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ABSTRACT
Wildlife conservation organizations task rangers to deter and cap-
ture wildlife poachers. Since rangers are responsible for patrolling
vast areas, adversary behavior modeling can help more effec-
tively direct future patrols. In this innovative application track pa-
per, we present an adversary behavior modeling system, INTER-
CEPT (INTERpretable Classification Ensemble to Protect Threat-
ened species), and provide the most extensive evaluation in the AI
literature of one of the largest poaching datasets from Queen Eliz-
abeth National Park (QENP) in Uganda, comparing INTERCEPT
with its competitors; we also present results from a month-long
test of INTERCEPT in the field. We present three major contri-
butions. First, we present a paradigm shift in modeling and fore-
casting wildlife poacher behavior. Some of the latest work in the
AI literature (and in Conservation) has relied on models similar
to the Quantal Response model from Behavioral Game Theory for
poacher behavior prediction. In contrast, INTERCEPT presents a
behavior model based on an ensemble of decision trees (i) that more
effectively predicts poacher attacks and (ii) that is more effectively
interpretable and verifiable. We augment this model to account for
spatial correlations and construct an ensemble of the best models,
significantly improving performance. Second, we conduct an ex-
tensive evaluation on the QENP dataset, comparing 41 models in
prediction performance over two years. Third, we present the re-
sults of deploying INTERCEPT for a one-month field test in QENP
- a first for adversary behavior modeling applications in this do-
main. This field test has led to finding a poached elephant and
more than a dozen snares (including a roll of elephant snares) be-
fore they were deployed, potentially saving the lives of multiple
animals - including endangered elephants.
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1. INTRODUCTION
Wildlife crime continues to be a global crisis as more animal

species are hunted toward extinction [33, 29]. Species extinction
has dire consequences on ecosystems and the local and national
economies that depend on them (e.g., eco-tourism, ecosystem ser-
vices). To combat this trend, wildlife conservation organizations
send well-trained rangers to patrol in protected conservation areas
to deter and capture poachers and also to confiscate any tools used
for illegal activities that they find. At many sites, rangers collect
observation data on animals, poachers, and signs of illegal activity.
Given the magnitude of the wildlife poaching problem and the dif-
ficulty of the patrol planning problem, patrol managers can benefit
from tools that analyze data and generate forecasts of poacher at-
tacks - the focus of this paper. In working with real-world wildlife
crime data, this innovative application paper illustrates the impor-
tance of research driven by data from the field and real-world trials.
This work potentially introduces a paradigm shift in showing how
adversary modeling ought to be done for deployed security games
[30, 8], particularly in domains such as green security games [11,
15, 23, 20], where data is sparse compared to settings such as urban
crime [40, 1]. Security games have received significant attention at
AAMAS [17, 16, 22, 2, 15], and past work in security games has
often focused on behavioral models that are learned from and tested
in human subject experiments in the laboratory, which provides a
large amount of attacker choice data over a small number of tar-
gets [38, 25, 15]. The Quantal Response model is one example
that models boundedly rational attackers’ choices as a probability
distribution via a Logit function [38]. However, the wildlife crime
domain introduces a set of real-world challenges (e.g., rangers col-
lect limited, noisy data over a large number of targets with rich
target features) that require behavior modeling efforts to not only
focus more on real-world data and less on laboratory data, but also
not rely on plentiful attack data.

Outperforming previous laboratory-developed models [38, 25],
CAPTURE [24] is a two-layered model, developed using real-
world wildlife poaching data, that incorporates key insights and ad-
dresses the challenges present in wildlife crime data. CAPTURE’s
top layer attempts to predict the “attackability” of different targets,
essentially providing predictions of poacher attacks. The bottom
observation layer predicts how likely an attack that has occurred
would be observed given the amount of patroller coverage (also
known as effort). CAPTURE models the attackability layer as a
hidden layer and uses the Expectation Maximization (EM) algo-
rithm to learn parameters for both layers simultaneously. Moreover,
CAPTURE also contains a Dynamic Bayesian Network, allowing
it to model attacker behavior as being temporally dependent on past
attacks. The CAPTURE model, the current state-of-the-art in the



wildlife crime domain, represents a level of complexity not previ-
ously seen in behavior modeling in the security game literature.

