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ABSTRACT
Ridesharing platforms match drivers and riders to trips, using dy-

namic prices to balance supply and demand. A challenge is to set

prices that are appropriately smooth in space and time, in the sense

that drivers will choose to accept their dispatched trips, rather than

drive to another area or wait for higher prices or a better trip. We

introduce the Spatio-Temporal Pricing (STP) mechanism. The mecha-

nism is incentive-aligned, in that it is a subgame-perfect equilibrium

for drivers to accept their dispatches, and the mechanism is welfare-

optimal, envy-free, individually rational and budget balanced from

any history onward. We work in a complete information, discrete

time, multi-period, multi-location model, and prove the existence

of anonymous, origin-destination, competitive equilibrium (CE)

prices. The STP mechanism employs driver-pessimal CE prices, and

the proof of incentive alignment makes use of the M ♮
concavity

of min-cost flow objectives. We also prove that there can be no

dominant-strategy mechanism with the same economic properties.

An empirical analysis conducted in simulation suggests that the

STP mechanism achieves significantly higher social welfare than a

myopic pricing mechanism, and highlights the failure of incentive

alignment due to non-smooth prices in myopic mechanisms.
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1 INTRODUCTION
Ridesharing platforms such as Uber and Lyft are disrupting more

traditional forms of transit. These are two-sided platforms, with

both riders and drivers in a customer relationship with the platform.

When a rider opens the app and enters an origin and destination,
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these platforms quote a price and an estimated wait time. If a rider

requests the ride, the platform offers the pick-up opportunity to

each of a sequence of nearby drivers until a driver accepts. At this

point, if neither side cancels and the driver completes the pick-up

then the trip begins. Once the trip is complete, payment is made

from the rider to the driver through the platform.
1

Both Uber and Lyft emphasize the importance of providing re-

liable transportation. Uber’s mission is “to connect riders to re-

liable transportation, everywhere for everyone.”
2
Lyft’s mission

is stated as “to provide the best, most reliable service possible by

making sure drivers are on the road when and where you need

them most.”
3
Whereas taxi systems have reliable pricing but un-

reliable service [19], ridesharing platforms make use of dynamic

pricing to achieve reliable service. These platforms also emphasize

the flexibility for drivers, e.g. Uber advertises itself as “work that

put you first— drive when you want, earn what you need".
4

A known challenge with current ridesharing platforms is that

incentives may fail to be aligned for drivers. A particular concern,

is that trips may be mis-priced relative to other trip opportunities.
5

This leads to a loss in reliability— drivers may decline particular

kinds of trips, or simply choose not to participate from certain

locations at certain times, given that they have the flexibility to

make ongoing decisions about participation. In this way, poorly

designed pricing and dispatching systems undercut the ability of

these platforms to fulfill their mission.

One kind of failure arises because of incorrect spatial pricing.

Consider for example that if the price is substantially higher for

trips that start in location A than an adjacent location B, drivers
in location B that are close to the boundary will decline trips. This

leads to drivers “chasing the surge”— turning off a ridesharing app

while relocating to another location where prices are higher. This

results in a loss in welfare, with even high willingness-to-pay riders

in location B unable to access reliable transportation.

Problems with spatial pricing also arise because prices do not

correctly factor market conditions at the destination of a trip. It has

been standard practice to use origin-based pricing, with unit prices

that depend on market conditions only at origin. Suppose that a

driver in location A could be matched to a trip to a quiet suburb

1
The actual practice is somewhat more complicated, in that platforms may operate

multiple products for example high-end cars, trips shared by multiple riders, etc.

Moreover, drivers within even a single class are differentiated (e.g., cleanliness of car,

skill of driving), as are riders (e.g., politeness, loud vs. quiet, pick-up and drop-off

neighborhoods.) We ignore these effects, and assume that all riders are equivalent from

the perspective of drivers and all drivers equivalent from the perspective of riders.

2
https://www.uber.com/legal/community-guidelines/us-en/, visited September 1, 2017.

3
https://help.lyft.com/hc/en-us/articles/115012926227, visited September 1, 2017.

4
https://www.uber.com/drive/, visited December 12, 2017.

5
There also exist other incentive problems, including inconsistencies across classes of

service, competition among platforms, and drivers’ off-platform incentives. We only

model a single class of service, we ignore cross-platform competition, and we do not

model location- or time-dependent opportunity cost.

https://www.uber.com/legal/community-guidelines/us-en/
https://help.lyft.com/hc/en-us/articles/115012926227
https://www.uber.com/drive/
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B and or a trip to the busy downtown area C . We can expect the

continuation payoff in location B to be smaller that in location C ,
because demand is greater inC and thus both a lower wait time and

higher prices. Because of this, trips toC will be preferred to trips to

B and there is a market failure, with even high willingness-to-pay

(A,B) riders unable to access reliable transportation.

A second kind of market failure arises because of incorrect tem-

poral pricing. Consider for example that a sports event will end

soon, and drivers can anticipate that prices will increase in order to

balance supply and demand. In this case, drivers will decline trips

in anticipation of the surge. This results in a market failure, with

even high willingness-to-pay riders unable to get matched to trips

before the end of the sports event.

To avoid market failure, prices need to be appropriately “smooth”

in both space and time in the sense that drivers who retain the

flexibility to choose when to work will always choose to accept any

trip to which they are dispatched. In this way, smooth prices are

responsive to a central challenge of market design for ridesharing

platforms, which is to optimally orchestrate trips without the power

to tell drivers what to do. Because both drivers and riders are in a

customer relationshipwith the platform, all partiesmust continually

agree to accept any proposed action.
6

We address the problem of incentive alignment for drivers in

the absence of time-extended contracts. This recognizes the impor-

tance of real-time flexibility, allowing drivers to decide whether or

not to provide rides at any moment. To this aim, we propose the

Spatio-Temporal Pricing (STP) mechanism, under which accepting

the mechanism’s dispatches at all times forms a subgame-perfect

equilibrium (SPE). From any history onward, the STP mechanism

is individually rational, budget balanced, welfare optimal, and also

envy-free, meaning that any pair of drivers in the same location at

the same time, and not currently on a trip has the same continuation

payoff.
7
We also give an impossibility result, that there can be no

dominant-strategy mechanism with the same economic properties,

and show via simulations that the STP mechanism achieves signifi-

cantly higher social welfare than a myopic pricing mechanism.

