Optimal Patrol Planning for Green Security Games with Black-Box Attackers

Haifeng Xu1, Ben Ford1, Fei Fang2, Bistra Dilkina1, Andrew Plumtre3, Milind Tambe1, Margaret Driciru4, Fred Wanyama4, Aggrey Rwetsiba4, Mustapha Nsubaga4, Joshua Mabonga4

1University of Southern California (USC)
2Carnegie Mellon University (CMU)
3Wildlife Conservation Society
4Uganda Wildlife Authority
The Classical Stackelberg Security Game Paradigm

- Stackelberg Game
 - Defender (leader): use limited resources to protect critical targets
 - Attacker (follower): long-term surveillance, well-planned (thus perfectly rational)

Flights Ferries Airports Road Networks
A Rapidly Growing Trend: Green Security Domains

Endangered Wildlife

Today
≈ 3,200

100 years ago
≈ 60,000

Fisheries

Environmental Resources
Challenges for Patrol Planning in Green Security Games

- Attacker’s bounded rationality \Rightarrow intricate attacker (behavior) models

Challenge 1:

How to optimize patrolling against these complicated attacker models?

Do we have to design a different algorithm for each attacker model?
Challenges for Patrol Planning in Green Security Games

- Attackers may have partial real-time surveillance
 - Can observe rangers’ current move and infer where they go next

“Those (poachers) would simply observe the rangers and base their offending patterns on the schedules of the rangers”

Challenge 2:
How to deal with attacker’s (partial) real-time surveillance?
Our Contributions:

- A new patrol planning framework OPERA (Optimal patrol Planning with Enhanced RA Randomness)
 - Work for any attacker model (under mild assumptions)
 - Mitigate negative effects of attacker’s real-time surveillance with enhanced randomness

- Test performances on real-world data from Uganda
Outline

- Motivation and Game Model
- Optimal Patrol Planning Against Black-Box Attackers
- Experimental Evaluation
Outline

- Motivation and Game Model
- Optimal Patrol Planning Against Black-Box Attackers
- Experimental Evaluation
Motivation Domain: Wildlife Protection in Uganda

Forest Area: QEPA
- Covers 2520 sq. km
- Divided into grids of 1km × 1km

Poachers: set trapping tools (e.g., snare)

Rangers: conduct patrols

Our Goal: maximize catches of snares

Collaborators: Wildlife Conservation Society, Uganda Wildlife Authority,
Motivation Domain: Wildlife Protection in Uganda

Patrol post
(one patroller)
Defender Strategy

Claim: a mixed strategy \iff one-unit fractional flow from v_{11} to v_{1T}

Observe: a pure strategy = a path from v_{11} to v_{1T}

Def: patrol effort at cell i = the aggregated flow through cell i

Time-unrolled Graph
Outline

- Motivation and Game Model
- Optimal Patrol Planning Against Black-Box Attackers
- Experimental Evaluation
The Single-Step Planning Task

Timeline:

Goal: maximize catches of snares against any given attacker model
- Attacker model: (current patrolling effort + other features) \(\rightarrow\) predicted snare presence
But... Many Complicated Attacker Models

Graphical Model [Nguyen et al.'16]
But...Many Complicated Attacker Models

Decision Trees [Kar et al.’ 17]
But…Many Complicated Attacker Models

Markov Random Field [Gholami et al.’17]
But... Many Complicated Attacker Models

More are coming...

Deep Neural Networks ???
How to optimize over these complicated attacker models?
Our Idea: Treat It as a Black-Box Function

For each cell i:

- Current patrol effort at i
- Terrain features
- Animal density
- Previous effort at i

......

\rightarrow Attacker Model

\rightarrow Prob. of detecting a snare at i in current period
Our Idea: Treat It as a Black-Box Function

For each cell i:

Assumption: g_i depends discretely on the current patrol effort

- Patrol levels in $\{0, 1, 2, \ldots, m\}$
 - **Thresholds** to classify patrol efforts into levels
- $g_i(0), g_i(1), \ldots, g_i(m)$ are the predicted probabilities for each level
- A good approximation when g_i is Lipchitz continuous in effort and m sufficiently large
The Optimization Task

Design patrol levels l_1, \ldots, l_m (induced by patrol efforts) to

$$\text{maximize } \sum_{i=1}^{N} g_i(l_i)$$

- Main Challenge: black-box representation results in combinatorial decision making problem under constraints
Theorem: Computing optimal mixed strategy is NP-hard.

Idea: reduction from Knapsack Problem

- m patrol levels with thresholds: $\alpha_0 < \alpha_1, ..., < \alpha_m$
- $g_i(i) = p_i$ and $g_i(j) = 0, \forall j \neq i$

Goal: with 1 unit patrol budget, decide for each i to patrol with α_i (reward p_i) or patrol with 0 (reward 0)

\iff

Packing m items (weight α_i, value p_i) to a 1 unit bag
Our Solution

A compact *mixed integer linear program* formulation for the optimization problem