While the focus of CAPTURE is on the observation layer’s per-
formance (i.e., “Where will patrollers observe past poaching at-
tacks given their patrol effort?”), our focus is on forecasting where
future attacks will happen and thus we are interested in the at-
tackability layer’s predictions and performance (e.g., “Where will
poachers attack next?”). However, CAPTURE’s attackability pre-
dictions would sometimes predict too many targets to be attacked
with a high probability and would thus have poor performance, as
discussed in more detail later in the paper. Given that CAPTURE
embodied the latest in modeling adversary behavior in this domain,
our first attempt focused on three different enhancements to CAP-
TURE: replacement of the observation layer with a simpler layer
adapted from [6] (CAPTURE-LB), modeling attacker behavior as
being dependent on the defender’s historical coverage in the previ-
ous time step (CAPTURE-PCov), and finally, exponentially penal-
izing inaccessible areas (CAPTURE-DKHO). Unfortunately, all of
these attempts ended in failure.

While poor performance is already a significant challenge, there
are two additional, important shortcomings of CAPTURE and other
complex models in this same family. First, CAPTURE’s learning
process takes hours to complete on a high-performance computing
cluster - unacceptable for rangers in Uganda with limited comput-
ing power. Second, CAPTURE’s learned model is difficult to in-
terpret for domain experts since it makes predictions based on a
linear combination of different decision factors; the values of all its
parameters’ feature weights (i.e., 10 weights and a free parameter
for the attack layer) need to be simultaneously accounted for in a
single interpretation of poacher preferences. These limitations and
the poor performance of CAPTURE, the most recent in a long line
of behavioral game theory models, drove us to seek an alternative
modeling approach.

This paper presents INTERCEPT (INTERpretable Classification
Ensemble to Protect Threatened species), a new adversary behav-
ior modeling application, and its three major contributions. (1)
Given the limitations of traditional approaches in adversary behav-
ior modeling, INTERCEPT takes a fundamentally different mod-
eling approach, decision trees, and delivers a surprising result: al-
though decision trees are simpler and do not take temporal corre-
lations into account, they perform significantly better than CAP-
TURE (a complex model that considers temporal relationships), its
variants, and other popular machine learning models (e.g., Logis-
tic Regression, SVMs, and AdaBoost). Furthermore, decision trees
satisfy the fundamental requirement of interpretability; without an
interpretable model, relevant authorities would not test INTER-
CEPT in the field, thus completely defeating the spirit of innova-
tive applications research. However, decision trees do not take into
account the spatial correlations present in this dataset, and we in-
troduce a spatially aware decision tree algorithm, BoostIT, that sig-
nificantly improves recall with only modest losses in precision. To
further augment INTERCEPT’s performance, we construct an en-
semble of the best classifiers which boosts predictive performance
to a factor of 3.5 over the existing CAPTURE model. (2) These
surprising results raise a fundamental question about the future of
complex behavioral models (e.g., Quantal Response based security
game models [38, 25, 24]) in real-world applications. To underline
the importance of this question, we conduct the most extensive em-
pirical evaluation to date of the QENP dataset with an analysis of
41 different models and a total of 193 model variants (e.g., differ-
ent cost matrices) and demonstrate INTERCEPT’s superior perfor-
mance to traditional modeling approaches. (3) As a first for adver-
sary behavior modeling applications applied to the wildlife crime

Figure 1: Ashes and snare found by rangers directed by INTER-
CEPT. Photo credit: Uganda Wildlife Authority ranger.

domain, we present the results of a month long real-world deploy-
ment of INTERCEPT: compared to historical observation rates of
illegal activity, rangers that used INTERCEPT observed 10 times
the number of findings than the average. In addition to many signs
of trespassing, rangers found a poached elephant, a roll of elephant
snares, and a cache of 10 antelope snares before they were deployed
(pictures in Figure 1). Each confiscated snare represents an ani-
mal’s life saved; while the rangers’ finding of a poached elephant
carcass is a grim reminder that poachers are active, these successful
snare confiscations demonstrate the importance of real-world data
in developing and evaluating adversary behavior models.

