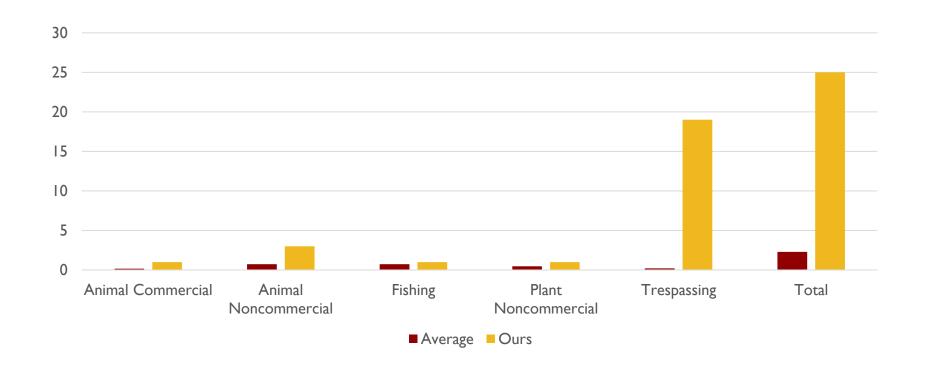
- Negative sampling: sample from unpatrolled regions
- Positive sampling: Estimate from rangers' estimated scores
 - ▶ Collect answers for several sets of clusters C^1 , C^2
 - Compute aggregated score a $s = \min\{s_1(C_i^1), s_2(C_j^1), ...\}$, add unlabeled points as positive points if $s \ge 6$

Field Test I in Uganda (I month)

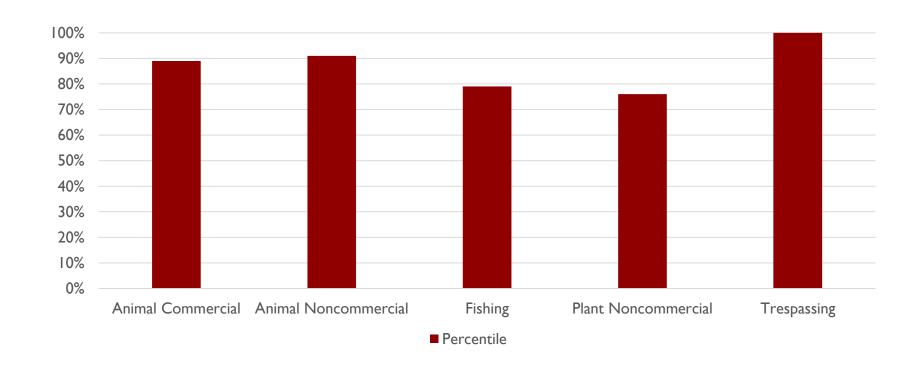
- Trespassing
 - ▶ 19 signs of litter, ashes, etc.
- Poached animals
 - I poached elephant
- Snaring
 - I active snare
 - I cache of 10 antelope snares
 - I roll of elephant snares
- Snaring hit rates
 - Outperform 91% of months

Historical Base Hit Rate	Our Hit Rate
Average: 0.73	3

Field Test 1 in Uganda: Base rate comparison

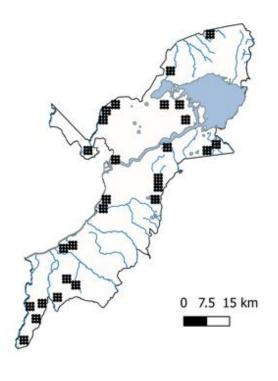


Field Test 1 in Uganda: % Months Exceeded Historical



Field Test 2 in Uganda (8 months)

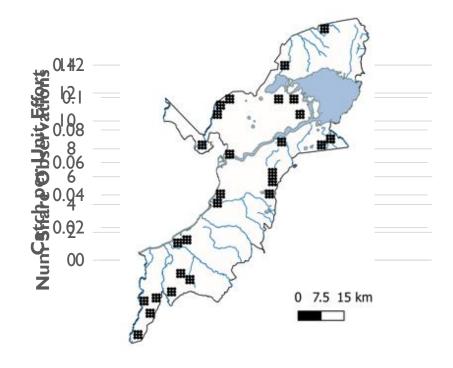
- ▶ 27 areas (9-sq km each)
- ▶ 454 km patrolled in total
- No point > 5 km from patrol post
- No area patrolled too much/rarely
- No overlapping areas
- <= 2 areas per patrol post



Field Test 2 in Uganda (8 months)

- ▶ 2 experiment groups
 - I:>= 50% attack prediction rate
 - ▶ 5 areas
 - 2: < 50% attack prediction rate</p>
 - ▶ 22 areas

- Catch Per Unit Effort (CPUE)
 - Unit Effort = km walked

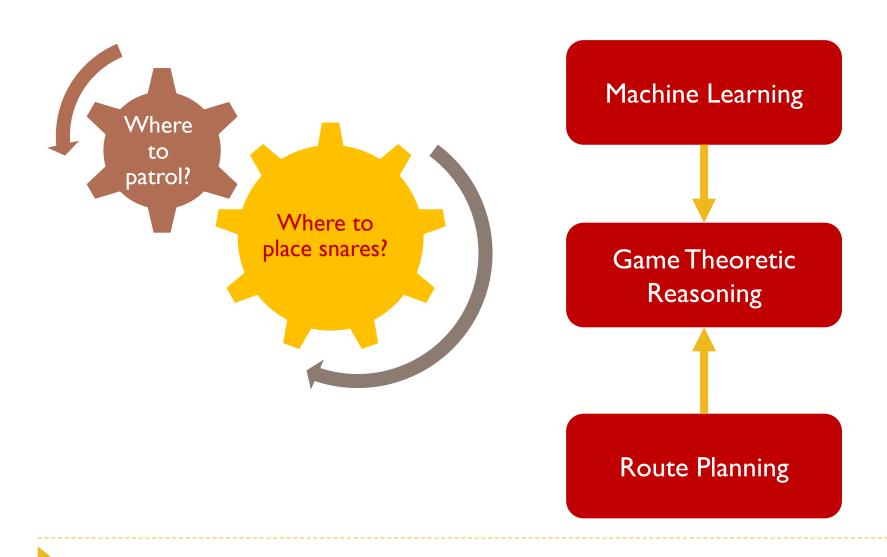


Field Test in China

- ▶ Two-day field test in October 2017: 22 snares
- ▶ 34 patrols from November 2017 to February 2018
 - 7 snares

37 5/20/2019

From Prediction to Prescription



Game Theoretic Reasoning Based on Learned Model

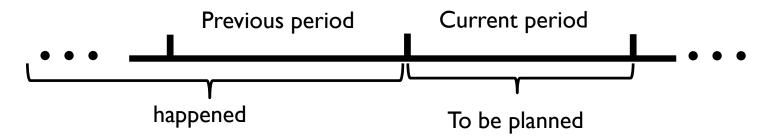
 Find optimal patrol strategy given poachers respond to the patrol strategy according to learned model

Challenges

- Learned model is hard to represent using closed form function (e.g., decision tree)
- Hard to scale up when considering scheduling constraints

Game Theoretic Reasoning Based on Learned Model

- Input: A machine learning model that predicts snares
- Output: an optimal patrolling strategy
- ▶ Goal: maximize catches of snares



Game Theoretic Reasoning Based on Learned Model

For each cell i:

• Optimization problem: $\max_{x_i} \sum_i g_i(x_i)$

However...

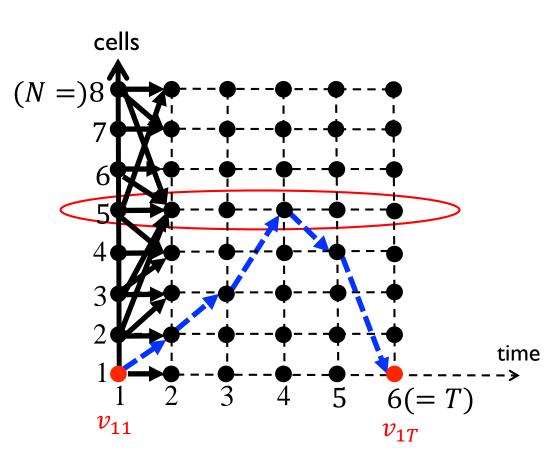
8 7

6 5

Patrol post
(one patroller)

Game Theoretic Reasoning

- Observe: a pure strategy = a path from v_{11} to v_{1T}
- ▶ Claim: a mixed strategy \Leftrightarrow one-unit fractional flow from v_{11} to v_{1T}
- Patrol effort at cell i = the aggregated flow through cell i
- Build a mixed integer linear program



