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Abstract

Green Security Games (GSGs) have been proposed and ap-
plied to optimize patrols conducted by law enforcement agen-
cies in green security domains such as combating poach-
ing, illegal logging and overfishing. However, real-time in-
formation such as footprints and agents’ subsequent actions
upon receiving the information, e.g., rangers following the
footprints to chase the poacher, have been neglected in pre-
vious work. To fill the gap, we first propose a new game
model GSG-I which augments GSGs with sequential move-
ment and the vital element of real-time information. Second,
we design a novel deep reinforcement learning-based algo-
rithm, DeDOL, to compute a patrolling strategy that adapts to
the real-time information against a best-responding attacker.
DeDOL is built upon the double oracle framework and the
policy-space response oracle, solving a restricted game and
iteratively adding best response strategies to it through train-
ing deep Q-networks. Exploring the game structure, DeDOL
uses domain-specific heuristic strategies as initial strategies
and constructs several local modes for efficient and paral-
lelized training. To our knowledge, this is the first attempt
to use Deep Q-Learning for security games.

Introduction
Security games (Tambe 2011) have been used for address-
ing complex resource allocation and patrolling problems in
security and sustainability domains, with successful applica-
tions in critical infrastructure protection, security inspection
and traffic enforcement (Basilico, Gatti, and Amigoni 2009;
Durkota et al. 2015; Yin, An, and Jain 2014; Rosenfeld and
Kraus 2017). In particular, Green Security Games (GSG)
have been proposed to model the strategic interaction be-
tween law enforcement agencies (referred to as defenders)
and their opponents (referred to as attackers) in green se-
curity domains such as combating poaching, illegal log-
ging and overfishing. Mathematical programming based al-
gorithms are designed to compute the optimal defender
strategy, which prescribes strategically randomized patrol
routes for the defender (Fang, Stone, and Tambe 2015;
Fang et al. 2016; Xu et al. 2017).

Despite the efforts, a key element, real-time information,
which exists widely in practice in green security domains,
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has been neglected in previous game models, not to men-
tion the agents’ subsequent actions upon receiving the infor-
mation. For example, rangers can observe traces left by the
poacher (e.g., footprints, tree marks) or learn of poacher’s
location in real time from camera traps and conservation
drones. A well-trained ranger would make use of the real-
time information to adjust her patrol route. Indeed, stories
have been reported that rangers arrested the poachers af-
ter finding blood stains on the ground nearby (Maasailand
Preservation Trust 2011). Similarly, a poacher may also ob-
serve the ranger’s action in real time and adjust his attack
plan, and the rangers should be aware of such risk. Thus, the
prescribed patrol plans in previous work have limited appli-
cability in practice as they are not adaptive to observations
during the patrol.

Our paper aims at filling the gap. First, we propose a
new game model GSG-I which augments GSGs with the vi-
tal element of real-time information and allows players to
adjust their movements based on the received real-time in-
formation. These features lead to significant complexity, in-
evitably resulting in a large extensive-form game (EFG) with
imperfect information.

Second, we design a novel deep reinforcement learning
(DRL)-based algorithm, DeDOL (Deep-Q Network based
Double Oracle enhanced with Local modes), to compute a
patrolling strategy that adapts to the real-time information
for zero-sum GSG-I. DeDOL is among the first few attempts
to leverage advances in DRL for security games (Kamra et
al. 2018; Trejo, Clempner, and Poznyak 2016) and is the
first to use deep Q-learning for complex extensive-form se-
curity games. DeDOL builds upon the classic double ora-
cle framework (DO) (McMahan, Gordon, and Blum 2003;
Bosansky et al. 2013) which solves zero-sum games using
incremental strategy generation, and a meta-method named
policy-space response oracle (PSRO) (Lanctot et al. 2017)
which augments DO with RL to handle a long time horizon
in multi-agent interaction. Tailored towards GSG-I, DeDOL
uses a deep Q-network (DQN) to compactly represent a pure
strategy, integrates several recent advances in deep RL to
find an approximate best response, which is a key step in
the DO framework. Further, DeDOL uses domain-specific
heuristic strategies, including a parameterized random walk
strategy and a random sweeping strategy as initial strategies
to warm up the strategy generation process. In addition, ex-



Figure 1: The PSRO framework

ploring the game structure of GSG-I, DeDOL uses several
local modes, each corresponding to a specific entry point of
the attacker, to reduce the complexity of the game environ-
ment for efficient and parallelized training.