We work in a complete information, discrete time, multi-period,

multi-location model, and allow asymmetric, time-varying trip

times, non-stationarity in demand, and riders with different values

for completing a trip. At the beginning of each time period, based

on the history, current driver positioning, and current and future

demand, the mechanism dispatches a trip to each available driver

(including the possibility of relocation), and determines a payment

if the driver follows the dispatch. Each driver can decide whether

to follow or to decline and stay or relocate to any location. After

observing the driver actions in a period, the mechanism collects

payment from the riders and makes payment to the drivers.

The main assumptions are (i) complete information about supply

and demand over a planning horizon, (ii) impatient riders that

need to be picked-up at a particular time and location (and without

6
There is an echo here to market-oriented programming [20] and agoric systems [11].
There, markets with virtual prices were suggested as a means for achieving optimiza-

tion in decentralized systems. But whereas this earlier work adopted market-based

methods for their ability to optimize, and prices were virtual, there is an additional

need in the present setting to align incentives.

7
The mechanism that we design in this paper balances budget. Alternatively, we many

think about the ridesharing platform taking a fixed percentage of the prices. This does

not affect the results presented in the paper.

preferences over drivers), and (iii) drivers who are willing to take

trips until the end of the planning horizon and have no intrinsic

preference for driving in one location over another. We do allow

drivers to first become available to dispatch from diverse locations,

with different drivers coming online at different times. We model

a rider’s value as her willingness-to-pay over-and-above a base

payment that covers driver costs. In this way, the prices that are

computed through the STP mechanism correspond to the “surge"

price, over-and-above the base payment for a trip.

We prove the existence of anonymous, origin-destination, com-

petitive equilibrium (CE) prices. By adopting origin-destination

prices, the unit price of a trip can depend on market conditions

at both the origin and destination. The STP mechanism employs

driver-pessimal CE prices, computing a driver-pessimal CE plan at

the beginning of the planning horizon and after driver deviations.

This induces an extensive-form game among the drivers, where

the total payoff to each driver is determined by the mechanism’s

dispatch and payment rules. The use of driver pessimal CE prices

is an essential part of achieving smooth prices, and the proof of

incentive alignment also makes use of theM ♮
concavity of min-cost

flow objectives [17]. The same connection to min-cost flow leads

to an efficient algorithm to compute an optimal dispatching and

prices, and operationalize the STP mechanism.

We introduce the model in Section 2, and illustrate through

an example that a baseline myopic pricing mechanism fails to be

welfare-optimal or incentive aligned. In Section 3, we formulate the

optimal planning problem and establish integrality properties of a

linear-programming relaxation (Lemma 3.1). We show that a plan

with anonymous trip prices is welfare-optimal if and only if it forms

a competitive equilibrium (CE) (Lemma 3.2), and that optimal CE

plans exist and are efficient to compute. We also prove that drivers’

total payments among all CE plans form a lattice (Lemma 3.3).

We prove our main result in Section 4, that the STP mechanism

is subgame-perfect incentive compatible, and is also individually

rational, budget balanced, envy-free, and welfare optimal from

any history onward (Theorem 4.1). We also prove an impossibility

result, that no dominant-strategy mechanism has the same eco-

nomic properties (Theorem 4.2). An empirical analysis conducted

through simulation (Section 5) suggests that the STP mechanism

can achieve significantly higher social welfare than a myopic pric-

ing mechanism, and highlights the failure of incentive alignment

due to non-smooth prices in myopic mechanisms.

We compare in Section 5 through simulation, the performance

of the STP mechanism against the myopic pricing mechanism for

an economy modeling the end of an event. The STP mechanism

achieves significantly higher social welfare, whereas under the

myopic pricingmechanism, drivers incur a high regret.We conclude

in Section 6 with discussions on the effect of relaxing the model

assumptions and directions of future work. Additional examples,

discussions, omitted proofs, simulation results and relations to the

literature are provided in the full version of this paper [16].

1.1 Related Work
Banerjee et al. [3] take a queuing-theoretic approach to analyze the

effect of dynamic pricing on revenue and throughput of ridesharing

platforms, assuming a single location and stationary system state.
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The optimal dynamic pricing strategy does not outperform the

optimal static pricing strategy when parameters on supply and

demand are correctly estimated, however, dynamic pricing is more

robust to fluctuations and mis-estimation of system parameters.

By analyzing the equilibrium outcome under a continuum, sta-

tionary model with unlimited driver supply at fixed costs, Bimpikis

et al. [6] show that a ridesharing platform’s profits and consumer

surplus are maximized when the demand pattern across different

locations is balanced, and that the platform can benefit signifi-

cantly from pricing trips differently depending on trip origins. Re-

latd to this, Banerjee et al. [2] model a shared vehicle system as a

continuous-time Markov chain, and establish approximation guar-

antees for a static, state-independent pricing policy (i.e. fixed prices

that do not depend on the spatial distribution of cars), w.r.t. the

optimal, state-dependent policy.

The “wild goose chase” phenomena is analyzed by Castillo et

al. [7]: when demand significantly exceeds supply, drivers spend

too much time driving to pick up the riders instead of having riders

in the backseat, leading to decreased revenue and social welfare.

This is an effect of the ridesharing platform always dispatching a

driver as soon as any rider request a ride. In comparison to setting

fixed prices, social welfare is improved if prices can be set based

on market conditions, and this solution is shown to be superior to

other solutions e.g. limiting the pick-up radius.

Our model differs from these previous works, in that we con-

sider both multiple locations and multiple time periods, with rider

demand, rider willingness to pay, and driver supply that can vary

across both space and time. This leads to the focus of the present

paper on the design of a ridesharing mechanism with prices that

are smooth in both time and space.