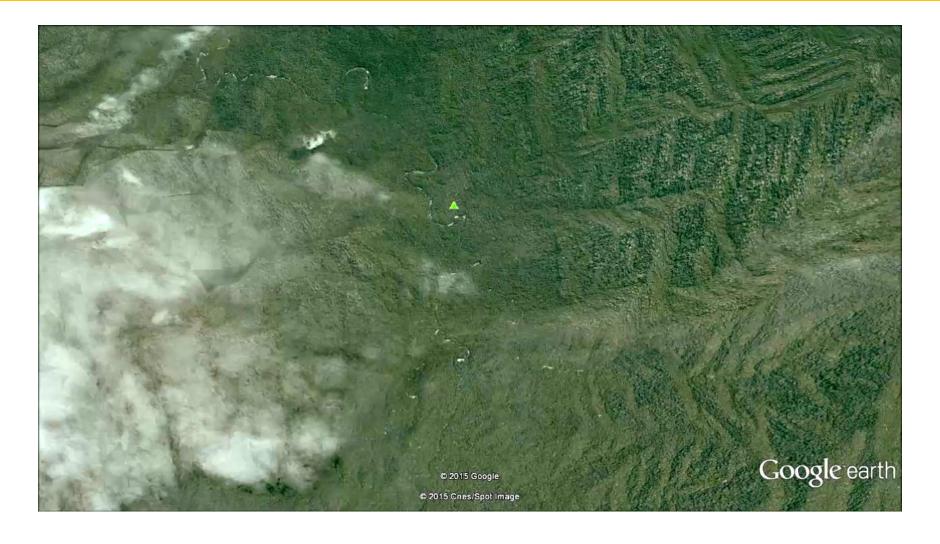
Time-unrolled Graph

Game Theoretic Reasoning Based on Learned Model

A MILP formulation

$$\begin{array}{l} \text{maximize } \sum_{i=1}^{N} \left(g_i(0) + \sum_{j=1}^{m} z_i^j \cdot [g_i(j) - g_i(j-1)]\right) & \approx \max_{x_i} \sum_{i}^{j} g_i(x_i) \\ \text{subject to} \left(x_i \geq \sum_{j=1}^{m} z_i^j \cdot [\alpha_j - \alpha_{j-1}], \\ x_i \leq \alpha_1 + \sum_{j=1}^{m} z_i^j \cdot [\alpha_{j+1} - \alpha_j], \\ z_i^1 \geq z_i^2 \dots \geq z_i^m, \\ z_i^j \in \{0,1\}, & \text{Patrol effort at cell } i = \text{the aggregated flow} \\ x_i = \sum_{t=1}^{T} \left[\sum_{e \in \sigma^+(v_{t,i})} f(e)\right], & \text{through cell } i \\ \sum_{e \in \sigma^+(v_{t,i})} f(e) = \sum_{e \in \sigma^-(v_{t,i})} f(e), \\ \sum_{e \in \sigma^+(v_{T,1})} f(e) = \sum_{e \in \sigma^-(v_{1,1})} f(e) = 1 \\ 0 \leq x_i \leq 1, & 0 \leq f(e) \leq 1, \end{array} \right) f \text{ is a unit flow}$$

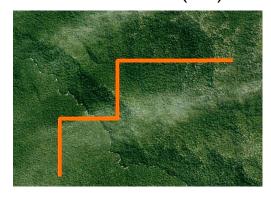
Complex Terrain



Complex Terrain

Patrol Route (3D)

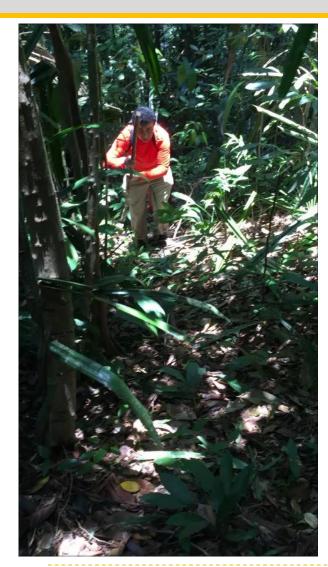
Patrol Route (2D)

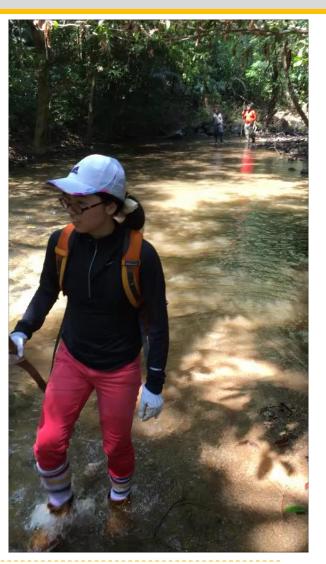


Trial Patrol in the Field

▶ 8-hour patrol in April 2015: patrolling is not easy!

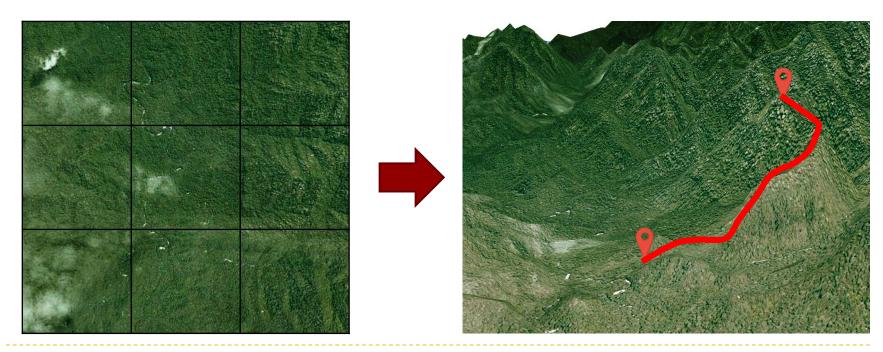
Spatial Constraint





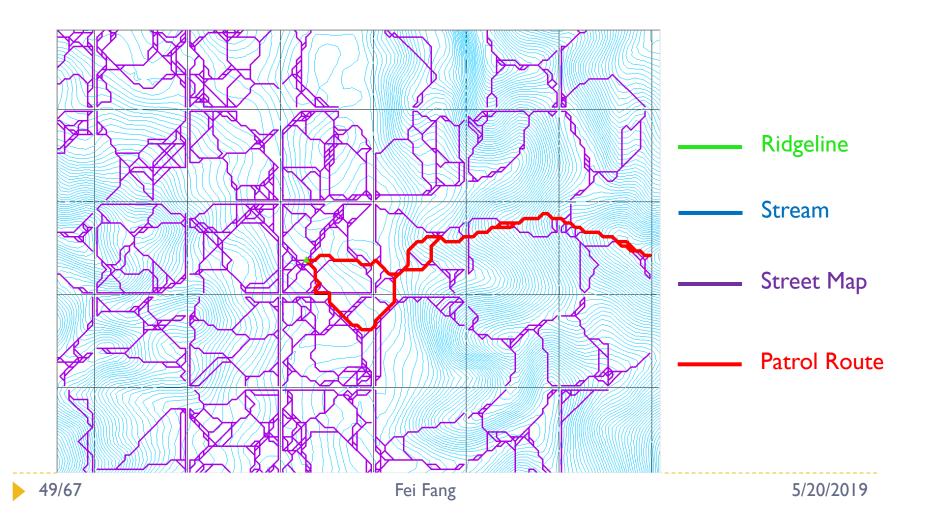
Spatial Constraint

- ▶ Grid based → Route based
- Hierarchical modeling: Focus on terrain features
- Build virtual street map



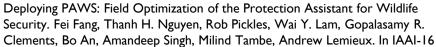
Spatial Constraint

▶ Hierarchical model: Focus on terrain feature



Patrol Route Design

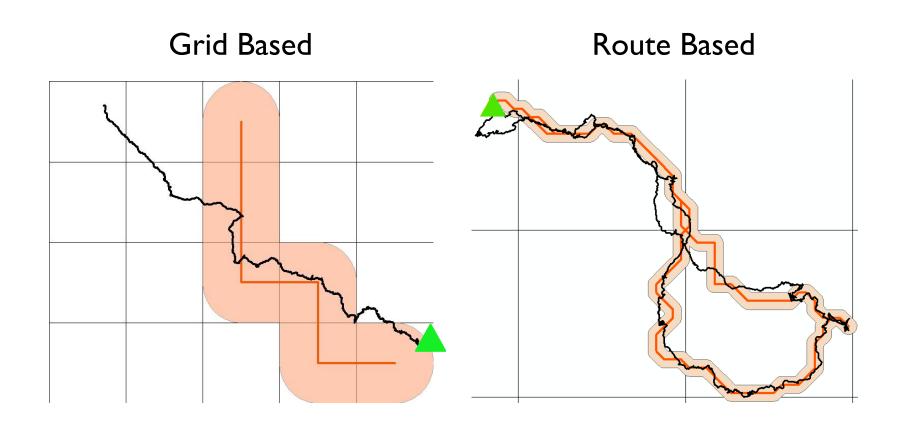




Field Test in Malaysia

- In collaboration with Panthera, Rimba
- ▶ Regular deployment since July 2015 (Malaysia)