2. RELATED WORK
There have been recent efforts on planning effective patrol strate-

gies to combat poaching [11, 10], which have led to an application,
PAWS, being deployed in the field. However, unlike our work,
the focus of PAWS has been on generating risk-based randomized
patrols and not on predicting poacher attacks. INTERCEPT’s pre-
dictive analysis is essential to efficiently allocating limited ranger
patrolling resources and can thus be the driving force for further
prescriptive analysis (i.e., patrol planning). In addition, the deploy-
ment of our work in the field has shown a level of success that has
not been previously seen in PAWS.

Models inspired by previous work in behavioral game theory
[21, 26, 4, 31] have been extensively used in recent years to predict
human behavior in simultaneous-move games [34, 35, 36] and also
to predict adversary behavior in multiple security game domains in-
cluding counter-terrorism [25], wildlife crime [37, 15, 24], fisheries
protection [12, 3], and even in urban crime [41, 1, 39] where a Dy-
namic Bayesian Network similar to CAPTURE was used. Further-
more, researchers in the conservation community have also used
two-layered behavioral models similar to CAPTURE to predict fu-
ture poaching behavior [5]. CAPTURE is only the latest model in
a long chain of behavioral models used for human behavior predic-
tion in game theory and also in the conservation literature. How-
ever, as detailed in later sections, CAPTURE suffers from several
limitations and performs poorly in predicting attacks in the real-
world wildlife crime dataset.

Modeling and predicting other agents’ behavior has also been
studied in application domains such as RoboCup and military op-
erations [19, 32], but such predictions are often based on real-time
information, which is not available in this particular problem or
dataset. There have been other attempts to predict poacher behavior
in Machine Learning research: [28] uses association rule mining to
get a single rule that classifies locations with poaching attack, but
the expressiveness of this approach is limited due to the single rule;
[27] uses standard classification algorithms to predict the attacka-



bility of targets and uses a regression model to predict the proba-
bility of attack. However, this work only reports accuracy, which is
not an informative metric given the extreme class imbalance present
in real-world wildlife crime datasets (i.e., just predicting no attacks
everywhere could possibly lead to high accuracy) and the poten-
tially high cost of false negatives (i.e., an endangered animal may
be poached). Moreover, our decision tree based model can be seen
as a generalization of this work since we can view a set of rules
(instead of just one) that describe the model in richer terms than a
single rule.

3. WILDLIFE CRIME DATASET

Figure 2: QENP

The following discussion is on
wildlife crime data collected over
13 years at the Queen Elizabeth
National Park (QENP) in Uganda.
QENP (Figure 2) is a wildlife
conservation area covering 1,978
square kilometers. Among their
many duties, wildlife park rangers
there conduct foot patrols to moni-
tor wildlife habitat, apprehend any
poachers sighted inside the park,
and collect data on animal signs
and signs of illegal human activity.

3.1 Dataset Challenges
Because this is a real-world

geospatial crime dataset, it is important to understand the inher-
ent challenges in analyzing its contents, such as nonlinear relation-
ships between features [14]. Additionally, data can only be col-
lected in areas that are patrolled, and even in the areas that are
patrolled, poaching signs may remain undetected. This occurs be-
cause poaching signs (such as snares) are often well-hidden, and
rangers may need to conduct a thorough patrol in order to detect
any attack – an infeasible task to undertake for all targets all the
time due to limited patrolling resources. This real-world constraint
not only leads to uncertainty in the negative class labels (i.e., when
poaching signs are not observed we are uncertain whether an at-
tack actually happened at the corresponding target or not) but also
results in a small number of positive samples being recorded in the
dataset thus creating a huge class imbalance. As such, it is nec-
essary to evaluate the attack prediction model’s performance with
metrics that account for this uncertainty, such as those for Positive
and Unlabeled Learning (PU Learning) [18], and are discussed in
more detail in the following sections.