Finally, we provide extensive experimental results to
demonstrate the effectiveness of our algorithm in GSG-I.
We show that the DQN representation in DeDOL is able to
approximate the best response given a fixed opponent. In
small problems, we show that DeDOL achieves comparable
performance as existing approaches for EFGs such as coun-
terfactual regret (CFR) minimization. In large games where
CFR becomes intractable, DeDOL can find much better de-
fender strategies than other baseline strategies.

Preliminaries and Related Work
Stackelberg Security Games (SSG) and Green Security
Games GSGs are a special class of SSG (Tambe 2011;
Pita et al. 2008; Fang, Jiang, and Tambe 2013). In a
GSG (Fang, Stone, and Tambe 2015; Basak et al. 2016), a
defender and an attacker interact in an area discretized into
a grid of targets. The defender strategically allocates a lim-
ited number of patrol resources to patrol routes. The attacker
chooses a target to attack. Each target is associated with re-
ward and penalty for the defender and the attacker, repre-
senting the payoff to them depending on whether the attack
on the target is successful. Existing literature on GSGs and
SSGs widely employs the solution concept of Strong Stack-
elberg Equilibrium (SSE), where the defender commits to
a strategy that maximizes her expected utility assuming the
attacker observes her strategy and best responds to it.

When the game is zero-sum, common solution concepts
such as Nash equilibrium (NE), SSE, Minimax, and Max-
imin, coincide, and a DO framework (McMahan, Gordon,
and Blum 2003) is commonly applied to solve the game ef-
ficiently when the action space is large. DO is an iterative
algorithm where in each iteration an NE is computed for
a restricted game, in which each player only has a subset
of pure strategies. Each player then adds a best response
strategy against the opponent’s current NE strategy to the
restricted game. DO terminates when each player’s best re-
sponse strategy is already included in the restricted game.
DO is guaranteed to converge to an NE of the original two-
player zero-sum game.

Most of the literature on SSG have neglected real-time
information, with only a few exceptions (Zhang et al. 2014)
that are not designed for green security domains.
Extensive-form Games (EFG) EFGs capture the sequen-
tial interaction between the players, and often presents more

computational challenges than normal-form games (Letch-
ford and Conitzer 2010). Advanced algorithms for solv-
ing large-scale two-player zero-sum EFGs with imper-
fect information use counterfactual regret (CFR) minimiza-
tion (Zinkevich et al. 2008), first-order methods (Kroer, Fa-
rina, and Sandholm 2017), abstraction (Brown and Sand-
holm 2017b; Čermák, Bošansky, and Lisy 2017), or math-
ematical programming-based approach enhanced with the
DO framework (Bosansky et al. 2013). Despite the huge suc-
cess in solving poker games whose game tree is wide but
shallow (Brown and Sandholm 2017a; Moravčı́k et al. 2017;
Bowling et al. 2015), these approaches are not applicable to
GSG-I, as its game tree is prohibitively deep in contrast to
poker games. For example, CFR requires traversing the full
game tree in each iteration and will run out of memory on
the large instances of GSG-I.
Deep RL and Multi-Agent RL Deep RL has recently
been widely used in complex sequential decision-making,
in both single agent and multi-agent settings (Oh et al.
2015; Leibo et al. 2017; Foerster et al. 2016). They have
led to successful applications in Atari games (Mnih et al.
2015), Go (Silver et al. 2016), and continuous action con-
trol (Mnih et al. 2016). An RL problem is usually for-
mulated as a Markov Decision Process (MDP), compris-
ing the state space S, action space A, transition prob-
ability P , reward function r, and the discounting fac-
tor γ. Q-learning (Watkins and Dayan 1992) is a popu-
lar value-based RL methods for discrete action space. The
Q-value of a state-action pair (s, a) under policy π is de-
fined as Qπ(st, at) = Es,a∼π[

∑∞
l=0 γ

lr(st+l, at+l)|st, at].
DQN (Mnih et al. 2015) uses a deep neural network Qθ to
learn the optimal Q value Q∗(s, a) = maxπQ

π(s, a), by
storing transitions {s, a, r, s′} in an off-line replay buffer
and minimizing the following loss:

L(θ) = Es,a,r,s′ [(Qθ(s, a)− (r + γmax
a′

Qθ̃(s′, a′))2] (1)

where Qθ̃ is the target Q network whose parameters θ̃ are
periodically copied from θ to stabilize training. Besides Q-
learning, Policy Gradient (Sutton et al. 2000) is another kind
of popular RL method. It employs a parametric stochastic
policy πθ, and updates θ by gradient ascent according to the
following theorem:

∇θEπθ
[r] = Es,a∼πθ

[∇θlogπθ(a|s) ·Qπθ (s, a)] (2)
A recent progress in multi-agent RL is the PSRO

method (Lanctot et al. 2017) (illustrated in Figure 1) which
generalizes DO by extending the pure strategies in the re-
stricted game to parametrized policies and using deep RL
to compute an approximate best response. PSRO provides
a tractable approach for multi-player games with a long
time horizon. However, since training in deep RL is time-
consuming, it can only run a very limited number of itera-
tions for large games, far less than needed for the conver-
gence of DO. Thus, it may fail to find good strategies. We
propose several enhancements to PSRO to mitigate this con-
cern, and provide a concrete implementation for GSG-I.
Other Related Work Patrolling game is an EFG where a
patroller moves on a graph and an attacker chooses a node



Figure 2: Illustration of GSG-I. The red dot and blue dot rep-
resent the attacker and defender respectively. The red arrows
and blue arrows represent their corresponding footprints.
The red squares on the upper left corner of some cells rep-
resent the attack tools placed by the attackers. Each player
only observes the opponent’s footprint in their current cell.

to “penetrate” (Agmon, Kraus, and Kaminka 2008; Basilico,
Gatti, and Amigoni 2009; Horák and Pechoucek 2017). Our
game model extends patrolling games by allowing multiple
attacks and partial observability of traces of movement in
real time for both the defender and attacker.

Green Security Game with Real-Time
Information

In this section, we introduce GSG-I, Green Security Game
with Real-Time Information. As shown in Figure 2, the basic
environment of GSG-I is a grid world, with each cell repre-
senting a unique geographic area. The game has two players,
the defender and the attacker. At the beginning of the inter-
action, the attacker randomly chooses an entry point ea from
a setE of entry points, while the defender always starts from
the patrol post epost. The attacker starts with a limited num-
ber of attack tools and uses them to set attacks at his desired
locations. Such a game model is appropriate for a number
of green security domains, e.g., rangers patrol in a conserva-
tion area to prevent poaching by removing animal snares and
arresting poachers. At each time step, the defender picks an
action from her action spaceAd: {up, down, right, left, stand
still}. Simultaneously, the attacker picks an action from his
action spaceAa: {up, down, right, left, stand still} × {place
attack tool, not place attack tool}.

Suppose an attack tool has been placed in a cell with coor-
dinate (i, j). At each time step, the attack tool successfully
launches an attack with probability Pi,j . After a successful
attack, the tool will be removed from the system. The de-
fender tries to remove the attack tools prior to the attack
and catch the attacker to stop him from placing more attack
tools. She receives a positive reward rtooli,j when she removes
an attack tool from cell (i, j), a positive reward rcatch on
catching the attacker, and a negative reward pattacki,j when an
attack tool launches an attack at cell (i, j). The interaction
ends either when the defender finds the attacker and all the
attack tools, or when a maximum time step T is reached.
The defender’s final payoff is the cumulative reward in the
game. The attacker receives (positive or negative) rewards
corresponding to these events as well and in this paper we

focus on zero-sum games.
As shown in Figure 2, both players leave footprints as they

move around. There can be many other forms of real-time in-
formation such as dropped belongings and local witnesses,
yet for simplicity we use only footprints in this paper. In our
game we assume both players have only local observations.
They only observe their opponent’s footprints in the current
cell rather than the full grid, reflecting the fact that they often
have a limited view of the environment due to the dense veg-
etation, complex terrain, or formidable weather. We assume
the players have unlimited memory and can keep a record of
the observations since the beginning of each interaction.

Hence, we define a player’s pure strategy or policy in this
game (we use policy and strategy interchangeably in this pa-
per) as a deterministic mapping from his observation and
action history to his action space. A player can employ a
mixed policy, which is a probability distribution over the
pure strategies.