There are various empirical studies of the Uber platform as a

two-sidedmarketplace [12, 14, 15], analyzing Uber’s driver partners,

labor market equilibrium and consumer surplus. By analyzing the

hourly earnings of drivers on the Uber platform, Chen et al. [9] show

that drivers’ reservation wages vary significantly over time, and

that the real-time flexibility of being able to choose when to work

increases both driver surplus and the supply of drivers. In regard

to dynamic pricing, Chen and Sheldon [10] show by analyzing the

trips provided by a subset of driver partners in several US cities

from 2014-2015 that surge pricing increases the supply of drivers

on the Uber platform at times when the surge pricing is high. A

case study [13] into an outage of Uber’s surge pricing during the

2014-2015 New Year’s Eve in New York City found a large increase

in riders’ waiting time after requesting a ride, and a large decrease

in the percentage of requests completed.

2 PRELIMINARIES
Let T be the length of the planning horizon, starting at time t = 0

and ending at time t = T . We adopt a discrete time model, and refer

to each time point t as “time t", and call the duration between time

t and time t + 1 a time period. Trips start and end at time points.

Denote [T ] = {0, 1, . . . ,T } and [T − 1] = {0, 1, . . . ,T − 1}.

Let L = {A,B, . . . , } be a set of |L| discrete locations, and we

adopt a and b to denote generic locations. For all a,b ∈ L and

t ∈ [T ], the triple (a,b, t) denotes a trip with origin a, destination b,
starting at time t . Each trip can represent (i) taking a rider from a to

b at time t , (ii) relocatingwithout a rider froma tob at time t , and (iii)
staying in the same location for one period of time. Let δ : L×L →

N denote the time to travel between locations, so that trip (a,b, t)
ends at t + δ (a,b).8 We allow δ (a,b) , δ (b,a) for locations a , b,
modeling asymmetric traffic flows. We assume δ (a,b) ≥ 1 and

δ (a,a) = 1 for all a,b ∈ L, and that the triangle inequality holds.
9

Let T = { (a,b, t) | a ∈ L, b ∈ L, t ∈ {0, 1, . . . ,T − δ (a,b)}} de-

note the set of feasible trips within the planning horizon.

LetD denote the set of drivers, withm = |D|. Each driver i ∈ D

is characterized by type θi = (τ i , τ̄i , ℓi )— driver i enters the market

at time τ i and location ℓi , and plans to exit the market at time τ̄i
(with τ i < τ̄i ). Here we make the assumption (S1) that driver types
are known to the mechanism and that all drivers stay until at least
the end of planning horizon, and do not have an intrinsic preference
over locations. Each driver seeks to maximize the total payment

received over the planning horizon.

Denote R as the set of riders, each intending to take a single trip

during the planning horizon. The type of rider j ∈ R is (oj ,dj ,τj ,vj ),
where oj and dj are the trip origin and destination, τj the requested
start time, and vj ≥ 0 the value for the trip. We assume (S2) that
riders are impatient, only value trips starting at τj , are not willing to
relocate or walk. The value vj models the willingness to pay of the

rider, over-and-above a base payment for a trip. This base payment

is an amount that is collected by the platform, so that in aggregate

drivers’ costs are covered. Accordingly, the prices we derive in

this paper correspond to “surge" prices, over-and-above these base

payments. Rider utility is quasi-linear, with utility vj − p to rider j
for a completed trip at (incremental to base) price p.

We assume the platform has complete information about sup-

ply and demand over the planning horizon (driver and rider types,

including driver entry during the planning horizon). We assume

drivers have the same information, and that this is common knowl-

edge amongst drivers. More generally, it would be sufficient that it

be common knowledge amongst drivers that the platform has the

correct information. Unless otherwise noted, we assume (S1), (S2),

and complete, symmetric information throughout the paper.

At each time t , a driver is en route if she started her last trip from
a to b at time t ′ (with or without a rider), and t < t ′ + δ (a,b). A
driver is available if she has entered the platform (t ≥ τ i ) and is

not en route. An available driver at time t and location a is able to

complete a pick-up at (a, t). We allow a driver to drop-off a rider

and pick-up another rider in the same location and time point.

A path is a sequence of tuples (a,b, t), representing the trips

taken by a driver over the planning horizon. A feasible path for

driver i starts at (ℓi ,τ i ), with the starting time and location of each

successive trip equal to the ending time and location of the previous

trip. Let Zi denote the set of all feasible paths of driver i , with

Zi,k ∈ Zi to denote the kth
feasible path. Denote (a,b, t) ∈ Zi,k if

path Zi,k includes (or covers) trip (a,b, t). Driver i with path Zi,k is

able to pick up rider j if (oj ,dj ,τj ) ∈ Zi,k .
As a baseline, we define the following mechanism:

8
We can allow the distance between a pair of locations to change over time, modeling

changes in traffic conditions. This does not affect the results presented in this paper.

9
With the triangle inequality, ∀a, b, c ∈ L, δ (a, c) ≤ δ (a, b) + δ (b, c), then we

have an additional property— riders would not have incentives in the STP mechanism

to break a long trip into several shorter trips in order to get a lower price. See Section ??
for discussions on rider incentives.
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Figure 1: A Super Bowl game: time 0 plan under the myopic
pricing mechanism.

Definition 1 (Myopic pricing mechanism). At each time point

t ∈ [T ], for each location a ∈ L, the myopic pricing mechanism
dispatches available drivers at (a, t) to riders requesting rides from

(a, t) in decreasing order of riders’ values, and sets a market clear-

ing price pa,t that is offered to all dispatched drivers (and will be

collected from riders).

The market clearing price may not be unique, and a fully defined

myopic mechanism must provide a rule for picking a particular

clearing price. This mechanism has anonymous, origin-based pric-

ing, and is very simple in ignoring the need for smooth pricing, or

future supply and demand.