Real-World Deployment



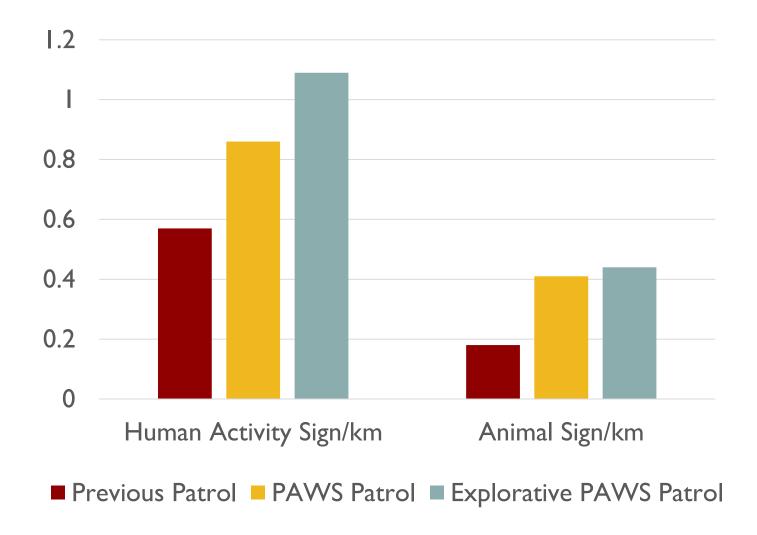
Real-World Deployment

Animal Footprint

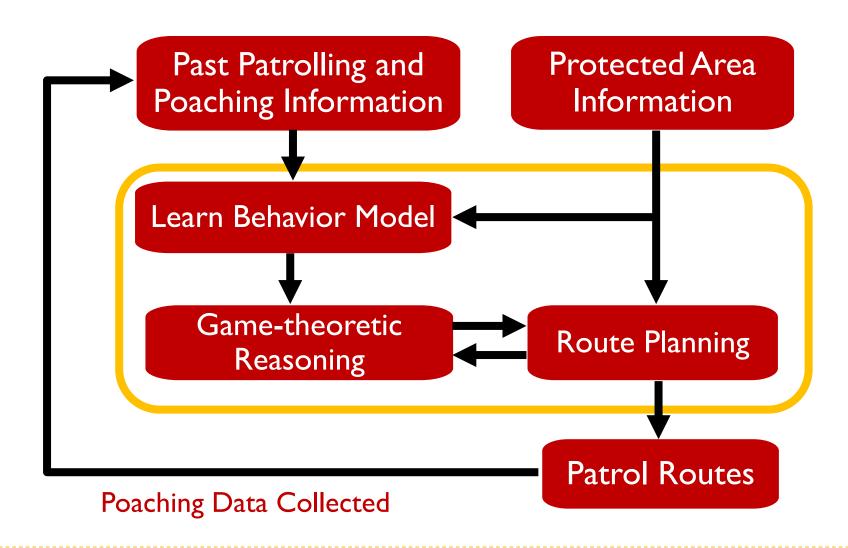
Tiger Sign

Lighter

Real-World Deployment



PAWS: Protection Assistant for Wildlife Security



PAWS: Protection Assistant for Wildlife Security

- PAWS is deployed in the field
 - Saved animals!

Outline

- Game-Theoretic Reasoning and Its Applications
 - Wildlife Conservation
 - Cyber Security
 - Ridesharing
- ▶ End-to-End Learning and Decision Making in Games
 - A differentiable learning framework for learning game parameters
- Learning-Powered Strategy Computation in Large Scale Games
 - Leveraging Deep Reinforcement Learning

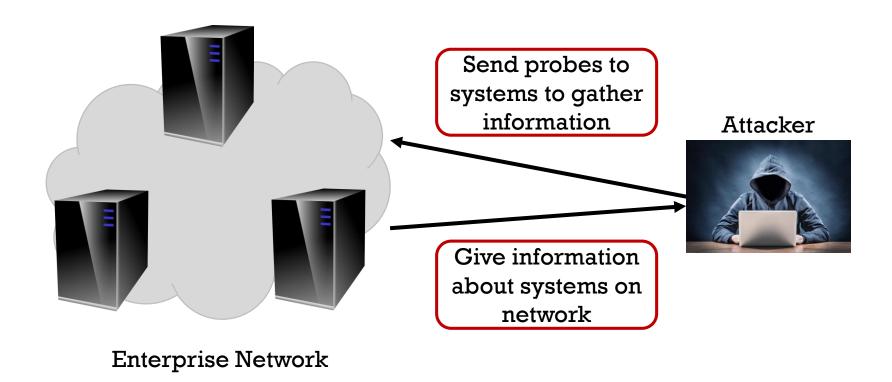
How Valuable is This Car?

Deception

Deception

Cyber Deception

- What can the defender do without "patrol boats"?
- Use deception to confuse the attackers!



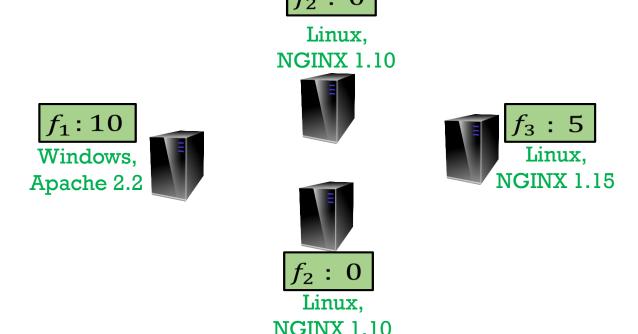
Cyber Deception

How should the defender disguise the systems to induce the adversary to attack the least valuable systems?

- Cyber Domain Challenges:
 - Intelligent adversary; could perceive deception occurring
 - Large number of system configurations and ways to disguise
 - Arbitrary deception may not be feasible or may affect performance

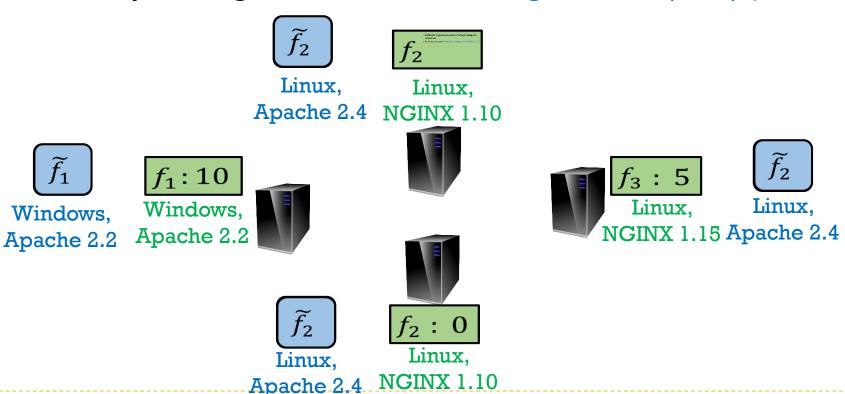
Cyber Deception Game: Setting

- ▶ K systems, each has true configuration (TC) $f \in F$
- Successful attack on system with TC f yields utility U_f to attacker; defender loses U_f (gains U_f)



Cyber Deception Game: Setting

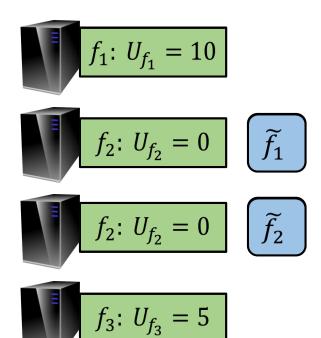
- Defender disguise the systems through deceptive responses
- ▶ Each system gets observed configuration (OC) $\tilde{f} \in \tilde{F}$



Cyber Deception Game: Defender

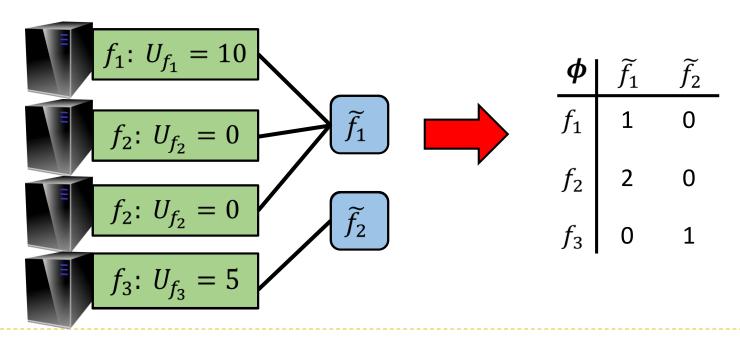
- ▶ Know true configuration (TC) *f*
- Need to decides observed configuration (OC) \tilde{f}
- Systems with same TC are indifferent to the defender

 $N_f = Number of systems having <math>TC f \in F$



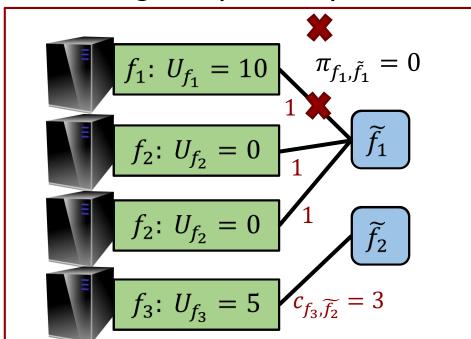
Cyber Deception Game: Defender

- lacktriangle Deception strategy encoded via integer matrix ϕ
 - $\phi_{f,\tilde{f}}$ = number of systems with TC f and OC \tilde{f}



Cyber Deception Game: Defender

- lacktriangle Deception strategy encoded via integer matrix ϕ
 - $\phi_{f,\tilde{f}}$ = number of systems with TC f and OC \tilde{f}
 - TC f may not be masked with OC \tilde{f} $(\pi_{f,\tilde{f}}=0)$
 - Showing deceptive responses incur costs $c(f, \tilde{f})$; budget B



B = 5

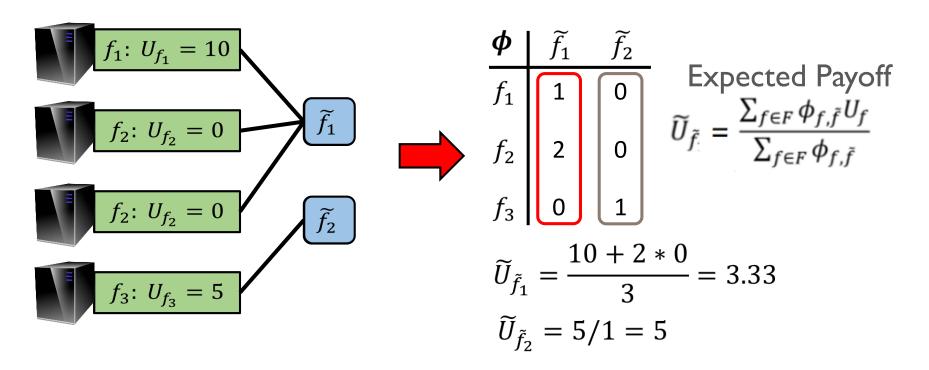
Cyber Deception Game: Attacker

- Can observe OC of each system
- Cannot differentiate systems with same OC
- Uniformly randomly attacks systems with <u>most</u>
 <u>attractive</u> OC

How much does the attacker know about the deception?