3.2 Dataset Composition
The entire QENP area was discretized into 1 square kilometer

grid cells (total 2,522 cells), each as a potential target of poaching.
For each target, the ranger patrol effort level (i.e., coverage) and ob-
served illegal human activity signs (e.g., poached animal carcasses,
snares) were recorded. In addition, each target is associated with a
non-static average ranger patrol effort value and a set of static fea-
tures (that are constant throughout the entire time period): terrain
features such as habitat (the terrain type and relative ease of travel)
and terrain slope; distances to nearby roads, water bodies, patrol
posts, and villages; and animal density.

For the following analysis, we examine animal poaching data
from 2003-2015. We aim to find the targets that are liable to be
attacked since predicting the attackability of targets is helpful in
guiding future patrols. We assume a target is attackable if an at-
tack is ever observed at that target at any point in time. Therefore,

when creating training sets, we combine observations from the en-
tire training period for each target and label it as attackable if any
observations were made.

Given the uncertainty in negative labels, there are bound to be
training and testing samples that contradict one another. We con-
sider a sample in the training set and a sample in the testing set
to be contradictory when they have the same combination of static
domain features values (e.g., terrain, distances, animal density) and
non-static patrol coverage amount (i.e., low or high coverage) but
different class labels (attacked or not attacked). These contradic-
tions introduce additional noise in evaluating the performance of
learned models and would thus cause any model to perform poorly
on said contradictory data. As such, we remove these contradic-
tions, about 10% of the data, from testing sets.

4. CAPTURE AND PROPOSED VARIANTS
The natural first step towards predicting future poaching attacks

based on our real-world wildlife crime dataset was to use the best
previous model, CAPTURE [24]. CAPTURE was shown to have
superior predictive performance to a number of other standard mod-
els in the behavioral game theory literature (e.g., Quantal Response
(QR) [38], Subjective Utility Quantal Response (SUQR) [25]).

To make attackability predictions, we discretized the protected
area into a set of targets I . Each target i ∈ I has a set of domain-
specific features xi ∈ x such as animal density di and distance to
water. In a given time period t, a target i will be patrolled/covered
by rangers with probability ct,i.

CAPTURE consists of a two-layered behavior model. CAP-
TURE’s first layer, the attackability layer, computes the probability
that a poacher will attack a given target i at time step t. Similar to
SUQR, which has been used to describe human players’ stochas-
tic choice of actions in security games, CAPTURE predicts attacks
based on a linear combination of domain features xt,i, ranger cov-
erage probability ct,i at the current time step t, and whether the
target was attacked in the previous time step at−1,i. With this last
feature, at−1,i, CAPTURE models attacker behavior as being tem-
porally dependent on past attacks.

p(at,i = 1|at−1,i, ct,i, xt,i) =
eλ

ᵀ[at−1,i,ct,i,xt,i,1]

1 + eλ
ᵀ[at−1,i,ct,i,xt,i,1]

(1)

λ is a parameter vector representing the importance of the features.
CAPTURE’s second layer, the observation layer, computes the

probability that rangers will observe an attack if poachers did at-
tack that patrolled area based on a subset of domain features (e.g.,
habitat and slope) x̂t,i and ranger coverage probability ct,i.

p(ot,i = 1|at,i = 1, ct,i, x̂t,i) = ct,i ×
eω

ᵀ[x̂t,i,1]

1 + eω
ᵀ[x̂t,i,1]

(2)

ω is a parameter vector that measures how domain features im-
pact observation probability. The model parameters (λ, ω) that can
maximize the likelihood of observations are estimated via the Ex-
pectation Maximization (EM) algorithm.

However, CAPTURE has a few limitations that lead to poor pre-
dictive performance in its attackability layer. First, CAPTURE’s
attackability predictions would sometimes predict too many targets
to be attacked with a high probability (e.g., 80% of the targets will
be attacked with almost 100% probability), leading to poor perfor-
mance (see Section 7). One explanation is CAPTURE’s parame-
ter learning algorithm focuses on maximizing the performance of
the observation layer rather than on the attackability layer. As the
observation layer acts as a filter for the attackability layer, CAP-
TURE’s learning process will converge to solutions that obtain de-



cent performance for the observation layer even if the attackability
layer’s performance is poor.