Example 1 (Super Bowl example). Consider the economy illus-

trated in Figure 1, modeling the end of a sports event. Time t = 0 is

9:50pm, and 10 minutes before the Super Bowl ends. There are three

locations A, B and C with symmetric distances δ (A,B) = δ (B,A) =
δ (B,C) = δ (C,B) = 1 and δ (A,C) = δ (C,A) = 2. Drivers 1 and 2

enter at location C at time 0, while driver 3 enters at location B at

time 0. At time 1, many riders with very high value show up at

location C , where the game takes place.

Under the myopic pricing mechanism, at time 0, drivers 1, 2

and 3 are dispatched to pick up riders 1, 2 and 4, respectively. At

time 1, one of drivers 1 and 2 picks up rider 5, and the total social

welfare is v1 + v2 + v4 + v5 = 60. The paths taken by drivers 1

and 2 are ((C,B, 0), (B,B, 1), (B,B, 2)) (the dash and dash-dotted)

and the path taken by driver 3 is ((B,A, 0), (A,A, 1), (A,A, 2)) (the
dotted). The set of all possible market clearing price for trip (C,B, 0)
is pC,B,0 ∈ [0, 10], and the price for (B,B, 1) is pB,B,1 = 0 since

there is excessive supply. The highest total payment to driver 1

under any myopic pricing mechanism would be 10. At time 1, since

no driver is able to pick up the four riders at location C , the lowest
market clearing prices are pC,B,1 = pC,A,1 = 100. Suppose driver 1

deviates and stays in locationC until time 1. The mechanism would

then dispatch her to pick up rider 6, and she would be paid the new

market clearing price of 100. This is a useful deviation. □

3 OPTIMAL PLANNING
A plan describes the paths taken by all drivers until the end of the

planning horizon, as well as payments, for riders and drivers, for

each trip associated with these paths. Formally, a plan is the 4-tuple

(x , z,q,π ), where: x is the indicator of rider pick-ups, where for all

j ∈ R, x j = 1 if rider j is picked-up according to the plan, and x j = 0

otherwise; z is a vector of paths, where zi ∈ Zi is the dispatched

path for driver i; qj denotes the payment made by rider j, and πi,t
denotes the payment made to driver i at time t ; and πi =

∑T
t=0

πi,t
denotes the total payment to driver i .

A plan (x , z,q,π ) is feasible if∀(a,b, t) ∈ T ,

∑
j ∈R x j1{(oj ,dj ,τj ) =

(a,b, t)} ≤
∑
i ∈D 1{(a,b, t) ∈ zi }, where 1{·} is the indicator func-

tion. Unless otherwise indicated, when we mention a plan in the

rest of the paper, it is assumed to be feasible.

For budget balance (BB), we need:

∑
j ∈R qj ≥

∑
i ∈D πi , with

strict budget balance if the inequality holds with equality. A plan is

individually rational (IR) for riders if ∀j ∈ R : x jvj ≥ qj . A plan is

envy-free for drivers if ∀i, i ′ ∈ D, s.t. τ i = τ i′ , ℓi = ℓi′ : πi = πi′ .
A plan is envy-free for riders if ∀j, j ′ ∈ R, s.t. oj = oj′ , dj =
dj′ , τj = τj′ : x jvj − qj ≥ x j′vj − qj′ .

Definition 2 (Anonymous trip prices). A plan uses anonymous trip
prices if there exist p = {pa,b,t }(a,b,t )∈T s.t. for all ∀(a,b, t) ∈ T ,

(i) all riders taking trip (a,b, t) are charged pa,b,t , and there is

no payment by riders who are not picked up, and

(ii) all drivers that are dispatched on a trip from a to b at time t
(with or without a rider) are paid pa,b,t for the trip.

Given dispatches (x , z) and anonymous trips prices p, all pay-
ments are fully determined: the total payment to driver i is πi =∑
(a,b,t )∈zi pa,b,t and the paymentmade by rider j isqj = x jpoj ,dj ,τj .

We represent plans with anonymous trip prices as (x , z,p).

Definition 3 (Competitive Equilibrium). A plan with anonymous

trip prices (x , z,p) forms a competitive equilibrium (CE) if:

(i) all riders j ∈ R that can afford the ride are picked up, i.e.

vj > poj ,dj ,τj ⇒ x j = 1, and all riders that are picked up can

afford the price x j = 1 ⇒ vj ≥ poj ,dj ,τj ,

(ii) ∀i ∈ D, zi ∈ arg maxz′i ∈Zi

{∑
(a,b,t )∈z′i

pa,b,t

}
, i.e. each dri-

ver takes one of her feasible paths with the highest total pay-

ment, and

(iii) ∀(a,b, t) ∈ T ,

∑
j ∈R, (oj ,dj ,τj )=(a,b,t ) x j <

∑
i ∈D 1{(a,b, t) ∈

zi } ⇒ pa,b,t = 0, meaning that any trip with excess supply

has zero price.

The welfare-optimal planning problem can be formulated as an

integer linear program (ILP). Let x j be the indicator that rider j ∈ R

is picked up, and yi,k be the indicator that driver i takes Zi,k , her

kth
feasible path in Zi . We have:

max

x,y

∑
j ∈R

x jvj (1)

s.t.
∑

j ∈R, (oj ,dj ,τj )=(a,b,t )

x j ≤
∑
i ∈D

|Zi |∑
k=1

yi,k1{(a,b, t) ∈ Zi,k },

∀(a,b, t) ∈ T (2)

|Zi |∑
k=1

yi,k ≤ 1, ∀i ∈ D (3)

x j ∈ {0, 1}, ∀j ∈ R, yi,k ∈ {0, 1}, ∀i ∈ D, k = 1, . . . , |Zi |

(2) requires that for all (a,b, t) ∈ T , the number of riders taking

this trip is no more than the number of drivers whose paths cover

this trip. (3) requires that each driver takes at most one path.
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Relaxing the integrality constraints, we obtain the following

linear program (LP) relaxation, which we refer to as the primal LP:

max

x,y

∑
j ∈R

x jvj (4)

s.t.
∑

j ∈R, (oj ,dj ,τj )=(a,b,t )

x j ≤
∑
i ∈D

|Zi |∑
k=1

yi,k · 1{(a,b, t) ∈ Zi,k },

∀(a,b, t) ∈ T (5)

|Zi |∑
k=1

yi,k ≤ 1, ∀i ∈ D (6)

x j ≤ 1, ∀j ∈ R (7)

x j ≥ 0, ∀j ∈ R, yi,k ≥ 0, ∀i ∈ D, k = 1, . . . , |Zi |

Lemma 3.1 (Integrality). There exists an integer optimal solution
to the linear program (4).