Cyber Deception Game: Attacker

- lacktriangle Powerful attacker: Knows deception strategy ϕ
 - Computes expected payoff for all OCs and best-responds
 - Robust assumption to minimize worst-case loss



Cyber Deception Game: Attacker

- lacktriangle Powerful attacker: Knows deception strategy ϕ
 - Computes expected payoff for all OCs and best-responds
 - Robust assumption to minimize worst-case loss
- ▶ Naive attacker: Not aware of deception
 - Believe what they observe
 - Preset preferences (utilities) for attacking OCs

Quiz

With powerful attacker, when there are no budget constraint and feasibility constraint, what is the optimal defender strategy?

Quiz

With powerful attacker, when there are no budget constraint and feasibility constraint, what is the optimal defender strategy?

▶ Trivial case (no constraints): assign to same OC

Against Powerful Attacker

- lacktriangle Powerful attacker: Knows deception strategy ϕ
 - Computes expected payoff for all OCs and best-responds
 - Robust assumption to minimize worst-case loss
- When some masking infeasible or budget limited

<u>Theorem</u>: NP-hard to compute optimal strategy for defender against powerful adversary.

- Proven via reduction to Partition problem
- NP-hard even with just feasibility or just budget constraint

Against Powerful Attacker

Solve through mathematical programming

$$\min_{u,\phi} \ u$$

$$s.t. \ u \geq \underbrace{\frac{\sum_{f \in F} \phi_{f,\tilde{f}} U_f}{\sum_{f \in F} \phi_{f,\tilde{f}}}}_{S.f. \int_{\tilde{f}} F} \quad \forall \tilde{f} \in \tilde{F} \quad \text{Expected Utility for attacking } \tilde{f}$$

$$\sum_{f \in F} \phi_{f,\tilde{f}} = N_f$$

$$\sum_{f \in F} \phi_{f,\tilde{f}} = N_f$$

$$\sum_{f \in F} \phi_{f,\tilde{f}} = N_f$$

$$\phi_{f,\tilde{f}} \leq \pi_{f,\tilde{f}}$$

$$\phi_{f,\tilde{f}} \in \mathbb{Z}_{\geq 0}$$

$$\sum_{f \in F} \sum_{f \in F} \phi_{f,\tilde{f}} c_{f,\tilde{f}} \leq B$$
Budget Constraint

74

Against Powerful Attacker

- Solve through mathematical programming
- Reformulate to MILP: Guaranteed to find optimal solution
 - Remove the non-linear constraint
 - Adds $|K||\tilde{F}|$ auxiliary variables
 - Adds $4|K||\tilde{F}|$ additional constraints
- Approximation algorithm: Solve sequential MILPs
- Heuristic algorithm: Greedy MiniMax (GMM)
 - A fast heuristic which greedily minimizes attacker utility

Against Naïve Attacker

- Naive attacker: Not aware of deception
 - Simply believes OCs (or just not reasoning about the actual TC→OC mapping strategy used by the defender)
 - Preset preferences (utilities) for attacking OCs
- When no budget constraints; but just the feasibility constraints

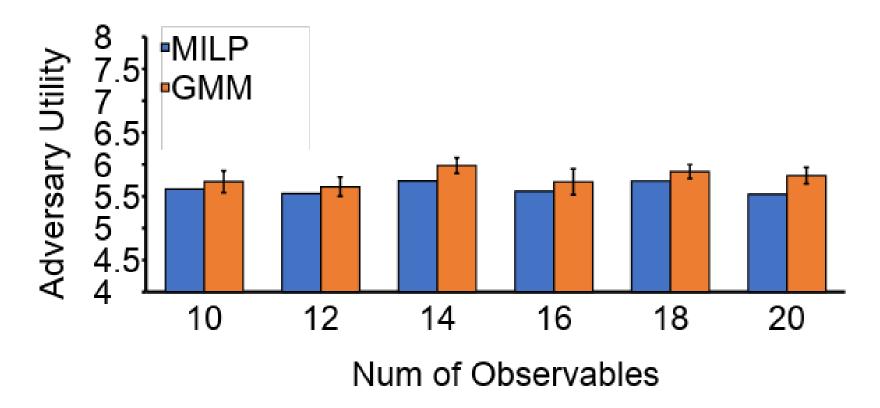
Theorem: can be solved in $O(|F||\tilde{F}|)$ time

When both budget and feasibility constraints present

<u>Theorem</u>: NP-hard to compute optimal strategy for defender against naïve adversary.

Simulation Results

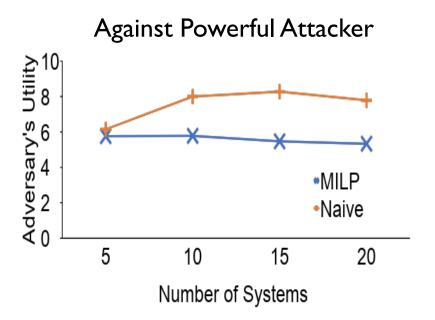
- ▶ 20 TCs, 20 Systems
- Attacker Utility = 10 without deception

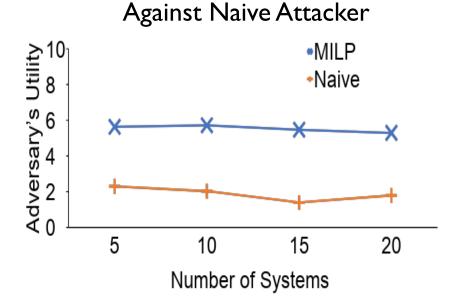


77 5/20/2019

Simulation Results

Attacker model and belief of attacker model matters





78 5/20/2019

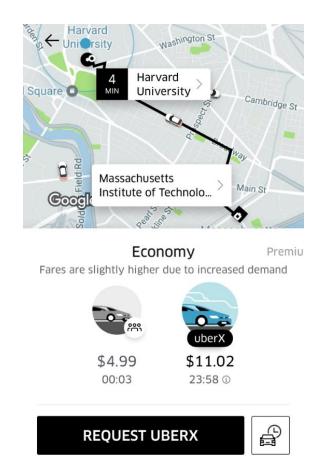
Outline

- Game-Theoretic Reasoning and Its Applications
 - Wildlife Conservation
 - Cyber Security
 - Ridesharing
- ▶ End-to-End Learning and Decision Making in Games
 - A differentiable learning framework for learning game parameters
- Learning-Powered Strategy Computation in Large Scale Games
 - Leveraging Deep Reinforcement Learning

79 5/20/2019

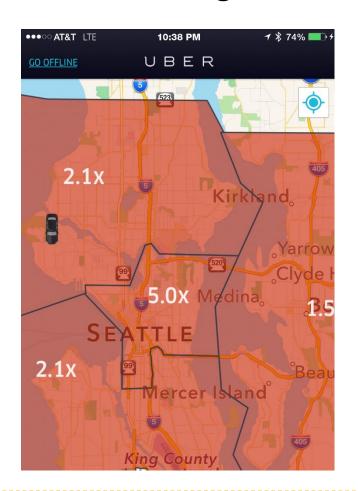
Evolution of Surge Pricing

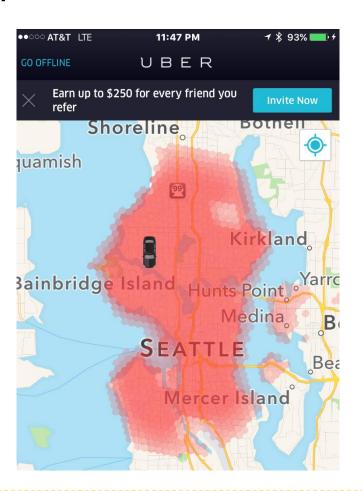
Surge price interface



Evolution of Surge Pricing

Coarse → Fine grained in space

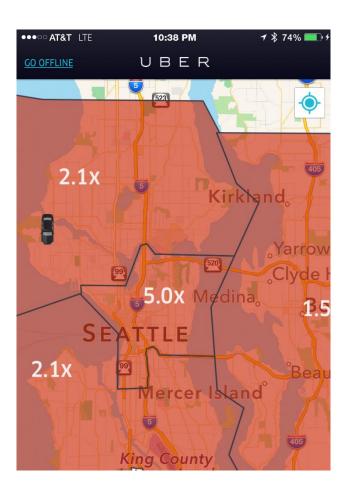




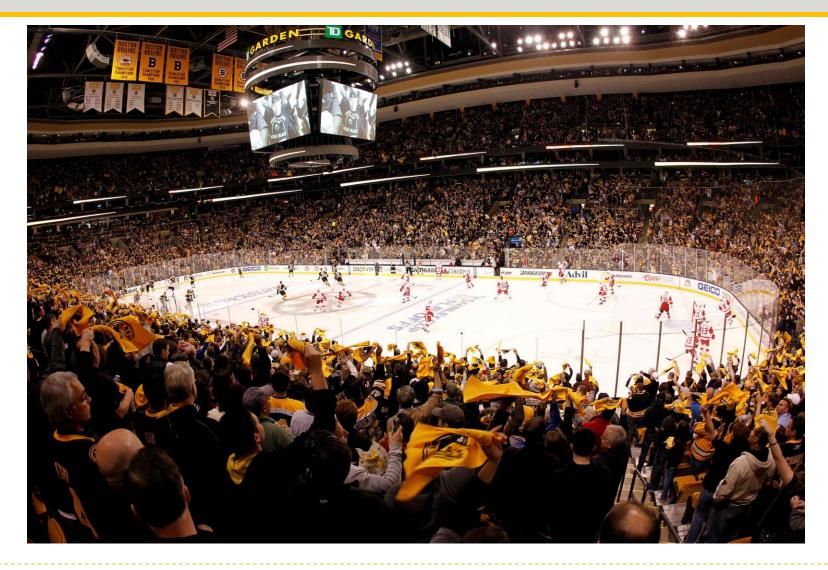
Quiz

What are the potential strategic behavior of a driver (with old or new interface)?