Computing Optimal Patrol Strategy
It is nontrivial to find an optimal patrol strategy. Simple ac-
tion rules such as following the footprints or escaping from
the footprints may not be the best strategy as shown in ex-
periments. We now introduce DeDOL, our algorithm de-
signed for computing the optimal defender’s patrol strategy
in zero-sum GSG-I. DeDOL builds upon the PSRO frame-
work. Thus we will first introduce a DQN-based oracle for
computing an approximate best response, and then introduce
DeDOL, which uses the best response oracle as a subroutine.

Approximating Player’s Best Response
We first consider an easier scenario where either player is
static, i.e. using a fixed and possibly randomized strategy.
The player’s fixed strategy and the game dynamics of GSG-
I then defines an MDP for the other player. We represent the
other player’s policy by a neural network, and use reinforce-
ment learning to find an empirically best response strategy.
In this subsection we assume the defender is the learning
player, as the method for the attacker is identical.

Due to the strong spatial patterns of GSG-I, we employ
a convolutional neural network (CNN) to represent the de-
fender policy πd(adt |sdt ), which is a mapping from her state
space to her action space. The input to the CNN is the de-
fender’s state sdt , represented by a 3-D tensor with the same
width and height as the grid world and each channel encod-
ing different features. Specifically, the first 8 channels are
the binary encodings of the local attacker footprints ({four
directions} × {entering or leaving}); the next 8 channels are
similar encodings of the defender’s own footprints; the 17th
channel is one-of-K encoding that indicates the defender’s
current location; the 18th channel is the success probability
of the attack tools of the grid world; the 19th channel is the
normalized time step, which is the same for all cells.

Figure 3 shows the neural network architecture when the
game has a 7×7 grid (the network architecture of other grid
sizes is detailed in Appendix A1). The first hidden layer is a
convolutional layer with 16 filters of size 4 × 4 and strides

1All appendices can be found at https://arxiv.org/
abs/1811.02483



Figure 3: The defender’s neural network architecture for the
7× 7 grid.

1 × 1. The second layer is a convolutional layer with 32
filters of size 2 × 2 and strides 2 × 2. Each hidden layer
is followed by a relu non-linear transformation and a max-
pooling layer. The output layer is a fully-connected layer
which transforms the hidden representation of the state to the
final policy: each output dimension represents the Q-value
of each action, and the neural network corresponds to a pure
defender strategy where she takes the action with the highest
Q-value.

We use Deep Q-learning (Mnih et al. 2015) to approxi-
mate the best response with the above neural network. Due
to the highly dynamic environment of GSG-I, the training of
the vanilla version of DQN proved difficult, especially when
the other player uses a randomized strategy. Therefore, we
employ the double DQN methods (Van Hasselt, Guez, and
Silver 2016) to improve the stability of training, and the loss
we minimize changes to:

L(θ) = Es,a,r,s′ [(Qθ(s, a)−(r+γQθ̃(s′, arg max
a′

Qθ(s′, a′)))2]

Furthermore, we incorporate the dueling network architec-
ture (Wang et al. 2016) upon double DQN for more effi-
cient learning. We also implement the actor-critic algorithm
(Konda and Tsitsiklis 2000) as an alternative to DQN, where
Qπθ (s, a) in Eq.2 is replaced by r + γV πθ (s)− V πθ (s′) to
lower the variance. The neural network in Figure 3 then cor-
responds to a stochastic policy where each dimension of the
output layer represents the probability of choosing that ac-
tion. We implement another CNN to approximate the state-
value V πθ (s) by changing the last output layer to be a scalar.
At last, we apply gradient clipping (Pascanu, Mikolov, and
Bengio 2013) to the training to deal with the gradient ex-
ploding issue.

The reader might notice that this neural network-based
representation does not capture all defender strategies. How-
ever, the strong expressiveness makes it a memory-efficient
alternative. Furthermore, we show later that we lose little by
using this compact representation.

The DeDOL Algorithm
Having deep RL as the players’ best response oracle lays
the groundwork for finding the optimal defender strategy in
GSG-I. In zero-sum GSG-I, the SSE strategy is also the NE
strategy. The PSRO framework (Lanctot et al. 2017) (Fig-
ure 1) can be applied to compute the NE strategy. A naive
implementation of PSRO in GSG-I is as follows: we use
a randomly initialized DQN as the initial strategy for each
player. At each iteration, we first get the payoff matrix for
the current strategies by simulation and compute the NE for
the current game matrix. Then we fix the NE strategy for
one player and calculate the best response strategy of an-
other player with DQN, as detailed above. We add these best

response strategies of each player to the current game if they
are better than the existing strategies, and repeat the proce-
dure until no better responses can be found for either player.

