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Security Challenges
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Lack of Security Resources



Sustainability Challenges

Today ≈ 3,200 tigers

100 years ago ≈ 60,000 tigers
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Lack of Ranger/Conservation Resources



Mobility Challenges
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Inefficiencies in Matching/Dispatching



Societal Challenges
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Security & Safety

Environmental 

Sustainability

Mobility



Integrate Learning with Game Theory 
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Artificial Intelligence

Machine Learning /

Reinforcement Learning

Computational

Game Theory
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Protecting Staten Island Ferry
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Protecting Staten Island Ferry
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Protecting Staten Island Ferry
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Previous USCG Approach
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Protecting Staten Island Ferry

8/13/201912 In collaboration with US Coast Guard (Contact: Joe Direnzo, Craig Baldwin)



Problem

Optimal Patrol Strategy for Protecting Moving Targets with Multiple Mobile Resources

Fei Fang, Albert Xin Jiang, Milind Tambe

In AAMAS-13: The Twelfth International Conference on Autonomous Agents and Multiagent Systems, May 2013
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Game Model and Linear Programming-based Solution

 Stackelberg game: Leader – Defender, Follower – Attacker

 Attacker’s payoff: 𝑢𝑖(𝑡) if not protected, 0 otherwise

 Zero-sum → Strong Stackelberg Equilibrium=Nash Equilibrium 

=Minimax (Minimize Attacker’s Maximum Expected Utility)
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min
𝑝𝑟,𝑣
𝑣

s.t. 𝑣 ≥ 𝔼[𝑈𝑎𝑡𝑡(𝑖, 𝑡)] = 𝑢𝑖 𝑡 × ℙ[𝑢𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑(𝑖, 𝑡)], ∀𝑖, 𝑡

𝑝𝑟



Advanced Solution

 Flow-based Representation + Critical Time Points

min
𝑓
𝑣

s.t. 𝑒∈ 𝑖,𝑡 → 𝑓(𝑒) =  𝑒∈→ 𝑖,𝑡 𝑓(𝑒)

 
𝑒∈ ∗,𝑡 →

𝑓(𝑒) = 1

𝑣 ≥ 𝔼[𝑈𝑎𝑡𝑡(𝑖, 𝑡)], ∀𝑖, Best response

Prob. flow over feasible edges
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A, 10 minA, 0 min A, 20 min

B, 10 minB, 0 min B, 20 min

C, 10 minC, 0 min C, 20 min
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𝑓 is a unit flow

∀𝑡 ∈ {𝑡∗}



Evaluation: Simulation & Real-World Feedback

 Deployed by US Coast Guard

 USCG evaluation

 Point defense to zone defense

 Increased randomness

 Professional mariners:

 Apparent increase in Coast 

Guard patrols

8/13/201916/64
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Reduce potential risk by 50%



Outline

 Security games

 Integrating learning and game theory

 Data-based game theoretic reasoning

 Learning-powered equilibrium computation

 End-to-end learning in games

 Summary

8/13/201917



Repeated and Frequent Poaching Activities
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Learn Poacher Behavior Model from Real-World Data
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12yr of poaching data 

from Queen Elizabeth 

National Park in Uganda
Prob. of snaring or

Prob. of detection

With Uganda Wildlife Authority and Wildlife Conservation Society



Learn Poacher Behavior Model from Real-World Data

8/13/201920

1km×1km grid

Collaborators: Uganda Wildlife Authority and Wildlife Conservation Society

Features



Learn Poacher Behavior Model from Real-World Data
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+: Has Poaching

−: No Poaching

Labels

Taking it for a Test Drive: A Hybrid Spatio-temporal Model for Wildlife Poaching Prediction Evaluated through a Controlled Field 

Test. Shahrzad Gholami, Benjamin Ford, Fei Fang, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey

Rwetsiba, Mustapha Nsubaga, Joshua Mabonga. In ECML-PKDD 2017



Learn Poacher Behavior Model from Real-World Data

Markov Random Fields Bagging of Decision Trees

C

C1 C2 Cn

Taking it for a Test Drive: A Hybrid Spatio-temporal Model for Wildlife Poaching Prediction Evaluated through a Controlled Field 

Test. Shahrzad Gholami, Benjamin Ford, Fei Fang, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey

Rwetsiba, Mustapha Nsubaga, Joshua Mabonga. In ECML-PKDD 2017
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Historical Base

Hit Rate

Our Hit 

Rate

Average: 0.73 3

1 Month Field Test

 Two 9-sq. km areas

 Infrequent patrols

 Predicted hotspot

 Findings

 19 litter, ashes, etc.