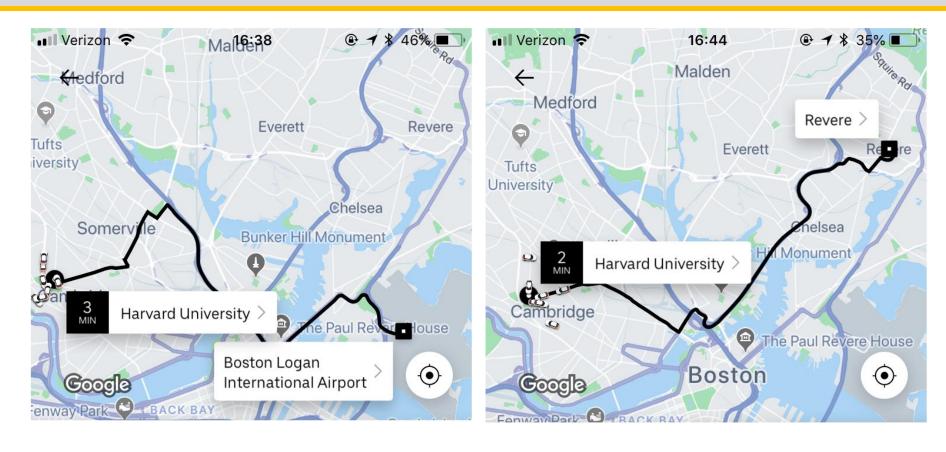
Market Failure - I



Market Failure - 2



Market Failure - 3



Bad draw dispatches: "after accepting, drivers are able to contact the rider. Some may [] learn [the] destination [] and canceling if [] the trip will not be worth the time."

Competitive Equilibrium

- Competitive Equilibrium (CE)
 - Also called Walrasian equilibrium
 - Traditional concept in economics
 - Commodity markets with flexible prices and many traders

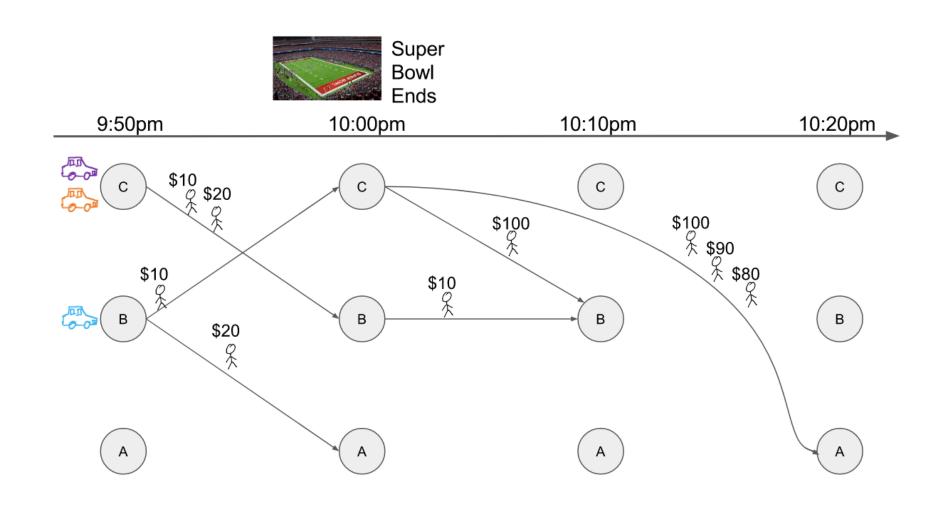
Competitive Equilibrium

- A very simple setting
 - A set of items $[n] = \{1, 2, ... n\}$
 - A set of buyers $[m] = \{1, 2, ..., m\}$
 - Each buyer i has a valuation for each item j: v_{ij}
 - Given a price vector $p \in \mathbb{R}^n$, agent i's utility is: $u_i(x;p) = v_i \cdot x p \cdot x$ where $x \in \{0,1\}^n$ indicates which items the agent gets
 - Each agent can get at most one item

Competitive Equilibrium

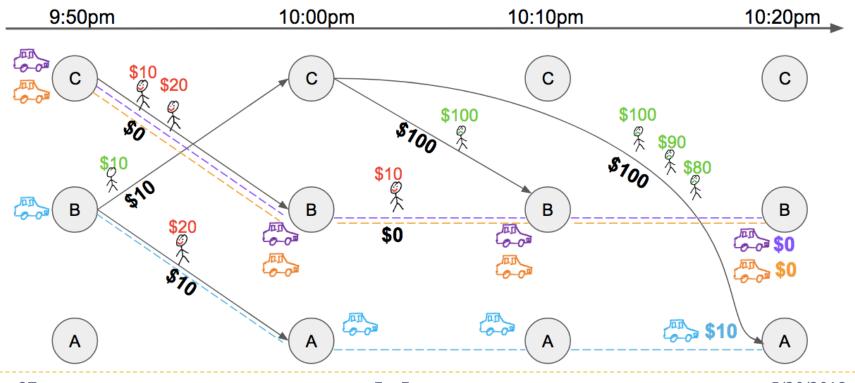
- A CE consists of:
 - A price vector $p \in \mathbb{R}^n_+$
 - A valid allocation matrix x
 - $x_{ij} \in \{0,1\}$ indicates whether or not item j is allocated to agent i
 - ▶ Each item is allocated at most once $\sum_i x_{ij} \leq 1$, $\forall j$
 - ▶ Each buyer can get at most one item $\sum_{i} x_{ij} \leq 1$, $\forall i$
 - Use x_i to denote the binary vector for agent i
 - $\triangleright p$ and x satisfy the following constraints
 - Best response
 - $\square x_i \in \underset{x:x \in \{0,1\}^n, \sum_j x_j \le 1}{\operatorname{argmax}} u_i(x;p), \forall i$
 - Market clearance
 - $\Box \forall j, \sum_i x_{ij} = 1 \text{ or } p_i = 0$

Super Bowl Example



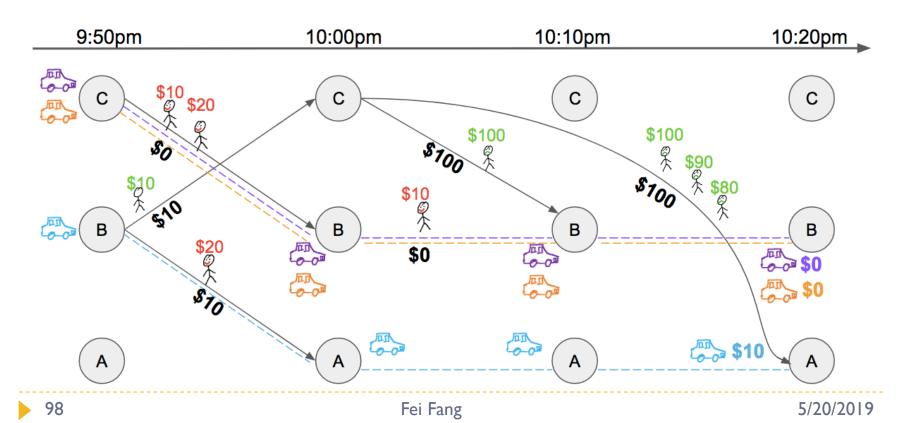
Myopic Pricing

- \blacktriangleright At current time t, each location has a sub-market
- Allocate cars to the riders with highest valuations
- Driver-pessimal price shown in black



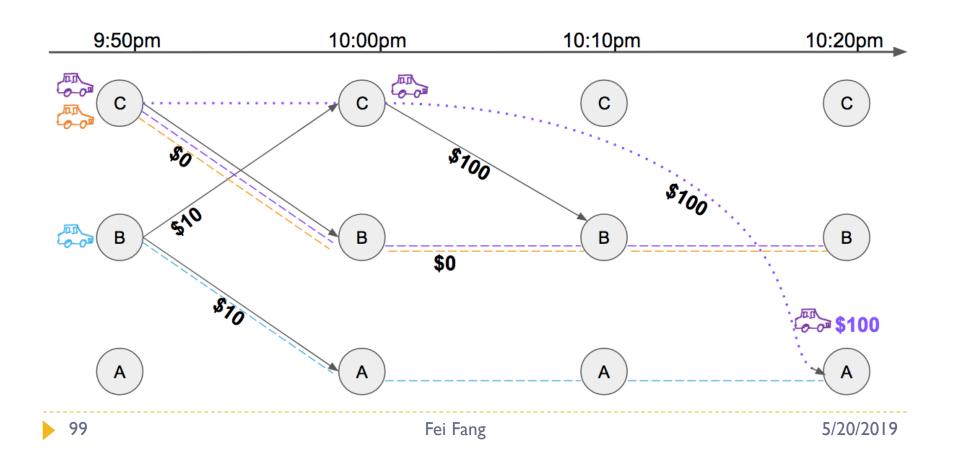
Quiz

With Myopic Pricing, at most, how much more can the purple driver earn if he deviates from the system's assignment and all other drivers always follow the system's assignment? (Options: \$100, \$90, \$80, \$0)



Useful Deviation

 Purple driver rejects the assigned ride at 9:50am to earn more money



Spatial-Temporal Pricing

- Model: Discrete time/location, Impatient riders,
 Anonymous origin-destination trip price
- One-shot assignment
 - Assignment plan: Decompose a min-cost flow
 - Pricing: Dual of flow LP
 - Form competitive equilibrium (CE)
 - Welfare optimal
 - Maximize total payment for each driver
 - Maximize utility for each rider
 - Envy free
 - ▶ All feasible driver payments in CE form a lattice