However, as we will show in the experiment section, this
naive implementation (referred to as Vanilla-PSRO through-
out) does not perform well in practice due to the following
limitations: 1) randomly initialized DQNs are rarely mean-
ingful policies, and it takes several iterations for Vanilla-
PSRO to evolve a reasonable set of strategies out of them.
This problem is especially prominent as the training of DQN
takes a nontrivial amount of time. 2) The computed best re-
sponse in Vanilla-PSRO tends to overfit to the specific NE
strategy that it was trained against, and may not be robust
against other opponent strategies in the complex GSG-I. 3)
In GSG-I, the attacker could enter the grid world through
multiple entry points. Using a single best response defender
DQN to deal with all these possibilities makes the training
rather difficult and the learned strategies sub-optimal.

Therefore, we propose DeDOL, which enhances Vanilla-
PSRO by introducing three key elements as discussed below.
Initial Strategies for DO The problem with naive ini-
tial strategies is that the best response against a highly ex-
ploitable strategy could still be highly exploitable itself.
Thus, adding such a best response strategy to the strategy
profile helps little. To alleviate this problem, we propose two
lightweight yet effective domain-specific heuristic strategies
as the initial strategies of DO.

For the attacker, we use a parameterized random walk pol-
icy. Suppose the current coordinate of the attacker is (m,n)
and the maximum coordinate on the map is (M,N). We can
define the average success probability for the up direction as

1
(m−1)·N

∑
0≤i<m,0≤j≤N Pi,j . Recall that Pi,j is the prob-

ability that an attack tool launches an attack successfully at
cell (i, j). Similarly, we can define the average success prob-
ability for all the other directions. For simplicity, we use an
integer k ∈ {1, . . . , 5} to denote one of the five directions
(the fifth “direction” is for the action “stand still”). This way,
we can get an average success probability vector P̄ ∈ R+5

(P̄5 is the success probability of the current grid). Another
important factor that should be taken into consideration is
the observed footprints. We use vectors I ∈ {0, 1}5 and
O ∈ {0, 1}5 to represent the footprints states, where each di-
mension Ik (or Ok) is a binary variable, indicating whether
or not there is an entering (or leaving) footprint from that
direction (for the fifth “stand still” direction, I5 = O5 = 0).
Now we can define the parameterized heuristic policy for the
attacker’s movement as

πa(aat = k|sat ) =
exp(wp · P̄k + wi · Ik + wo ·Ok)∑
z exp(wp · P̄z + wi · Iz + wo ·Oz)

(3)

where wp, wi and wo are parameters for the average success
probability, entering and leaving footprints, respectively.

The success probability of the attack tool directly impacts
the decision of where to place it. We define the probability
of placing an attack tool in cell (m,n) as

ηa(bat = 1|sat ) =
exp(Pm,n/τ)∑
i

∑
j exp(Pi,j/τ)

(4)

where τ is a temperature parameter.



Figure 4: The DeDOL Algorithm

The behavioral model as described above is boundedly ra-
tional. Real-world applications often feature bounded ratio-
nality due to various constraints. We use this parameterized
heuristic policy as the initial attacker strategy in DeDOL
with parameters set following advice from domain experts2.

For the defender’s initial strategy, we could use a simi-
lar, and even simpler parameterized heuristic random walk
policy, as her decision only involves movement. However,
here we propose to use another more effective policy, called
random sweeping. In the beginning, the defender randomly
chooses a direction to move in and heads towards the bound-
ary. She then travels along the boundary until she finds any
footprint from the attacker and follows the footprints. If
there are multiple footprints at the same cell, she randomly
chooses one to follow. This turns out to be a very strong
strategy, as to defeat it, the attacker has to confuse the de-
fender using his footprints.
Exploration and Termination The best response against
the NE of a subgame Gt, Nash(Gt), may not general-
ize well against other unexplored strategies in a complex
game like GSG-I. In DeDOL, the fixed player instead uses a
mixture of Nash(Gt) and Unif(Gt), the uniform random
strategy where the player chooses each strategy in Gt with
equal probability. That is, with probability 1 − α he plays
Nash(Gt), and with probability α he plays Unif(Gt).