We leave the proof to the full version of the paper [16]. For every

instance optimal planning problem, we can construct a minimum
cost flow (MCF) problem, where drivers flow through a network

with vertices corresponding to (location, time) pairs, edges corre-

sponding to trips, and edge costs corresponding to rider values. We

show a correspondence between optimal solutions of (4) and that

of the MCF, and appeal to the integrality of the optimal solution of

MCF [17]. This reduction can also be used to solve (4) efficiently.

Let pa,b,t , πi and uj be the dual variables corresponding to con-

straints (5), (6) and (7), respectively. The dual LP of LP (4) is:

min

∑
i ∈D

πi +
∑
j ∈R

uj (8)

s.t. πi ≥
∑

(a,b,t )∈Zi,k

pa,b,t , ∀k = 1, . . . , |Zi |, ∀i ∈ D (9)

uj ≥ vj − poj ,dj ,τj , ∀j ∈ R (10)

pa,b,t ≥ 0, ∀(a,b, t) ∈ T (11)

πi ≥ 0, ∀i ∈ D (12)

uj ≥ 0, ∀j ∈ R (13)

Lemma 3.2 (Welfare Theorem). A plan with anonymous trip
prices (x ,y,p) is welfare-optimal if and only if it forms a CE. Such
optimal CE plans always exist, are efficient to compute, and are indi-
vidually rational for riders, strictly budget balanced, and envy-free.

See [16] for the proof of this lemma. Given an optimal primal

solution and optimal dual solution, the dual variables π and u can

be interpreted as the total payment to drivers and utility of riders,

when the anonymous trip prices are given byp. We thenmake use of

standard observations about complementary slackness conditions

and their connection with CE [5, 18]. By integrality, optimal CE

plans always exist, and can be efficiently computed by solving the

primal LP and the dual LP of the corresponding MCF problem.

There is a lattice structure on drivers’ total payments among

all CE outcomes, and a connection between drivers’ total pay-

ments among CE outcomes and the welfare differences from repli-

cating/losing a driver. For any two sets of total payments to dri-

vers, π = (π1,π2, . . . ,πm ) and π ′ = (π ′
1
,π ′

2
, . . . ,π ′

m ), let the join

π̄ = π ∨ π ′
and the meet π = π ∧ π ′

be defined as, for all i ∈ D,
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Figure 2: The Super Bowl example: the driver-pessimal plan,
illustrating competitive equilibriumand thus smooth prices.

π̄i = max{πi ,π
′
i } and π i = min{πi ,π

′
i }, respectively. For each

driver i ∈ D, denote the social welfare gain from replicating driver i ,
and the social welfare loss from eliminating driver i , as:

Φℓi ,τ i ≜W (D ∪ {(τ i , τ̄i , ℓi )}) −W (D), (14)

Ψℓi ,τ i ≜W (D) −W (D\{(τ i , τ̄i , ℓi )}), (15)

whereW (D) is the highest social welfare achievable by a set of

drivers D. A driver-optimal plan has a payment profile at the top

of the lattice, and a driver-pessimal plan has a payment profile at

the bottom of the lattice.

Lemma 3.3 (Lattice Structure). Drivers’ total payments π
among all CE outcomes form a lattice. Moreover, for each driver
i ∈ D, Φℓi ,τ i and Ψℓi ,τ i are equal to the total payments to driver i
in the driver-pessimal and driver-optimal CE plans, respectively.

We leave the proof to [16]. For the lattice structure, we prove a

correspondence between the optimal solutions to the dual LP (8)

and the optimal solutions to the dual LP of the MCF problem, and

establish a lattice structure of the MCF optimal dual solutions. For

the driver optimal and pessimal payments, we show that the welfare

gains and losses form optimal dual solutions to theMCF by standard

arguments on shortest paths in the residual graph [1]. The fact that

the optimal dual solutions must be a subgradient of the objective of

the dual LP for MCF (as a function of the flow boundary conditions)

implies that the welfare gains and losses correspond to the bottom

and the top of the lattice of the dual variables.

Example 1 (Continued). For the Super Bowl scenario, the myopic

pricing mechanism with the lowest market-clearing prices sets

pB,C,0 = pB,A,0 = 0 and pC,B,1 = pC,A,1 = 100. The prices for

trips leavingC increase significantly at time 1, and the plan looking

forward from time 0 does not form a CE, since the alternative path

((C,C, 0), (C,A, 1)) has total payment of 100, higher than that of

driver 1’s path ((C,B, 0), (B,B, 1), (B,B, 2)), which pays 0.

By contrast, the driver-pessimal CE plan is illustrated in Figure 2.

The anonymous trip prices are shown in italics, below the edge

corresponding to each trip. In this plan, all drivers stay in or re-

position to locationC at time 0, pick up riders with high values, and

achieve the optimal welfare of 300. The outcome forms a CE, that

there is no other path with a higher total payment for any driver.
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All riders are happy with their dispatched trips given the prices,

and there is no driver or rider envy. □

4 SPATIAL-TEMPORAL PRICING
We first formally define a dynamic mechanism, that can use the

history of actions to update the plan forward from the current state.

Let st = (s1,t , s2,t , . . . , sm,t ) be the state of the platform at time

t , where each si,t describes the state of driver i ∈ D. If a driver is

available at time t at location a, we denote si,t = (a, t). Otherwise,
if driver i is en route, finishing the trip from a to b that she started

at time t ′ < t s.t. t ′ + δ (a,b) > t , we denote si,t = (a,b, t ′) if the
driver is relocating, or si,t = (a,b, t ′, j) if the driver is taking a

rider j from a to b. For drivers that have not yet entered, we write
si,t = (τ i , ℓi ). The initial state of the system is determined by the

types of drivers: s0 = ((τ
1
, ℓ1), . . . , (τm , ℓm )).