ILP for Computing Optimal Assignment Plan

$$\begin{aligned} \max_{x,y} & \sum_{j \in \mathcal{R}} x_j v_j - \sum_{i \in \mathcal{D}} \sum_{k=0}^{|\mathcal{Z}_i|} y_{i,k} \lambda_{i,k} \\ \text{S.t.} & \sum_{j \in \mathcal{R}} x_j \mathbb{1}\{(o_j, d_j, \tau_j) = (a, b, t)\} \leq \sum_{i \in \mathcal{D}} \sum_{k=0}^{|\mathcal{Z}_i|} y_{i,k} \mathbb{1}\{(a, b, t) \in Z_{i,k}\}, & p_{a,b,t} & \forall (a, b, t) \in \mathcal{T} \\ \sum_{k=0}^{|\mathcal{Z}_i|} y_{i,k} = 1, & \pi_i & \text{LP Relaxation} & \forall i \in \mathcal{D} \\ \hline \frac{x_j \in \{0, 1\},}{y_{i,k} \in \{0, 1\}} & x_j \leq 1 & u_j & \forall j \in \mathcal{R} \\ \hline y_{i,k} \geq 0 & \forall i \in \mathcal{D}, & k = 1, \dots, |\mathcal{Z}_i| \end{aligned}$$

102

Dual Problem to Compute CE Pricing

$$\begin{aligned} & \min & \sum_{i \in \mathcal{D}} \pi_i + \sum_{j \in \mathcal{R}} u_j \\ & \text{s.t. } \pi_i \geq \sum_{(a,b,t) \in Z_{i,k}} p_{a,b,t} - \lambda_{i,k} & \forall k = 0, 1, \dots, |\mathcal{Z}_i|, \ \forall i \in \mathcal{D} \\ & u_j \geq v_j - p_{o_j,d_j,\tau_j}, & \forall j \in \mathcal{R} \\ & p_{a,b,t} \geq 0, & \forall (a,b,t) \in \mathcal{T} \\ & u_j \geq 0, & \forall j \in \mathcal{R} \end{aligned}$$

Spatial-Temporal Pricing

However...Drivers can deviate and trigger recomputation!

- Solution: Driver-Pessimal CE
 - Trip price = welfare gain difference

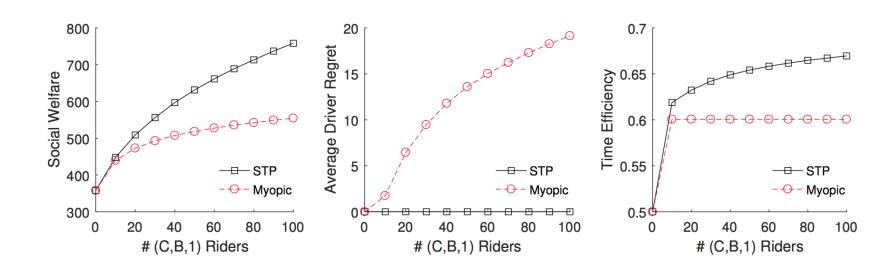
$$p_{a,b,t} = \Phi_{a,t} - \Phi_{b,t+dist(a,b)}$$

$$\Phi_{a,t} \triangleq W(D \cup \{(t,T,a)\}, R) - W(D,R)$$

- Incentive compatible subgame perfect equilibrium
- No driver want to deviate from assigned action!

Spatial-Temporal Pricing

▶ SPT vs Naïve surge



Outline

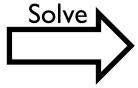
- Game-Theoretic Reasoning and Its Applications
 - Wildlife Conservation
 - Cyber Security
 - Ridesharing
- ▶ End-to-End Learning and Decision Making in Games
 - A differentiable learning framework for learning game parameters
- Learning-Powered Strategy Computation in Large Scale Games
 - Leveraging Deep Reinforcement Learning

What game are we/they playing?

- Common criticism: game parameters are fully known
 - ▶ E.g. target importance
- How to learn parameters of 2-player zero sum games from opponents' or players' actions?

Forward Problem: Game Solving

		3	
	0	-1	1
23	1	0	-1
	-1	1	0



Equilibrium strategies
$$u^* = v^* = \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$$

Inverse Problem: Game Learning

	W3	
?	?	?
?	?	?
?	?	?

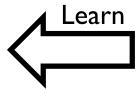
i.i.d samples from equilibrium strategies

$$a^{(1)} = (\circlearrowleft,))$$

Learn
$$a^{(2)} = (3, 3)$$
 $a^{(3)} = (3, 3)$

Differentiable Learning

		23	
	0	$-b_1$	$-b_2$
23	b_1	0	$-b_3$
	$-b_1$	b_3	0



i.i.d samples from Learn equilibrium strategies

$$a^{(3)}=(\varnothing, \circlearrowleft)$$

- Guess the value of b_i
- Compute equilibrium of guessed game
- ▶ Check if the computed equilibrium consistent with data
- \blacktriangleright Adjust the value of b_i to increase consistency
- Repeat until satisfied

$$\rightarrow$$
 Update $b_i := b_i - \frac{\partial L}{\partial b_i}$

NE and QRE in Zero-Sum Games

Recall LP for computing NE $\min_{u,x} x$ s.t. $x \ge \sum_i u_i P_{ij}$, $\forall j$ $\sum_i u_i = 1, u_i \ge 0, \forall i$

Nash Equilibrium

- Assumes perfect rationality
- May have multiple equilibria
- Discontinuous w.r.t. P

$$\min_{u} \max_{v} u^{T} P v$$
s.t.
$$1^{T} u = 1, u \ge 0$$

$$1^{T} v = 1, v \ge 0$$

Recall Quantal Response $q_{j} = \frac{e^{\lambda * \text{AttEU}_{j}(x)}}{\sum_{i} e^{\lambda * \text{AttEU}_{i}(x)}}$

Quantal Response Equilibrium

- Captures bounded rationality
- Unique
- Continuous w.r.t. P

$$\min_{u} \max_{v} u^T P v - \sum_{i} v_i \log v_i + \sum_{i} u_i \log u_i$$

s.t.

$$1^T u = 1, u \ge 0$$

 $1^T v = 1, v \ge 0$

$$u_i^* = \frac{\exp(Pv)_i}{\sum_q \exp(Pv)_q}, v_j^* = \frac{\exp(P^Tu)_j}{\sum_q \exp(P^Tu)_q}$$

Learning of normal form games

QRE = solution of min-max convex-concave problem

$$\min_{u} \max_{v} u^{T} P v - \sum_{i} v_{i} \log v_{i} + \sum_{i} u_{i} \log u_{i}$$

$$1^{T} u = 1, 1^{T} v = 1$$

KKT conditions:

$$Pv + \log(u) + 1 + \mu 1 = 0$$

 $P^{T}u - \log(v) - 1 + \nu 1 = 0$
 $1^{T}u = 1, 1^{T}v = 1$

Recall: Newton's Method for I-D:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Generally, for nonlinear system

$$J_F(x_n)(x_{n+1} - x_n) = -F(x_n)$$

Forward pass: Apply Newton's Method

$$\begin{bmatrix} diag(\frac{1}{u}) & P & & \\ P^{T} & -diag(\frac{1}{v}) & 0 & 1 \\ 1^{T} & 0 & 0 & 0 \\ 0 & 1^{T} & 0 \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta v \\ \Delta \mu \\ \Delta v \end{bmatrix} = - \begin{bmatrix} Pv + \log(u) + 1 + \mu 1 \\ P^{T}u - \log(v) - 1 + \nu 1 \\ 1^{T}u - 1 \\ 1^{T}v - 1 \end{bmatrix}$$

Learning of normal form games

where

▶ Backward pass: Gradients of P may be obtained via the implicit function theorem

here
$$\begin{bmatrix} y_u \\ y_v \\ y_\mu \\ y_\nu \end{bmatrix} = \begin{bmatrix} \operatorname{diag}(\frac{1}{u}) & P & 1 & 0 \\ P^T & -\operatorname{diag}(\frac{1}{v}) & 0 & 1 \\ 1^T & 0 & 0 & 0 \\ 0 & 1^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} -\nabla_u L \\ -\nabla_v L \\ 0 \\ 0 \end{bmatrix}$$

Learning in the presence of features

		W3	
	0	$-b_1(x)$	$b_2(x)$
23	$b_1(x)$	0	$-b_3(x)$
	$-b_2(x)$	$b_3(x)$	0

i.i.d samples from equilibrium strategies

$$a^{(1)} = (\circlearrowleft,))$$

$$a^{(3)}=(\varnothing, \circlearrowleft)$$

...

Context

$$x^{(1)} = [0.1, 0.5]$$

$$x^{(2)} = [0.3, 0.7]$$

. . .