As a result, the trained DQN is an (approximate) best re-
sponse to the NE strategy mixed with exploration, rather
than the NE itself. Therefore we need to check in subroutine
VALID (Algorithm 2) whether it is still a better response
to the NE strategy than the existing strategies. This method
is similar to the better response oracle introduced in (Jain,
Conitzer, and Tambe 2013). If neither of the new strategies
for the two players is a better response, we discard them and
train against the NE strategies without exploration. The par-
ent procedure Algorithm 1 terminates if we again find no
better responses. Algorithm 1 may also terminate if it is in-
tended to run a fixed number of iterations or cut short by the
user. Upon termination, we pick the defender NE strategy
(possibly plus exploration) and the attacker’s best response
which together give the highest defender’s expected utility.
Local Modes We refer to the algorithm introduced so far
as DeDOL-S (Algorithm 1). Our main algorithm DeDOL,
illustrated in Figure 4, uses DeDOL-S as a subroutine. We

2We showed the experts the attacker behaviors with different
parameter combinations using our designed GUI, and pick the one
they think most reasonable.

Algorithm 1 DeDOL-S

Input: Mode (local/global), attacker entry point (if local),
initial subgame G0, exploration rate α

1: for iteration t do
2: Run simulations to obtain current game matrix Gt.
3: Nash(Gt) = (σdt , σ

a
t ), Unif(Gt) = (ρdt , ρ

a
t ).

4: Train defender DQN fdt against (1− α)σat + αρat .
5: Train attacker DQN fat against (1− α)σdt + αρdt .
6: VALID(fdt , f

a
t , Gt)

7: if TERMINATE condition satisfied then
8: k∗ = arg maxk{defEU((1 − α)σdk + αρdk, f

a
k ),

and defEU(σdk, f
a
k ) if any were ever calculated}

9: Output: Defender optimal strategy from the k∗th
iteration per above, current subgame Gt

Algorithm 2 VALID

Input: DQNs fdt , f
a
t , subgame Gt with NE (σdt , σ

a
t )

1: if σat ·Gt(fa, fdt ) ≥ σat ·Gt(fa, fdk ),∀k < t then
2: Defender best response fdt is valid, add to Gt
3: if σdt ·Gt(fd, fat ) ≥ σdt ·Gt(fd, fak ),∀k < t then
4: Attacker best response fat is valid, add to Gt
5: if neither of the above is true then
6: Fix σat from Gt, train defender DQN fdt against it.
7: Fix σdt from Gt, train attacker DQN fat against it.
8: Do Lines 1-4 with fdt , fat replaced by fdt , fat .
9: If neither ‘if’ is true again, signal TERMINATE

now conclude this section by introducing the key feature of
DeDOL: local modes.

Since it is challenging for a single defender DQN to ap-
proximate best response against an attacker entering from
different cells, we divide the original game (referred to as
the global mode) into several local modes. In each mode the
attacker has a fixed entry location. In DeDOL, we first run
DeDOL-S in each of the local modes in parallel. After a few
iterations, we combine the DQNs trained in all local modes
to form a new subgame. Then, we use this new subgame as
the initial subgame and run DeDOL-S in the global mode
for more iterations.

When the attacker enters from the same location, both
players (especially the defender) will face a more stable en-
vironment and thus are able to learn better strategies more
quickly. More importantly, these strategies serve as good
building blocks for the equilibrium meta-strategy in the
global mode, thus improving the strategy quality. In the fol-
lowing section, we show that this approach performs better
than several other variants.

Experiments
We test DeDOL in GSG-I using a case study on wildlife anti-
poaching, where the grid world represents a wildlife conser-
vation area. The attacker corresponds to a poacher carrying
attack tools, i.e., snares, to catch animals. The defender cor-
responds to a patroller moving in the area to stop poaching
by removing snares and arresting poachers. Each cell of the
grid world has a corresponding animal density, which is pro-
portional to the probability that a snare successfully catches



Figure 5: Expected utilities of different patroller strategies
against a parameterized random walk poacher.

Figure 6: The learning curves of patroller DQNs against pa-
rameterized heuristic random walk poachers on 7× 7 grids,
averaged across four runs.

an animal in that cell. The animal densities are generated ei-
ther uniformly randomly, or following a mixture Gaussian.
The latter reflects that in reality the animal density is of-
ten higher along mountain ranges and decreases as we move
away. The game environment of different types and sizes are
shown in Appendix C. We test DeDOL on three grid worlds
of different sizes: 3 × 3, 5 × 5, and 7 × 7. All experiments
are carried out on Microsoft Azure standard NC6 virtual ma-
chines, with a 6-core 2.60 GHz Intel Xeon E5-2690 CPU, a
Tesla K80 GPU, and a 56G RAM.