At each time t , each driver i takes an action αi,t . Assuming

si,t = (a, t), the action may be to relocate to location b, which
we denote αi,t = (a,b, t), or to pick up a rider j, in which case

αi,t = (a,dj , t , j) . For a driver i that is en route at time t ,αi,t = si,t—
the only available action is to finish the current trip. For driver i
that has not yet entered, αi,t = (τ i , ℓi ). The action αi,t taken by

driver i at time t determines her state si,t+1:

• (will complete trips at t + 1) if αi,t = (a,b, t ′) or αi,t = (a,b, t ′, j)
s.t. t ′ + δ (a,b) = t + 1, then si,t+1 = (b, t + 1), meaning these

drivers will become available at time t + 1 at their destinations,

• (still en route) if αi,t = (a,b, t ′) or αi,t = (a,b, t ′, j) s.t. t ′ +
δ (a,b) > t + 1, then si,t+1 = αi,t ,

• (not yet entered) if i ∈ D s.t. αi,t = (τ i , ℓi ), then si,t+1 = (τ i , ℓi ).

Let αt = (α1,t ,α2,t , . . . ,αm,t ) be the action profile of all drivers
at time t , and let history ht = (s0,α0, s1,α1, . . . , st−1,αt−1, st ), with
h0 = (s0). Finally, let Dt (ht ) = {i ∈ D | si,t = (a, t) for some a ∈

L} be the set of drivers available at time t .

Definition 4 (Dynamic RidesharingMechanism). Adynamic rideshar-

ingmechanism is defined by its dispatch and payment rules (α∗,π∗,q∗).
At each time t , given history ht and rider information R, the mech-

anism announces:

• for a subset of available driversDt (ht ), a dispatch action α
∗
i,t (ht )

to either pick up a rider or relocate, and a payment π∗
i,t (ht ) if the

driver follows the dispatch and takes this action (π∗
i,t (ht ) = 0 for

available drivers that are not dispatched).

• for each en route driver i ∈ D\Dt , we have α
∗
i,t (ht ) = si,t (keep

driving) and π∗
i,t (ht ) = 0 (no more payment).

• for each rider who receives a dispatch at time t , the payment

q∗j (ht ), in the event that she is picked up.

Each dispatched driver decides whether to follow the dispatch

and take action αi,t = α∗i,t (ht ), or to deviate and take an ac-

tion αi,t ∈ Ai,t (ht )\{α
∗
i,t (ht )}. For a driver in location a, the set

Ai,t (ht ) of available actions at time t is defined as Ai,t (ht ) =
{α∗i,t (ht )} ∪ {(a,b, t) | b ∈ L s.t. t + δ (a,b) ≤ T }. For an available

driver in locationawho is not dispatched, the set of available actions
in period t is Ai,t (ht ) = {(a,b, t) | b ∈ L s.t. t + δ (a,b) ≤ T }. An
en route driver must continue the trip, and Ai,t (ht ) = {α∗i,t (ht )}.

After observing the action profile αt at time t , the mechanism

pays each dispatched driver π̂i,t (αi,t ,ht ) = π∗
i,t (ht )1{αi,t = α∗i,t }

and charges q̂j (αt ) = q∗j (ht )
∑
i ∈Dt 1{αi,t = (oj ,dj , t , j)} from

each rider that requests a ride at time t .

A mechanism is feasible if ∀t ∈ [T ], ∀ht , (i) it is possible for each
available driver to take the trip dispatched to her, i.e. if si,t = (a, t)
for some a ∈ L, α∗i,t (ht ) ∈ { (a,b, t) | b ∈ L, t + δ (a,b) ≤ T } ∪{
(oj ,dj ,τj , j)

�� j ∈ R, τj = t , oj = a
}
, and (ii) no rider is picked-up

more than once: ∀j ∈ Rt ,
∑
i ∈Dt 1{α

∗
i,t (ht ) = (oj ,dj ,τj , j)} ≤ 1.

LetHt be the set of all possible histories up to time t . A strategy σi
of driver i defines for all times t ∈ [T − 1] and all histories ht ∈ Ht ,

the action αi,t = σi (ht ) ∈ Ai,t (ht ). For a mechanism that always

dispatches all available drivers, let σ ∗
i denote the straightforward

strategy of always following the mechanism’s dispatches.

Let σ = (σ1, . . . , σm ) be the strategy profile of all drivers, with
σ−i = (σ1, . . . , σi−1, σi+1, . . . , σm ). The strategy profile σ , together
with the initial state s0, and the rules of a mechanism, determines

all actions and payments of all drivers through the entire planning

horizon. Let σi |ht , σ |ht and σ−i |ht denote the strategy profile from

time t onward given history ht for driver i , all drivers, and all

drivers but i , respectively.

For each driver i ∈ D, let π̂i (σ ) =
∑T−1

t=0
π̂i,t (σi (ht ),ht ) denote

the total actual payments made to driver i , where drivers follow
σ and the history ht is induced by the initial state and strategy

σ . For the riders, let x̂ j (σ ) ∈ {0, 1} be the indicator that rider j is
picked-up at strategy profile σ . Let q̂j (σ ) = x̂ j (σ )q

∗
j (hτj ) be the

payment made by rider j at time τj .

Fixing driver and rider types, a ridesharing mechanism induces

an extensive form game. At each time point t , each driver decides

on an action αi,t = σi (ht ) ∈ Ai,t (ht ) to take based on strategy σi
and the history ht , and receives payment π̂i,t (αi,t ,ht ). The total
payment π̂i (σ ) to each driver is determined by the rules of the

mechanism. We define the following properties.

Definition 5 (Budget Balance (BB)). A ridesharing mechanism is

budget balanced if for any set of riders and drivers, and any strategy

profile σ taken by the drivers,

∑
j ∈R q̂j (σ ) ≥

∑
i ∈D π̂i (σ ).