Therefore, we propose several novel variants of CAPTURE as
attempts to improve its predictions. In an attempt to restrict the
degrees of freedom in the observation layer, and thus restrict the
values the attackability layer can take in the learning process, we
propose CAPTURE-LB which replaces the observation layer with
a simpler observation layer, adapted from [6], described as follows:

p(ot,i = 1|at,i = 1, ct,i) = 1− e−β×ct,i (3)

where β ∈ [0, 1] is the parameter that estimates the detection ef-
ficiency. This not only provides a straightforward way of assess-
ing the performance of patrol effort to observations but also has a
smaller chance of overfitting, due to fewer parameters. For a given
attack probability p(at,i = 1), the unconditional probability of ob-
serving an attack at target i at time step t is given by:

p(ot,i) = p(at,i = 1)× p(ot,i = 1|at,i = 1, ct,i) (4)

Second, CAPTURE’s attackability layer assumes that poachers
plan attacks based on the patrol coverage in the current time step,
which may not be realistic in the real world as the poachers may not
get up-to-date information about the current patrol strategy and thus
would rely on historical patrol coverage instead [11]. Therefore,
we propose another variant of CAPTURE, CAPTURE-PCov, that
learns based on the previous time step’s patrol coverage instead of
the current time step’s patrol coverage (Equation 5). Similarly, we
propose CAPTURE-PCov-LB, a model that uses the attackability
layer of CAPTURE with previous coverage as a feature but instead
uses the LB observation layer defined in Equation 3.

p(at,i = 1|at−1,i, ct−1,i, xt,i) =
eλ

ᵀ[at−1,i,ct−1,i,xt,i,1]

1 + eλ
ᵀ[at−1,i,ct−1,i,xt,i,1]

(5)
Finally, CAPTURE’s attackability predictions fail to take into

account the domain knowledge that inaccessible and unattractive
areas of the park will not be attacked with high probability, and
we thus propose another variant CAPTURE-DKHO, which is the
same as CAPTURE-PCov-LB except that it exponentially penal-
izes the attractiveness of inaccessible areas (Equation 6).

p(at,i = 1|at−1,i, ct−1,i, xt,i) =
eλ

ᵀ[at−1,i,ct−1,i,x
′
t,i,1]

1 + eλ
ᵀ[at−1,i,ct−1,i,x

′
t,i,1]

(6)
x′ corresponds to the linear combination of features x but with the
modified habitat feature σ′i = −σieσi which heavily penalizes high
habitat values (i.e., hard to access areas).

5. INTERCEPT
The attempts of using the best previous model CAPTURE and

the more complex variants of CAPTURE, proposed to address the
limitations of CAPTURE, all suffered from poor attackability pre-
diction performance as shown in Section 7. The natural progression
then would have been to pursue more complex models in this be-
havioral game theory family of models with the expectation that
they would improve performance on our real-world data. However,
as reported in [24], complex models such as CAPTURE and its
variants incur heavy computational costs; it takes approximately 6
hours for these models to complete execution. In addition, these
models become more difficult to interpret when the dimensionality
of the feature space increases (e.g., more numerical values to simul-
taneously account for in a single interpretation). We wanted to use
models that would address all of these shortcomings by, not only
significantly reducing computational costs so as to be usable by

rangers with limited computing power in Uganda, but also remain
interpretable to domain experts as the feature space dimensionality
increases. All of these factors pointed against using more complex
behavioral models. Therefore, we break from the current trend in
behavior modeling in security games and model adversary behav-
ior in terms of decision tree-based behavior models, even though
we were initially skeptical about its predictive capabilities. Sur-
prisingly, this simpler approach led to significant improvements in
performance over the prior state-of-the-art (i.e., CAPTURE).

5.1 BoostIT
A binary decision tree D is trained on a set Θ of independent

variables x (the domain features), a dependent variable o (attack
observations), and outputs a binary classificationDi for each target
i: {not attacked (Di = 0), attacked (Di = 1)}. A decision tree’s
negative predictions for a test set Ψ are denoted by P−Ψ (D) and
positive predictions by P+

Ψ (D) (i.e., vectors of binary predictions).
Crime hot spots are part of a well-known theory in Criminology