 1 poached elephant

 1 active snare

 10 antelope snares

 1 roll of elephant snares

 Snaring hit rates

 Outperform 91% of 

historical months
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8 Month Field Test
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Experiment Group

 27 areas, 9-sq km each

 2 experiment groups

 High: 5 areas

 Low: 22 areas

 452 km patrolled in total

 Catch Per Unit Effort (CPUE)

 Unit Effort = km walked

 Historical CPUE: 0.03

 Can differentiate H/L threat 

areas



Further Enhancement

 Augment dataset based on experts’ knowledge

 Field Test in China

 Two-day field test in October 2017: 22 snares

 34 patrols from November 2017 to February 2018: 7 snares

8/13/201925 Exploiting Data and Human Knowledge for Predicting Wildlife Poaching. Swaminathan Gurumurthy, Lantao

Yu, Chenyan Zhang, Yongchao Jin, Weiping Li, Xiaodong Zhang, Fei Fang. In COMPASS-18



Where to 
place 

snares?

Where 
to 

patrol?

Machine Learning

Game Theoretic 

Reasoning

Machine Learning + Game Theoretic Reasoning
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Game Theoretic Reasoning Based on Learned Model

 Maximize  𝑖 𝑦𝑖
 Scheduling constraint

8/13/201927

For each cell 𝒊:

𝑦𝑖: Prob. of snaring 

or detection at 𝑖 in 

current period

𝑥𝑖 : Current patrol 

effort at 𝑖
𝑔𝑖

8 7

6 5 4

3 2 1

Patrol post

(one patroller) 

Machine Learning Model 



Game Theoretic Reasoning Based on Learned Model

8/13/201928

1, 10 min1, 0 min 1, 20 min

2, 10 min2, 0 min 2, 20 min

3, 10 min3, 0 min 3, 20 min

0.3

Ranger

0.3

Patrol post

max
𝑥𝑖
 

𝑖

𝑔𝑖(𝑥𝑖)

s.t. 𝑥𝑖 =  𝑡 𝑒∈ 𝑖,𝑡 →𝑓(𝑒)

𝑓 is a unit flow



Complex Terrain
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Model Terrain to Get Virtual Street Map

8/13/201930 Deploying PAWS: Field Optimization of the Protection Assistant for Wildlife Security

Fei Fang, Thanh H. Nguyen, Rob Pickles, Wai Y. Lam, Gopalasamy R. Clements, Bo An, Amandeep Singh, Milind Tambe, Andrew Lemieux

In IAAI-16: The Twenty-Eighth Annual Conference on Innovative Applications of Artificial Intelligence, February 2016



Field Test in Malaysia

 In collaboration with Panthera, Rimba

 Regular deployment since July 2015 (Malaysia)

8/13/201931/67



Real-World Deployment

Animal Footprint

Tiger Sign

Tree Mark

Lighter

Camping Sign
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Real-World Deployment
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PAWS: Protection Assistant for Wildlife Security

8/13/201934
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Learning Poacher 
Behavior

Game Theoretic 
Reasoning

Modeling Terrain

Deploying PAWS: Field Optimization of the Protection Assistant for Wildlife Security

Fei Fang, Thanh H. Nguyen, Rob Pickles, Wai Y. Lam, Gopalasamy R. Clements, Bo An, Amandeep Singh, Milind Tambe, Andrew Lemieux

In IAAI-16: The Twenty-Eighth Annual Conference on Innovative Applications of Artificial Intelligence, February 2016



Usable Software Tools
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https://github.com/AIandSocialGoodLab/PAWS

https://github.com/AIandSocialGoodLab/PAWS


Usable Software Tools
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https://github.com/AIandSocialGoodLab/PAWS

https://github.com/AIandSocialGoodLab/PAWS


Other Domains: Reduce Overfishing
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Fish Data Optimal Patrol Strategy
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Patrol with Real-Time Information