Learning in the presence of features

- ▶ Figure out which features attract/discourage attackers
 - Better understand attacker's interests
 - Design better configurations which favor defenders
- Predict each player's mixed strategy given an new environment
 - In practice, environment is changing over time

Learning in the presence of features

▶ Context (feature) $x^{(i)}$ and payoff matrix $P_{\Phi}(x^{(i)})$, parameterized by Φ

• Each player acts according to a mixed strategy (u, v) given by the QRE of $P_{\Phi}(x^{(i)})$, giving realizations $a^{(i)}$

▶ Objective: Learn Φ from $\{x^{(i)}, a^{(i)}\}$

End-to-end learning

Algorithm 1: Learning parameters Φ using SGD

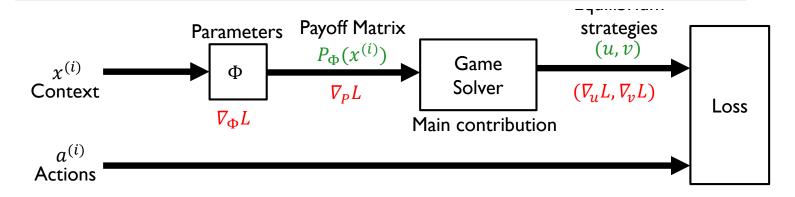
```
Input: training data \{(x^{(i)}, a^{(i)})\}, learning rate \eta, \Phi_{\text{init}} for ep in \{0, \ldots, ep_{max}\} do

Sample (x^{(i)}, a^{(i)}) from training data;

Forward pass: Compute P_{\Phi}(x^{(i)}), QRE (u, v) and loss L(a^{(i)}, u, v);

Backward pass: Compute gradients \nabla_u L, \nabla_v L, \nabla_P L, \nabla_{\Phi} L;

Update parameters: \Phi \leftarrow \Phi - \eta \nabla_{\Phi} L;
```



Extensive form Games

- Let (u, v) be strategies in sequence form
- Equilibrium is expressed as solution using dilated entropy regularization (Equivalent to solving QRE for the reduced normal form)

$$\min_{u} \max_{v} u^{T} P v - \sum_{i} \sum_{a} v_{a} \log(\frac{v_{a}}{v_{p_{i}}}) + \sum_{i} \sum_{a} u_{a} \log(\frac{u_{a}}{u_{p_{i}}})$$

$$Eu = e, Fv = f$$

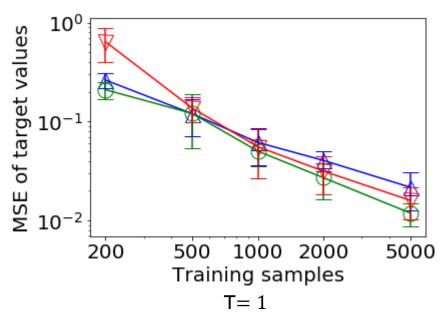
$$\nabla_P L = y_u v^T + u y_v^T,$$
 where
$$\begin{bmatrix} y_u \\ y_v \\ y_\mu \\ y_\nu \end{bmatrix} = \begin{bmatrix} -\Xi(u) & P & E^T & 0 \\ P^T & \Xi(v) & 0 & F^T \\ E & 0 & 0 & 0 \\ 0 & F & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} -\nabla_u L \\ -\nabla_v L \\ 0 \\ 0 \end{bmatrix}$$

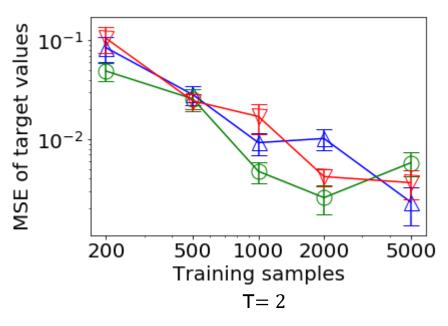
Resource Allocation Security Game

- ▶ Defender: r resources, n targets
 - Can allocate multiple resources to one target
- Attacker choose a target to attack
- Each target has value R_i
- If target i is protected by x resources and is attacked: $U_a = \frac{R_i}{2^x} = -U_d$
- Attacker may learn R_i from observed defender actions
- ▶ Extend to *T*-stage game

122

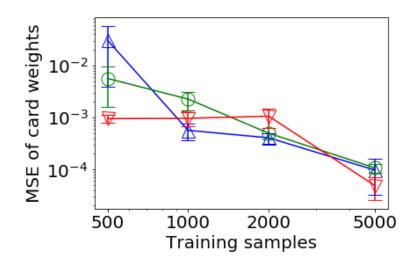
Resource Allocation Security Game

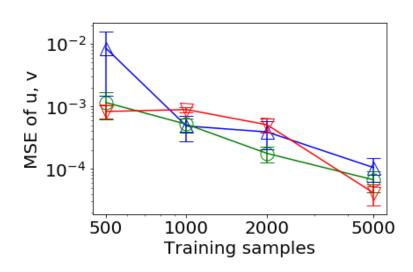




One-Card Poker

- Learn players' belief of card distribution
- Variant of Kuhn Poker with 4 cards, with non-uniform card distributions
- Observe actions of each player (e.g. raise, fold)
- Probabilities for chance nodes are embedded in P_{Φ}

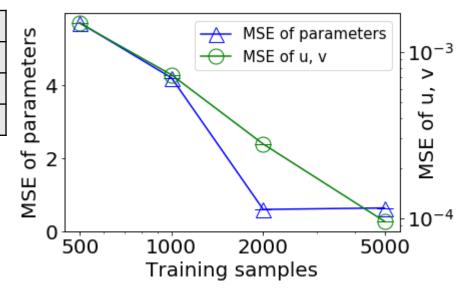




Featurized Rock Paper Scissors

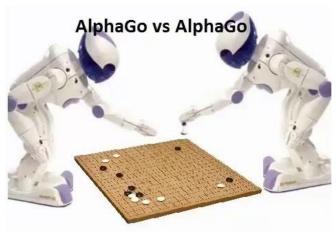
		R	Р	S
_	R	0	$-b_1$	b_2
P =	Р	b_1	0	$-b_{3}$
	S	$-b_2$	b_3	0

$$b = \Phi x$$
,
 $x \in [0, 1]^2$
 $\Phi \in [0, 10]^{3 \times 2}$
Objective is to
learn Φ



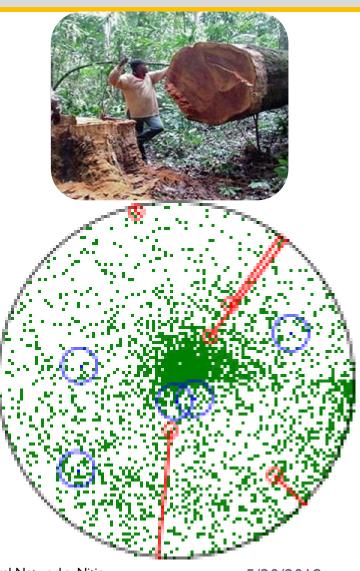
Outline

- Game-Theoretic Reasoning and Its Applications
 - Wildlife Conservation
 - Cyber Security
 - Ridesharing
- End-to-End Learning and Decision Making in Games
 - A differentiable learning framework for learning game parameters
- Learning-Powered Strategy Computation in Large Scale Games
 - Leveraging Deep Reinforcement Learning

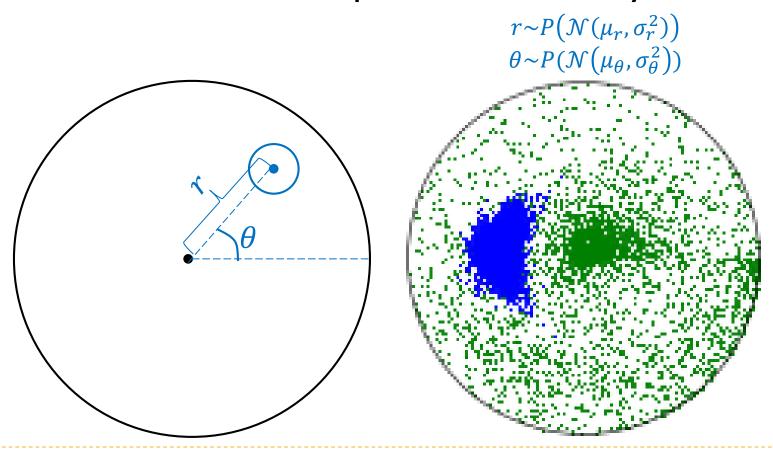


https://www.youtube.com/watch?v=Ue4A2Y_i3ZQ

- Green dots: Valuable trees
- Blue dots: Defender location
- Red dots: Logging locations
- Zero-sum game
- Goal: Find defender strategy or defender policy

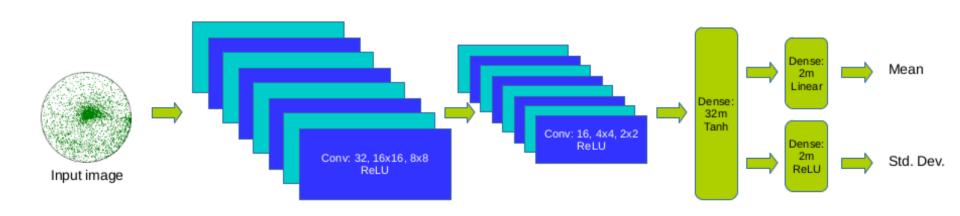


Key idea 1: Represent mixed strategy using logit normal distribution in polar coordinate system

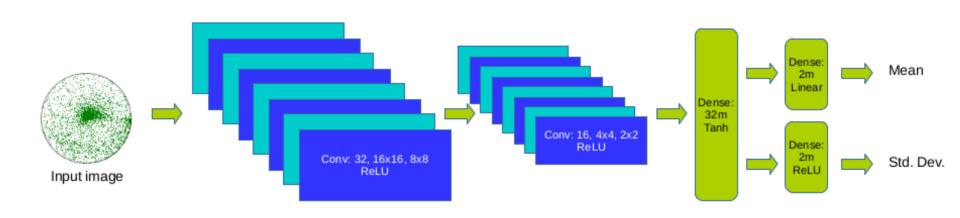


32 5/20/2019

- Key idea 2: Represent a "policy" with Convolutional Neural Network
 - Policy: mapping from game setting to strategy
 - ▶ CNN:Tree Distribution \rightarrow Mean/Std of r and θ