[9] that views crime as an uneven distribution; crime is likely to be
concentrated in particular areas called hot spots. If a particular geo-
graphic area has a high concentration of predicted attacks, it is rea-
sonable to interpret these predictions as a hot spot prediction (i.e.,
predicting a high concentration of crime). While CAPTURE ex-
plicitly models attacks as a probability distribution decided by a lin-
ear combination of feature values and thus can implicitly represent
the hot spots with soft boundaries in the geographic space, decision
trees’ rules with hard boundaries in the feature space would lead
to fine-grained segmentations in the geographic space and is thus
less capable of representing hot spots. As such, we designed the
Boosted decision tree with an Iterative learning algorithm (hence-
forth referred to as BoostIT) (Algorithm 1), where proximity to a
predicted hot spot is encoded as an additional input feature.

Algorithm 1 BoostIT

D0 ← LEARNDECISIONTREE(Θ0)
repeat

hΘ ← CALCHOTSPOTPROXIMITY(PΘm−1(Dm−1), α)
hΨ ← CALCHOTSPOTPROXIMITY(PΨm−1(Dm−1), α)
Θm ← ADDFEATURE(Θ0, hΘ)
Ψm ← ADDFEATURE(Ψ0, hΨ)
Dm ← LEARNDECISIONTREE(Θm)
m = m+ 1

until iterationStoppingLevelReached
return P

D0 is the initial decision tree learned without the hot spot prox-
imity feature h, and Θ0 and Ψ0 correspond to the initial training
and test sets, respectively. For each level of iteration m, a feature
hΘ (and hΨ) is computed for each target i ∈ I that corresponds
to whether that target is close to a predicted hot spot in the train-
ing (and test sets); for example, if a target i ∈ PΘm−1(Dm−1) is
adjacent to α or more targets in P+

Θm−1(Dm−1) (i.e., targets that
are predicted to be positive), then hΘ

i = 1. We then re-learn the
decision tree at each iteration m with a feature augmented dataset
Θm. As an example, BoostIT may add a feature to a target i that i
is near a hot spot if there are two adjacent targets that are predicted
to be attackable. In the next iteration, this new feature (“near a hot
spot”) will get used in learning about predicting attacks on i. This
continues until an iteration criterion is reached. Note that the test
set Ψ is not used while learning new decision trees (only training
data Θ is used) and is only used to update the test set prediction
PΨ. In the rest of the paper, we will refer to BoostIT with an α



as BoostIT-αNearestNeighbors (or BoostIT-αNN). With this algo-
rithm, the final decision treeDm would generally predict more pos-
itive predictions with concentrated areas (i.e., hot spots) compared
toD0, but the set of predictions ofDm is not necessarily a superset
of the set of predictions of D0.

Although we are primarily interested in predicting attackabil-
ity, we can also predict where patrollers would observe attacks by
cascading attackability predictions with the LB observation layer
(Equation 3). We convert the unconditional observation probabil-
ity, derived from the cascaded model (Equation 4), to binary pre-
dictions by classifying samples as observed/not observed based on
whether they are above or below the mean respectively.

5.2 INTERCEPT: Ensemble of Experts
We investigated the predictions of the traditional decision tree

and BoostIT and observed that they are diverse in terms of their
predictions. Here, by diversity, we mean that they predict attacks
at a variety of targets. Therefore, while one model may fail to cor-
rectly classify a particular target as attacked, another model may
succeed. This indicates the ability of different models to correctly
learn and predict on different regions of the feature space. For ex-
ample, let us consider the following three models: (i) DecisionTree,
(ii) BoostIT-3NN and (iii) BoostIT-2NN. While computing pair-
wise disagreement between the models’ attackability predictions,
we observed that: (i) DecisionTree and BoostIT-3NN disagree on
105 out of 2211 target samples; (ii) DecisionTree and BoostIT-2NN
disagree on 97 out of 2211 samples; and (iii) BoostIT-3NN and
BoostIT-2NN disagree on 118 out of 2211 samples. This observa-
tion led us to consider combining the best decision tree and BoostIT
based models, thus forming INTERCEPT–an ensemble of experts.

Because of uncertainty in negative labels, INTERCEPT consid-
ers not only decision tree models with the standard false positive
(FP) cost of one, but also decision trees with various FP costs. For
a decision tree with FP cost of 0.6, during the learning process, the
decision tree will not receive the full penalty of 1 but will instead
receive a penalty of 0.6 for each false positive prediction it makes.

