Robust Multi-Agent Reinforcement Learning by Minimax Deep Deterministic Policy Gradient

YI WU, UC BERKELEY

WITH SHIHUI LI, FEI FANG, STUART RUSSELL, XINYUE CUI & HONGHUA DONG
Multi-Agent Reinforcement Learning (MARL)

Deep Reinforcement Learning (DRL) has achieved big advances in multi-agent games.
Multi-Agent Reinforcement Learning (MARL)

The common technique: *Deep RL + Self-play*

- Train multiple neural policies
- Let them compete against each other and optimize its own reward
- Each policy co-evolves and improves
- Until convergence

An elegant, general and effective solution

A significant issues: Non-stationary problem

- In practice, a lot of expert engineering required
Challenges in MARL

Non-stationary issue:
- RL assumes a stationary environment (fixed MDP)
- If directly apply single-agent RL, other agents becomes a part of the environment
- Non-stationery from each agent’s own perspective

Challenge#1: unstable training
- Neural networks can hardly converge
- Degenerate to bad local mode

Challenge#2: easier to overfit
- Learned policy overfits its training partners
- Much worse when testing with a different opponent
Preliminary: MADDPG algorithm

MADDPG, the first general purpose deep MARL algorithm for stabilizing training (Challenge#1)
- Use actor-critic framework
 - Decentralized actors (policies, π) to keep the *self-play framework*
 - Centralized critic (baseline, Q) to ease learning and reduce variance
- Applies to mixed competitive and cooperative environments

What about overfitting (Challenge#2)?
- This work, M3DDPG
- A extension and variant of MADDPG for *robust policies*
Overview

Goal: learning robust policies in deep MARL

Key Ideas:
- Minimax objective: introduce minimax concept into deep MARL
- Multi-Agent Adversarial Learning (MAAL): use techniques from adversarial training for tractable and practical approximate computation

The algorithm: MiniMax Multi-agent Deep Deterministic Policy Gradient (M3DDPG)
- Simple, efficient and improved MADDPG
Minimax MARL Objective

Minimax is a fundamental idea in zero-sum games

Minimax MARL: learning minimax deep policies

Classical RL

$$\max_\theta \mathbb{E}[\sum_t \gamma^t r_t(s_t, \pi(s_t|\theta))]$$

Q-function (Q-learning)

$$Q(s, a) = r(s, a) + \gamma Q(s', a')$$

Minimax MARL

$$\max_{\theta_i} \min_{a_{j\neq i}} \mathbb{E}[\sum_t \gamma^t r_t(s_t, \pi_i(s_t|\theta_i), \ldots, a_j, \ldots)]$$

Minimax Q-function

$$Q^M(s, a_i, \ldots, a_j, \ldots) = r(s, a_1, \ldots) + \gamma \min_{a'_{j\neq i}} Q^M(s', a'_1, \ldots)$$

Challenge:
How to handle the inner-loop minimization?
Continuous action space?
Multi-Agent Adversarial Learning

The inner loop minimization is intractable and expensive to compute

- No closed-form solution
- An expensive inner-loop gradient descent optimization process

Multi-agent Adversarial Learning (MAAL)

- Key idea: replace the inner-loop minimization by a **one-step gradient descent**
- Motivated by recent successes of adversarial training (Goodfellow, et. al, ICLR 2014), and meta-learning (MAML, Finn, et. al., ICML 2017)
- Fully differentiable, efficient approximation, effective in practice

Minimax Objective

\[Q^M(s, a_i, a_j) = r(s, a_i, a_j) + \gamma Q^M(s', a_i', a_j') \]

\[a_j'(*) = \min_{a_j} Q^M(s', a_i, a_j) \]

Optimization

\[a_j'(*) \leftarrow a_j^{(k+1)} = a_j^{(k)} - \alpha \nabla_{a_j} Q^M(s', a_i', a_j) \bigg|_{a_j=a_j^{(k)}} \]

One-step relaxation

\[a_j'(*) = \pi_j(s') - \alpha \nabla_{a_j} Q^M(s', a_i', a_j) \bigg|_{a_j=\pi_j(s')} \]
M3DDPG

- Fast, efficient approximate algorithm for robust learning
- Trade-off between objective and practical computation

\[
\nabla_{\theta_i} J(\theta_i) = \mathbb{E}_{x,a \sim D} \left[\nabla_{\theta_i} \mu_i(o_i) \nabla_{a_i} Q^{\mu}_{M,i}(x, a_1^+, \ldots, a_i^+, \ldots, a_N^+) \right]
\]

M3DDPG

Adversarial Learning

Minimax MADDPO (M3DDPG)

- Minimax Learning
- Approximate algorithm for robust learning

Diagram:

- Actor modules
- Critic modules
- Adversarial interaction
Experiments

Environment and tasks
- The particle world environment from MADDPG (demo below)

Test#1: competition between M3DDPG and MADDPG
Test#2: performance against the best response
Comparison between MADDPG (MA) and M3DDPG (Minimax)

Normalized Agent Score

- MA vs MA
- MA vs Minimax
- Minimax vs MA
- Minimax vs Minimax

- Covert communication
- Keep-away
- Physical deception
- Predator-prey
Evaluate the performance of M3DDPG & MADDPG against its *best response* policy

- Fixed the policies learned by M3DDPG & MADDPG
- Retrain a single opponent (reduce to single-agent RL setting, *easy*)
Conclusion

Take-home message
- Minimax MARL + adversarial learning \rightarrow M3DDPG (Minimax MADDPG)
- A fully differentiable, fast, general algorithm for robust deep MARL
- Interpretation: adversarial training extension of MADDPG

GitHub:
- https://github.com/dadadidodi/m3ddpg

Thanks!