Best Response Approximation
The ability to approximate a best response strategy against a
fixed opponent is foundational to our algorithm. Therefore,
we start by comparing the performance of several methods
against a parameterized heuristic poacher with parameters
set following the advice from domain experts. We compare
the random sweeping strategy, parameterized random walk
patroller with parameters set by grid search, the vanilla dou-
ble DQN, the dueling double DQN + gradient clipping (en-
hanced DQN), and the actor-critic algorithm. On the 7 × 7
grid world, we train both DQNs and actor-critic using Adam
optimizer (Kingma and Ba 2015) with a learning rate of
0.0001 for 300000 episodes. More detailed training parame-
ters are provided in Appendix B. Figure 6 shows the learning
curves of both DQNs in 7×7 grid. The actor-critic algorithm
does not converge in our experiments.

In the smaller 3× 3 game with 4 time steps, we can com-
pute the exact poacher best response given a patroller strat-
egy (Bosansky et al. 2013) (details in Appendix F). How-
ever, this method becomes intractable with just a 5× 5 grid

α 0 0.1 0.15 0.25 0.4
3× 3 Random 0.60 0.43 0.73 0.73 0.44
3× 3 Gaussian 0.12 0.39 0.64 0.37 0.04

Table 1: Patroller’s expected utility with different explo-
ration rate α on the 3× 3 grid using DeDOL (global only).

which has 25 time steps and over 1020 information sets.
The results of each method are summarized in Figure 5.

The enhanced DQN patroller achieves the highest expected
utility among all compared strategies in all settings. Com-
pared to the exact solution in the 3 × 3 game, the enhanced
DQN is indeed a very good best response approximation.
Figure 7 provides an illustration of the learned enhanced
DQN strategy on a 7 × 7 grid with random animal density.
Note that the enhanced DQN patroller cleverly learns to first
patrol towards the corner on a path of high animal densi-
ties. She then moves along the boundary, and upon finding
the poacher’s footprints, follows them to catch the poacher.
After the poacher is caught, she induces from the observed
footprints that the entry point of the poacher should be the
bottom right corner. Hence she patrols that area and success-
fully removes a snare there. A similar visualization for the
trained poacher DQN against a random sweeping patroller is
shown in Appendix D. We dropped the actor-critic algorithm
in subsequent experiments as it performs poorly.

Small Games
Now we have shown that (enhanced) DQN can approximate
a best response well, we move on to test the whole DeDOL
algorithm. We first test it on a 3 × 3 grid. The game has 4
time steps, and the attacker has 3 snares. The full game tree
has roughly 4.5× 107 nodes.

Before going into the main results, we tune the explo-
ration rate α by running 16 iterations in DeDOL-S global
mode. Table 1 shows the highest patroller’s expected utility
against an exact best response poacher with different explo-
ration rate. Since α = 0.15 achieves the best result in both
map types, we set α to be 0.15 in the following experiments.
The defender’s utility with α = 0.15 is also much higher
than with α = 0, showing that exploration is helpful.

We now compare the performance of DeDOL with other
baselines in GSG-I. To investigate whether DQNs trained
in local modes would indeed help in global mode, we im-
plement three versions of the DeDOL algorithm: 1) we run
zero iteration in local modes, i.e., run DeDOL-S directly in
global mode; 2) we run DeDOL-S in local modes for several
iterations, return to the global mode and run for several more
iterations (Figure 4); 3) we run DeDOL-S purely in the lo-
cal modes, and upon termination, return to the global mode,
compute an NE strategy and running no more iterations.

We use the counterfactual regret (CFR) minimiza-
tion (Zinkevich et al. 2008), random sweeping, and Vanilla-
PSRO as three baselines. Each learning algorithm runs for a
day. In particular, in the local + global version of DeDOL,
half a day is used for local modes and the rest for the global
mode. With chance sampling, the CFR algorithm traverses
roughly 4.3 × 106 nodes in one iteration, and finishes 3500
iterations in a day on our hardware.