 Sequential interaction

 Players make flexible decisions instead of sticking to a plan

 Players may leave traces as they take actions

 Example domain: Wildlife protection

8/13/201939

Tree markingLighters Poacher campFootprints

Deep Reinforcement Learning for Green Security Games with Real-Time Information Yufei Wang, Zheyuan

Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, Fei Fang In AAAI-19



Patrol with Real-Time Information

8/13/201940

Defender’s view

Footprints of defender 

Destructive tools

Footprints of attacker

Attacker' view

Features

STRAT

POINT



DQN Defender Trained Against Heuristic Attacker

 Q Network: Game state → Q-value

8/13/201941

Up Down Left Right Still



DQN Defender Trained Against Heuristic Attacker

8/13/201942

Defender

Snares

Attacker

Patrol Post



Compute Equilibrium: DQN + Double Oracle

8/13/201943

Compute 𝜎𝑑 , 𝜎𝑎 =
𝑁𝑎𝑠ℎ(𝐺𝑑 , 𝐺𝑎)

Train 𝑓𝑑 = 𝐷𝑄𝑁(𝜎𝑎)

Find Best Response to 

defender’s strategy

Compute Nash/Minimax 

Train𝑓𝑎 = 𝐷𝑄𝑁(𝜎𝑎)

Find Best Response 

to attacker’s strategy

Add 𝑓𝑑 ,𝑓𝑎 to 

𝐺𝑑 , 𝐺𝑎

Update bags of strategies



Enhancements

 Use local modes for efficient and parallized training

 Start with domain-specific heuristic strategies

8/13/201944



Other Domains: Patrol in Continuous Area

8/13/201945

OptGradFP: CNN + Fictitious Play

DeepFP: Generative network + Fictitious Play

Policy Learning for Continuous Space Security Games using 

Neural Networks. Nitin Kamra, Umang Gupta, Fei Fang, 

Yan Liu, Milind Tambe. In AAAI-18

DeepFP for Finding Nash Equilibrium in Continuous 

Action Spaces. Nitin Kamra, Umang Gupta, Kai Wang, Fei 

Fang, Yan Liu, Milind Tambe. In GameSec-19



Other Domains: Multiple Agents

8/13/201946

MADDPG Minimax

Adversarial 

Learning Minimax 

MADDPG

(M3DDPG)≈+

MADDPG (red) vs 

M3DDPG (green)

MADDPG

Robust Multi-Agent Reinforcement Learning via Minimax Deep Deterministic Policy Gradient. Shihui

Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, Stuart Russell. In AAAI-19

Multiple Chasers vs Runners
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What game are we/they playing?

 Common criticism: game parameters are fully known 

 How to learn parameters of 2-player zero sum 

games from opponents’ or players’ actions?

48 What game are we playing? End-to-end learning in normal and extensive form games. Chun Kai Ling, Fei Fang, J. Zico 

Kolter. In IJCAI-ECAI-18

0 𝑏1 −𝑏2

−𝑏1 0 𝑏3

𝑏2 −𝑏3 0

i.i.d samples from 

equilibrium strategies

𝑎(1) =(       ,        )

𝑎(2) =(       ,        )

𝑎(3) =(       ,        )

Learn

8/13/2019



Differentiable Learning
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0 𝑏1 −𝑏2

−𝑏1 0 𝑏3

𝑏2 −𝑏3 0

i.i.d samples from 

equilibrium strategies

𝑎(1) =(       ,        )

𝑎(2) =(       ,        )

𝑎(3) =(       ,        )

Learn

 Guess the value of 𝑏𝑖
 Compute equilibrium of guessed game

 Check if the computed equilibrium consistent with data

 Adjust the value of 𝑏𝑖 to increase consistency (update 𝑏)
 Repeat until satisfied 𝑏𝑖: = 𝑏𝑖 −

𝜕𝐿

𝜕𝑏𝑖

Forward pass

Backward pass



Learning of normal form games

 QRE = solution of min-max convex-concave problem

 KKT conditions:

50

min
𝑢
max
𝑣
𝑢𝑇𝑃𝑣 − 

𝑖

𝑣𝑖 log 𝑣𝑖 + 

𝑖

𝑢𝑖 log 𝑢𝑖

s.t.