Definition 6 (Individual Rationality (IR)). A ridesharing mecha-

nism is individually rational for riders if for any set of riders and

drivers and for any driver strategy σ , x̂ j (σ )vj ≥ q̂j (σ ), ∀i ∈ R.

Definition 7 (Subgame-Perfect Incentive Compatibility). A rideshar-

ingmechanism that always dispatches all available drivers is subgame-
perfect incentive compatible (SPIC) for drivers if given any set of

riders and drivers, following themechanism’s dispatches at all times

forms a subgame-perfect equilibrium (SPE) for the drivers, meaning

for all times t ∈ [T − 1], for any history ht ∈ Ht ,

T−1∑
t ′=t

π̂i,t ′(σ
∗
i |ht ,σ

∗
−i |ht ) ≥

T−1∑
t ′=t

π̂i,t ′(σi |ht ,σ
∗
−i |ht ), ∀σi , ∀i ∈ D .

A ridesharing mechanism is dominant strategy incentive compat-
ible (DSIC) if for any driver, following the mechanism’s dispatches

at all time points that the driver is dispatched maximizes her total

payment, regardless of the actions taken by the rest of the drivers.

Definition 8 (Envy-freeness in SPE). A ridesharing mechanism

that always dispatches all available drivers is envy-free in SPE for
drivers if for any set of riders and drivers, (i) the mechanism is SPIC
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for drivers, and (ii) for any time t ∈ [T − 1], for all history ht ∈ Ht ,

all drivers with the same state at time t are paid the same total

amount in the subsequent periods, assuming all drivers follow the

mechanism’s dispatches:

T−1∑
t ′=t

π̂i,t ′(σ
∗ |ht ) =

T−1∑
t ′=t

π̂i′,t ′(σ
∗ |ht ), ∀i, i ′ ∈ D s.t. si,t = si′,t .

A ridesharing mechanism is envy-free in SPE for riders if (i) the
mechanism is SPIC for drivers, and (ii) for all j ∈ R, for all possible

hτj ∈ Hτj , and all j ′ ∈ R s.t. (oj ,dj ,τj ) = (oj′ ,dj′ ,τj′)

x̂ j (σ
∗)vj − q̂j (σ

∗) ≥ x̂ j′(σ
∗)vj − q̂j′(σ

∗).

4.1 The Spatio-Temporal Pricing Mechanism
In defining the STP mechanism, we conceptualize the dispatch

and payment rule as defining a time 0 plan, and then defining an

updated “time t plan” in the event of a deviation by any driver (from
the current plan) at time t − 1. In each case, the plans are induced

by the dispatch rule assuming that drivers followed the proposed

dispatch actions. The dispatch and payment rules of a mechanism

can also be considered to be determined by the way in which a

“planning rule” is used to compute and update the plan. We adopt

this viewpoint in defining the STP mechanism.

For any time t ∈ [T ], given any state st of the platform, let

E(t )(st ) represent the time-shifted economy starting at state st , with

planning horizon T (t ) = T − t , the same set of locations L and

distances δ , the remaining riders R(t ) = {(oj ,dj ,τj − t ,vj ) | j ∈

R,τj ≥ t} and a set of drivers D(t )(st ) = {(τ
(t )
i , τ̄

(t )
i , ℓ

(t )
i ) | i ∈ D}

with types determined by st as follows:

(i) for available drivers i ∈ D s.t. si,t = (a, t) for some a ∈ L,

(τ
(t )
i , τ̄

(t )
i , ℓ

(t )
i ) = (0, τ̄i − t ,a),

(ii) for en route drivers i ∈ D s.t. si,t = (a,b, t ′) or (a,b, t ′, j),

(τ
(t )
i , τ̄

(t )
i , ℓ

(t )
i ) = (t ′ + δ (a,b) − t , τ̄i − t ,b), and

(iii) for driver i ∈ D that had not entered, (τ
(t )
i , τ̄

(t )
i , ℓ

(t )
i ) = (τ i −

t , τ̄i − t , ℓi ).

For each location a ∈ L and time t ∈ [T ], define the welfare gain
in the economy from adding a driver at (a, t) as,

Φa,t ≜W (D ∪ {(t ,T ,a)}) −W (D), (16)

where (t ,T ,a) represents the type of this additional driver. We now

define the STP mechanism.

Definition 9 (Spatio-Temporal Pricing). The spatio-temporal pric-
ing (STP) mechanism is a dynamic ridesharing mechanism that

always dispatches all available drivers. Given E(0) at the beginning

of the planning horizon, or E(t )(st ) immediately after some driver’s

deviation, the mechanism computes a plan as follows:

• To determine the dispatches (α∗), compute any optimal solution

(x ,y) to (1), and dispatch each driver i ∈ D to take the path

zi = Zi,k for k s.t. yi,k = 1 and pick up riders j ∈ R s.t. x j = 1,

• To determine driver and rider payments (π∗
and q∗), for each

trip (a,b, t) ∈ T , set anonymous trip prices pa,b,t = Φa,t −

Φb,t+δ (a,b) where Φa,t is the welfare gain as defined in (16):

- for each rider j ∈ R,q∗j = poj ,dj ,τj
∑
i ∈D 1{α∗i,τj = (oj ,dj ,τj , j)},

- for each driver i ∈ D, π∗
i,t =

∑
a,b ∈L pa,b,t1{(a,b, t) ∈ zi }.

The STPmechanism uses a history independent and time-invariant

planning rule: at any point of time, when computing a new forward-

looking plan, this is computed as if the time an updated plan was

computed was the beginning of the planning horizon. This is the

sense in which the STP mechanism does not make use of time-

extended contracts, including penalties for previous actions.
10

We

now state the main result of the paper.

Theorem 4.1. The spatio-temporal pricingmechanism is subgame-
perfect incentive compatible. It is also individually rational and strictly
budget balanced for any action profile taken by the drivers, and is
welfare optimal and envy-free in subgame-perfect equilibrium.