- Key idea 3:Approximate Fictitious Play
 - Fictitious Play: Best responds to opponent's average strategy
 - Average strategy → Random samples from history
 - ▶ Best response → Update neural network



Put them together

Algorithm 1: OptGradFP

Initialization. Initialize policy parameters w_D and w_O , replay memory mem;

for ep in $\{0, \ldots, ep_{max}\}$ do

Simulate n_s game play. Sample game setting and actions from current policy π_D and π_O n_s times, save in mem;

Replay for defender. Draw n_b samples from mem, resample defender action from current policy π_D ;

Update parameter for defender. Update defender policy parameter

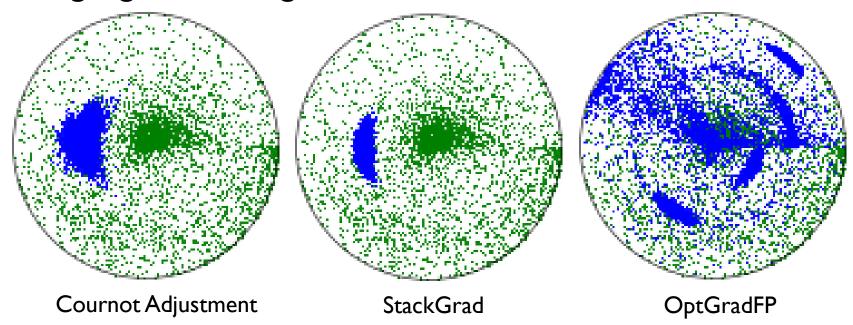
$$\mathbf{w}_D := \mathbf{w}_D + \frac{\alpha_D}{1 + e p \beta_D} * \nabla_{\mathbf{w}_D} J_D;$$

Replay for attacker. Draw n_b samples from mem, resample attacker action from current policy π_O ;

Update parameter for attacker. Update attacker policy parameter

$$\mathbf{w_O} := \mathbf{w_O} + \frac{\alpha_O}{1 + e_D \beta_O} * \nabla_{\mathbf{w_O}} J_O$$

Single game setting



- Multiple game setting
 - Train on 1000 forest states, predict on unseen forest state
 - > 7 days for training, Prediction time 90 ms
 - Shift computation from online to offline

More Complex Games: Patrol with Real-Time Information

- Sequential interaction
 - Players make flexible decisions instead of sticking to a plan
 - Players may leave traces as they take actions
- ▶ Example domain: Wildlife protection

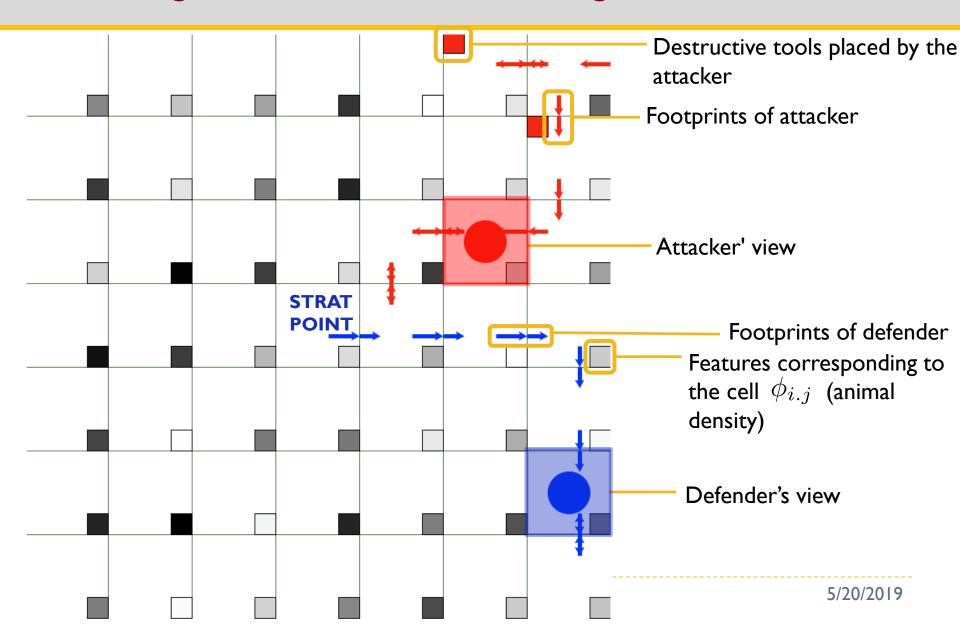
Footprints

Lighters

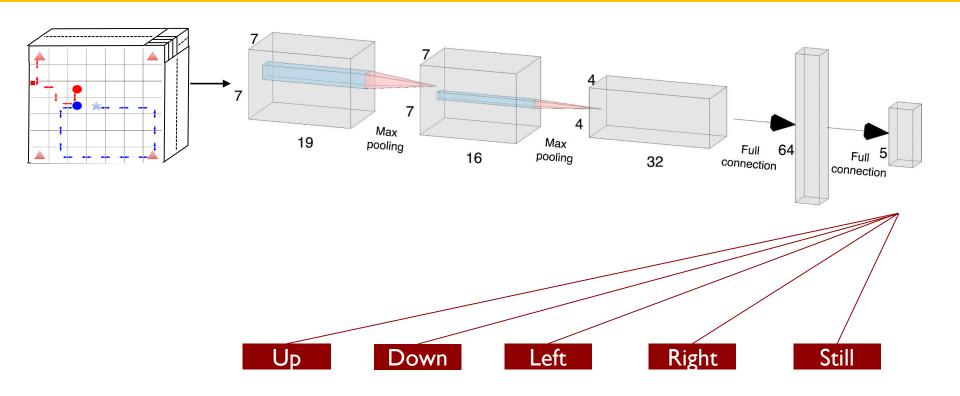
Old poacher camp

Tree marking

Multi-Agent Reinforcement Learning

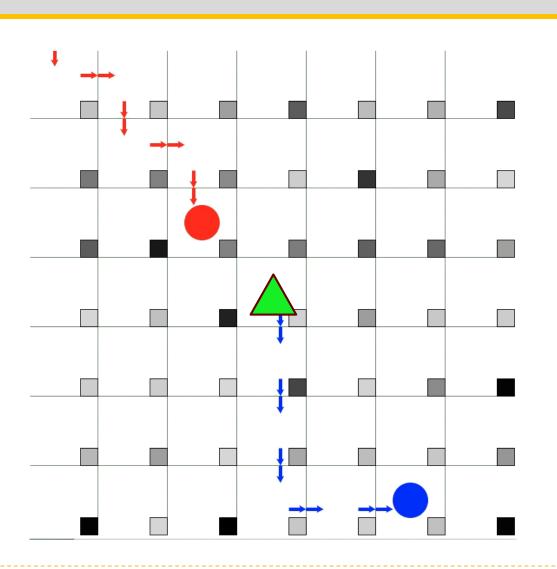


Compute Best Response by Training a Deep Q-Network



- ▶ Q Network: Game state → Q-value
- Use Deep Reinforcement learning to train the network and find optimal patrol policy (assuming fixed attacker)

Compute Best Response by Training a Deep Q-Network



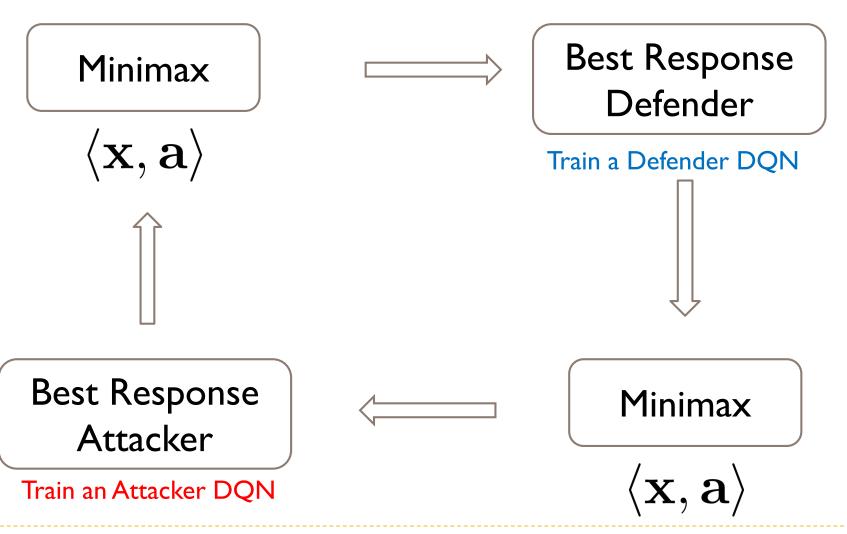
DQN Defender vs Non-Adaptive Attacker

Attacker Snares

Start from one of the corners

Start from Patrol Base

Compute Equilibrium: DQN + Double Oracle



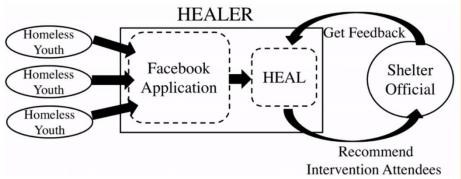
41 5/20/2019

Al and Social Good

Al research that can deliver societal benefits now and in the near future

http://mashable.com/2015/02/06/hiv-homeless-teens-algorithm/#..k9dRKhxagm

https://www.pastemagazine.com/articles/2017/04/a-new-smart-technology-will-help-cities-drasticall.html



Summary

- Game-Theoretic Reasoning and Its Applications
 - Wildlife Conservation, Cyber Security, Ridesharing
- End-to-End Learning and Decision Making in Games
- Learning-Powered Strategy Computation in Large Scale Games

Thank you!

Fei Fang
Carnegie Mellon University
feifang@cmu.edu