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{N} \left(g_i(0) + \sum_{j=1}^{m} z_i^j \cdot [g_i(j) - g_i(j - 1)] \right) \\
\text{subject to} & \quad x_i \geq \sum_{j=1}^{m} z_i^j \cdot [\alpha_j - \alpha_{j-1}], \\
& \quad x_i \leq \alpha_1 + \sum_{j=1}^{m} z_i^j \cdot [\alpha_{j+1} - \alpha_j], \\
& \quad z_i^1 \geq z_i^2 \geq \ldots \geq z_i^m, \\
& \quad z_i^j \in \{0, 1\}, \\
& \quad x_i = \sum_{t=1}^{T} \left[\sum_{e \in \sigma^+(v_t,i)} f(e) \right], \\
& \quad \sum_{e \in \sigma^+(v_t,i)} f(e) = \sum_{e \in \sigma^-(v_t,i)} f(e), \\
& \quad \sum_{e \in \sigma^+(v_{T,1})} f(e) = \sum_{e \in \sigma^-(v_{1,1})} f(e) = 1 \\
& \quad 0 \leq x_i \leq 1, \quad 0 \leq f(e) \leq 1,
\end{align*}
\]
Our Solution

A compact *mixed integer linear program* formulation for the optimization problem

- Involve a particular technique to linearize the problem
- Scalable to problems with, e.g., 100 targets and 5 patrol levels

However

- Output a mixed strategy randomizing over only a few paths
- Unavoidable – efficient solvers are *designed to* find small-support solutions
- Vulnerable to attacker’s (partial) real-time surveillance
Add Extra Randomness by Entropy Maximization

- Many mixed strategies implement the same patrolling effort

- We compute the one that maximizes (Shannon) entropy
 - Usually support on a much larger set of paths
 - Difficult to learn

- There is an efficient algorithm to compute max-entropy distribution here
 - Convex analysis, combinatorial optimization, duality theory
Extension: Multi-Step Planning

Timeline:

Previous period Current period Next period

\[g_i^1(l_i^1) \quad g_i^2(l_i^1, l_i^2) \]

Goal: maximize aggregated total catch

\[\text{maximize} \quad \sum_{i=1}^{N} g_i^2(l_i^2, l_i^1) + \sum_{i=1}^{N} g_i^1(l_i^1) \]
Outline

- Motivation and Game Model
- Optimal Patrol Planning Against Black-Box Attackers
- Experimental Evaluation
Real-World Data Set from QEPA

Rangers record captures of snares
- From 2003 – 2017
- 39 patrol posts
- We test on post 11, 19, 24 (the mostly attacked)

Collaborators: Wildlife Conservation Society, Uganda Wildlife Authority,
Experiment 1: Compare with Baseline Algorithms

OPERA:
- bagging ensemble model [Gholami et al.’17] (two levels: low and high)

OPP: Optimal Patrol Planning

Another Two Baselines
- **GREED:** greedily pick the next reachable cell to patrol
- **RAND:** randomly pick the next reachable cell to patrol
Experiment 1: Compare with Baseline Algorithms

<table>
<thead>
<tr>
<th></th>
<th>#Detection</th>
<th>#Cover</th>
<th>#Routes</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERA</td>
<td>15/19</td>
<td>20/47</td>
<td>61</td>
<td>4.0</td>
</tr>
<tr>
<td>OPP</td>
<td>15/19</td>
<td>20/47</td>
<td>10</td>
<td>2.0</td>
</tr>
<tr>
<td>GREED</td>
<td>5/19</td>
<td>4/47</td>
<td>84</td>
<td>4.4</td>
</tr>
<tr>
<td>RAND</td>
<td>4/19</td>
<td>6/47</td>
<td>89</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Comparisons of Different Criteria for Patrol Post 11

- **#Detection**: \(a/b\) → out of \(b\) predicted attacks, the algorithm detects \(a\) attacks
- **#Cover**: \(a/b\) → out of \(b\) cells, \(a\) of them are covered with *high*
Experiment 1: Compare with Baseline Algorithms

<table>
<thead>
<tr>
<th></th>
<th>#Detection</th>
<th>#Cover</th>
<th>#Routes</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERA</td>
<td>6/6</td>
<td>24/72</td>
<td>22</td>
<td>2.6</td>
</tr>
<tr>
<td>OPP</td>
<td>6/6</td>
<td>24/72</td>
<td>6</td>
<td>1.3</td>
</tr>
<tr>
<td>GREED</td>
<td>2/6</td>
<td>2/72</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RAND</td>
<td>2/6</td>
<td>6/72</td>
<td>90</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Comparisons of Different Criteria for Patrol Post 19

Experiment 2: Compare with Past (Real) Patrolling

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Post 11 OPERA</th>
<th>Post 11 Past</th>
<th>Post 19 OPERA</th>
<th>Post 19 Past</th>
<th>Post 24 OPERA</th>
<th>Post 24 Past</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Detections</td>
<td>15/19</td>
<td>4/19</td>
<td>6/6</td>
<td>5/6</td>
<td>4/4</td>
<td>3/4</td>
</tr>
<tr>
<td>#Cover</td>
<td>20/47</td>
<td>6/47</td>
<td>24/72</td>
<td>11/72</td>
<td>20/59</td>
<td>14/59</td>
</tr>
</tbody>
</table>
Take-Away Message

- An efficient patrol planning tool that
 - Optimize against very general class of attacker models
 - Mitigate attacker real-time surveillance by adding extra randomness

Special Thanks to Wildlife Conservation Society, Uganda Wildlife Authority

Thank You