We leave the proof to [16]. Observe that Φa,T = 0 for all a ∈ L

since a driver that enters at time T cannot pick up any rider thus

does not improve welfare. Any feasible path of each driver i ∈ D

over the planning horizon starts at (ℓi ,τ i ) and ends at (a,T ) for
some a ∈ L. By telescoping sum, the total payment to driver i
under the planning rule of the STP mechanism is

πi =
∑

(a,b,t )∈zi

pa,b,t =
∑

(a,b,t )∈zi

Φa,t − Φb,t+δ (a,b) = Φℓi ,τ i ,

which is the welfare gain of the system from replicating driver i .
Lemma 3.3 implies that the STP mechanism can therefore be in-

terpreted as a dynamic mechanism that always announces a driver-

pessimal CE plan at the beginning of the planning horizon and

also after driver deviation. We may also consider the following

driver-optimal mechanism, which always computes and updates

the driver-optimal CE plan. A natural variation on the STP mech-

anism is to consider the driver-optimal analogue, which always

computes a driver-optimal competitive equilibrium plan at the be-

ginning of the planning horizon, or upon deviation of any driver.

This mechanism pays each driver the externality she brings to the

economy, and corresponds to the reasoning of the VCG mechanism.

The driver-optimal mechanism is, however, not incentive compati-

ble. See Ma et al. [16] for a detailed example and explanation.

Under the STP mechanism, recomputation of the plan can be

triggered by the deviation of any driver, and for this reason the

total payment of a driver is affected by the actions of others and the

straightforward behavior is not a dominant strategy. We show that

no mechanism can implement the desired properties in a dominant-

strategy equilibrium.

Theorem 4.2. Following the mechanism’s dispatch at all times
does not form a dominant strategy equilibrium under any dynamic
ridesharing mechanism that is, from any history onward, (i) welfare-
optimal (ii) individually rational, (iii) budget balanced and (iv) envy-
free for riders and drivers.

5 SIMULATION RESULTS
In this section we compare through simulation, the performance of

the STP mechanism against the myopic pricing mechanism with

the lowest market clearing prices (which market clearing prices are

10
A mechanism that is not history-independent or time-invariant can trivially align

incentives. For example, a mechanism that is not history-independent could “fire" any

driver that had deviated in the past according to the history, while keeping the plans

for the rest of the economy unchanged. A mechanism that is history-independent but

not time-invariant can threaten to “shut down" and not make any further dispatches

or payments to the drivers if any of them had deviated.
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Figure 4: Comparison of welfare and average driver regret.

chosen is unimportant for the results) for the economy as illustrated

in Figure 3, modeling the end of an event. The analysis suggests that

the STP mechanism achieves substantially higher social welfare,

as well as time-efficiency for drivers, whereas, under the myopic

pricing mechanism, drivers incur a high regret.

There are three locations L = {A,B,C} with distance δ (a,b) = 1

for all a,b ∈ L, and two time periods. The event ends at location C
at time 1, where there would be a large number of riders requesting

rides. In each economy, there are 15 and 10 drivers entering at

locations C and B at time 0. 20 riders request the trip (C,B, 0), and
10 riders request the trips (B,C, 0) and (B,A, 0) respectively. When

the event ends, there are NC,B,1 riders hoping to take a ride to

(B, 2). For each economy, the values of all riders drawn i.i.e. from

an exponential distribution with mean 10.

As NC,B,1 varies from 0 to 100, we randomly generate 1, 000

economies, and compare the average welfare under the two mech-

anisms, as shown in Figure 4a. The STP mechanism achieves a

significantly higher social welfare than the myopic pricing mech-

anism, especially when there there are a large number of drivers

taking the trip (C,B, 1).
The STP mechanism is incentive compatible, however, the my-

opic pricing mechanism is not. Drivers that are dispatched to the

trips (C,B, 1) and (B,A, 1) may regret having not relocated to C
instead and get paid a large amount at time 1. Define the regret
of a driver as the highest additional amount a driver can gain by

strategizing, in comparison to following a mechanism’s dispatch,

assuming the rest of the drivers all follow the mechanism’s dispatch.

Figure 4b shows that the average regret of the 25 drivers increase

significantly as more riders request the trip (C,B, 1).
The number of drivers completing each of the four trips of inter-

est under the two mechanism are as shown in Figure 5. As NC,B,1
increases, the STP mechanism dispatches more drivers to (C, 1)
to pick-up the higher-valued riders leaving C , while sending less
drivers away to pick up riders for trips (C,B, 0) and (B,A, 0). The
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Figure 5: Comparison of the number of drivers per trip.
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Figure 6: Comparison of trip prices.

myopic pricingmechanism, being oblivious to future demand, sends

all drivers starting at (C, 0) to location B, and an average of only 5

drivers to (C, 1) from (B, 1).
The average prices for the four trips under the two mechanisms

are as shown in Figure 6. First of all, prices are temporally “smooth"

under STP— trips leavingC at times 0 and 1 have very similar prices.

Moreover, the prices for trips (B,C, 0) and (C,B, 1) add up to the

price of the trip (B,A, 0), so that drivers starting at (B, 1) would
not envy each other. In contrast, prices for trips leaving C increase

significantly under the myopic pricing mechanism, and the drivers

that are dispatched the trip (B,A, 0) envy those that are dispatched

(B,C, 0) and subsequently (C,B, 1). The “surge" for the trip (C,B, 1)
is significantly higher under the myopic pricing mechanism than

under the STP mechanism, implying that the platform is providing

less price reliability for the riders.

6 CONCLUSION
We study the problem of optimal dispatching and pricing in two-

sided ridesharing platforms in a way that drivers would choose to

accept the platform’s dispatches instead of driving to another area

or waiting for a higher price. Under a complete information, discrete

time, multi-period and multi-location model, we show that always

following the mechanism’s dispatches forms a subgame-perfect

equilibrium among the drivers under the spatio-temporal pricing

mechanism, which always computes a driver-pessimal competitive

equilibrium plan at the beginning of the planning horizon as well

as after any deviations. Our empirical study suggests that the STP

mechanism achieves substantially higher social welfare and drivers’

time efficiency in comparison to the myopic pricing mechanism,

where in addition drivers incur a high regret.
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