1𝑇𝑢 = 1
1𝑇𝑣 = 1

𝑃𝑣 + log 𝑢 + 1 + 𝜇1 = 0
𝑃𝑇𝑢 − log 𝑣 − 1 + 𝜈1 = 0
1𝑇𝑢 = 1, 1𝑇𝑣 = 1

8/13/2019



Learning of normal form games

 Forward pass: Apply Newton’s Method

 Backward pass: Implicit function theorem

8/13/201951

𝑑𝑖𝑎𝑔(
1

𝑢
) 𝑃

𝑃𝑇 −𝑑𝑖𝑎𝑔
1

𝑣

1𝑇 0
0 1𝑇

1 0
0 1
0 0
0 0

Δ𝑢
Δ𝑣
Δ𝜇
Δ𝜈

= −

𝑃𝑣 + log 𝑢 + 1 + 𝜇1

𝑃𝑇𝑢 − log 𝑣 − 1 + 𝜈1

1𝑇𝑢 − 1
1𝑇𝑣 − 1



0 −𝑏1(𝑥) 𝑏2(𝑥)

𝑏1(𝑥) 0 −𝑏3(𝑥)

−𝑏2(𝑥) 𝑏3(𝑥) 0

Learning in the presence of features

52

i.i.d samples from 

equilibrium strategies

𝑎(1) =(       ,        )

𝑎(2) =(       ,        )

𝑎(3) =(       ,        )

…
Context

𝑥(1) = [0.1, 0.5]
𝑥(2) = [0.3, 0.7]

…

Learn

8/13/2019



Context

Parameters

Φ𝑥(𝑖)
𝑃Φ(𝑥

(𝑖))

Payoff 

Matrix

Game 

Solver

(𝑢, 𝑣)

Equilibrium

strategies

Loss

𝑎(𝑖)

Actions

End-to-end learning

53

𝛻𝑃𝐿 (𝛻𝑢𝐿, 𝛻𝑣𝐿)
𝛻Φ𝐿

8/13/2019



Resource Allocation Security Game

 𝑛 = 2, 𝑟 = 5

54

T= 1 T= 2

8/13/2019



Extend to extensive form Games

 Equilibrium is expressed as solution using dilated 

entropy regularization

55

min
𝑢
max
𝑣
𝑢𝑇𝑃𝑣 − 

𝑖

 

𝑎

𝑣𝑎 log(
𝑣𝑎
𝑣𝑝𝑖
) + 

𝑖

 

𝑎

𝑢𝑎 log(
𝑢𝑎
𝑢𝑝𝑖
)

𝐸𝑢 = 𝑒, 𝐹𝑣 = 𝑓

8/13/2019



Improve Scalability using FOM

 Both the problem in the forward pass and backward 

pass can be converted into the following format

 This problem can be solved using various first-order 

iterative methods

8/13/201956

BR is smoothed best response

strictly convex functions

Large Scale Learning of Agent Rationality in Two-Player Zero-Sum Games. 

Chun Kai Ling, Fei Fang, Zico Kolter. In AAAI-19



Takeaway 1: AI Has Great Potential for Social Good

8/13/201957

Artificial 

Intelligence

Machine Learning / 

Reinforcement Learning

Computational 

Game Theory

Security & Safety

Environmental 

Sustainability
Mobility

Societal Challenges



Design Dispatching and Pricing Scheme in Ridesharing

8/13/201958

 Spatial-Temporal Pricing

 Two-Stage Dispatching

Spatio-Temporal Pricing for Ridesharing Platforms. Hongyao Ma, Fei Fang, David C. Parkes. In EC-19

Dynamic Trip-Vehicle Dispatch with Scheduled and On-Demand Requests. Taoan Huang, 

Bohui Fang, Xiaohui Bei, Fei Fang. In UAI-19



Takeaway 2: Ways to Integrate Learning and Game Theory

 Data-based game theoretic reasoning

 Learning-powered equilibrium computation

 End-to-end learning in games

 More?!

8/13/201959
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