The first two rows of Table 2 report the highest patroller’s
expected utilities, calculated against an exact best response
poacher. We note that the highest patroller’s utility achieved



(a) At time step 18 (b) At time step 19 (c) At time step 23
Figure 7: The learned patroller DQN strategy against a parameterized heuristic random walk poacher. Here, the darkness of the
square in each cell indicates the animal density.

Random
Sweeping

Vanilla
PSRO

DeDOL
Pure Global Mode

DeDOL
Local + Global Mode

DeDOL
Pure Local Mode CFR

3× 3 Random -0.04 0.65 (16) 0.73 (16) 0.85 (10 + 2) 0.71 (20) 1.01 (3500)
3× 3 Gaussian -0.09 0.52 (16) 0.75 (16) 0.86 (10 + 2) 0.75(20) 1.05 (3500)
5× 5 Random -1.91 -8.98 (4) -1.63 (4) -0.42 (4 + 1) -0.25 (5) -
5× 5 Gaussian -1.16 -9.09 (4) -0.43 (4) 0.60 (4 + 1) -2.41 (5) -
7× 7 Random -4.06 -10.65 (4) -2.00 (4) -0.54 (3 + 1) -1.72(5) -
7× 7 Gaussian -4.25 -10.08 (4) -4.15 (4) -2.35 (3 + 1) -2.62(5) -

Table 2: The highest patroller’s expected utility among all DO / CFR iterations. The numbers in the parentheses show the
finished DO / CFR iterations within the given running time. The highest value among all algorithms are in bold. The detail
values of the defender expected utility at each iteration of DeDOL are shown in Appendix E.

by DeDOL is slightly lower than that of CFR given the same
amount of time. However, DeDOL needs much less memory
as it only needs to store several neural networks, while the
CFR algorithm has to store the whole huge game tree. The
table also shows that all implementation versions of DeDOL
outperform Vanilla-PSRO, and have much higher utility than
the random sweeping baseline. In addition, the local + global
modes version achieves the best result in both map types,
which proves its effectiveness. Note that the local mode im-
plementation finishes more iterations because the training of
DQNs converges faster in its simpler environment.
Large Games
We also perform tests on large games with 5 × 5 and 7 × 7
grid. 5 × 5 game has 25 time steps, and 7 × 7 game has 75
time steps. In both games, the attacker has 6 snares.

We still implement 3 versions of DeDOL as detailed in the
previous subsection. The running time on 5×5 grid is 3 days,
and 5 days on the 7× 7 game. For the local + global version
of DeDOL, we allocate 2 days for local mode on 5× 5, and
3 days on 7 × 7. We report the performance of DeDOL in
Table 2. As aforementioned, with even a 5×5 grid, there are
over 1050 game states and 1020 information sets. Thus, CFR
becomes intractable in terms of running time and memory
usage, so is computing the exact best response. Therefore,
in Table 2 the patroller’s expected utilities are calculated
against their respective best response DQN poacher3.

Similar to the results in small games, all versions of
DeDOL significantly outperform the Vanilla-PSRO and the
random sweeping baseline. The Vanilla-PSRO performs ex-

3Here, we train a separate DQN for a longer time than in a DO
iteration. We also test against the poacher’s heuristic strategy and
pick the better one, which is always the DQN in the experiments.

tremely poor here because it starts with a poor randomly ini-
tialized DQN strategy, and the strategies it evolved within
the running time is still highly exploitable in the large grids.
This validates the effectiveness of using the more reasonable
random sweeping/parameterized heuristic strategies as the
initial strategies in DeDOL. We also note DeDOL with local
mode (either local + global retraining or pure local) achieves
the highest defender’s expected utility in all settings. This
suggests that the strategies obtained in local modes are in-
deed very effective and serve as good building blocks to im-
prove the strategy quality after returning to global mode.

Discussions and Future Directions
We discuss a few questions the reader may have and some
future directions. First, policy gradient performs poorly in
GSG-I because it learns an average of all possible sweeping
routes. Second, training DQNs is time-consuming. Though
we have shown promising utility improvements, approxi-
mating NE definitely needs more iterations. Third, the global
best response of an NE strategy computed in one local mode
may actually be in another local mode. To address this, we
hope to find a method to automatically restrict the global
best response being in the current mode, which we leave for
future research. Another future direction is to consider max-
imum entropy Nash equilibria as the meta-strategy. Finally,
DeDOL is proposed for zero-sum GSG-I, but we expect it
can be adapted to general-sum GSG-I, especially when the
game is close to zero-sum.
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