In INTERCEPT, each expert model voted for the final attack pre-
diction on a particular target. We considered three types of voting
rules to determine whether a target should be predicted to be at-
tacked by the ensemble: (a) majority of the experts predict an at-
tack; (b) all experts predict an attack; and (c) any one expert pre-
dicts an attack. INTERCEPT uses the best voting rule: majority.

We considered ensembles with three and five experts. Having at
most 5 experts makes the ensemble easily interpretable. In other
words, the final prediction at a target is due to only 5 decision rules
at a maximum, and it is easy to walk the domain experts through
the 5 rules in a way that the logic is easily verified.

6. EVALUATION METRICS
To evaluate INTERCEPT and other models, we first prepared

two separate train/test splits on the dataset. For one dataset, we
trained on data from 2003 to 2013 and evaluated our models on data
in 2014, and for the other dataset, we trained on data from 2003 to
2014 and evaluated on data from 2015. Prior to discussing the eval-
uation results, we briefly discuss the metrics we use for computing
our performance on predicting attackability and observed attacks.

Any metric to evaluate the attackability of targets in domains
such as our wildlife poaching domain must account for the uncer-
tainty in negative class labels. Therefore, in addition to standard
metrics (Precision, Recall, and F1-score) that are used to evaluate
models on datasets where there is no uncertainty in the underlying
ground truth, we also evaluate our models with a metric that ac-
counts for the uncertainty present in our dataset. The metric intro-

duced in [18], henceforth referred to as L&L, is an appropriate met-
ric since it is specifically designed for models learned on Positive
and Unlabeled (PU) datasets (i.e., datasets with uncertain negative
labels). L&L is defined in equation 7, where r denotes the recall
and Pr[f(Te) = 1] denotes the probability of a classifier f mak-
ing a positive class label prediction. We compute Pr[f(Te) = 1]
as the percentage of positive predictions made by our model on a
given test set.

L&L(D,Te) =
r2

Pr[f(Te) = 1]
(7)

As we are certain about the positive samples in our dataset, L&L re-
wards a classifier more for correctly predicting where attacks have
occurred (i.e., positive labels). However, it also prevents models
from predicting attacks everywhere, via its denominator, and en-
sures that the model is selective in its positive predictions.

We also evaluate the models in terms of observation predictions.
Here, we report standard metrics (Precision, Recall, and F1-score).
In addition, we also compute the area under the Precision-Recall
curve (PR-AUC). PR-AUC is a more appropriate metric for evalu-
ating models on datasets with severe class imbalance [7] compared
to area under the ROC curve. When there are many more negative
points than positive points, the model can make many false positive
predictions and the false positive rate would still be low, and thus
the ROC curve becomes less informative. In contrast, precision bet-
ter captures how well the model is making correct positive predic-
tions given a small number of positive examples. L&L is no longer
used to evaluate the observation probability model as there is no
uncertainty in terms of the observations, i.e., we either observed or
did not observe an attack, and we are measuring the model’s abil-
ity to predict whether we will observe attacks at already attacked
targets.

7. EVALUATION ON HISTORICAL REAL-
WORLD PATROL DATA

To compare INTERCEPT with its competitors, we conducted
a thorough investigation of the performance of 41 different mod-
els and 193 variants (a detailed list is available in the online ap-
pendix 1). This is one of the largest evaluation efforts on a real-
world dataset in the wildlife crime domain, and we compared IN-
TERCEPT against the previous best model CAPTURE, its variants,
and other machine learning approaches such as Support Vector Ma-
chines (SVM), AdaBoosted Decision Trees, and Logistic Regres-
sion2. All the numbers highlighted in bold in the tables indicate
the results of the best performing models in that table. The best
performing INTERCEPT system is an ensemble of five decision
trees with majority voting. The five decision trees are: a standard
decision tree, two BoostIT decision trees (m = 1) with α = 2
and α = 3 respectively, and two decision trees with modified false
positive costs 0.6 and 0.9 respectively. Note that, due to data collec-
tion methodology changes in 2015, the distribution of attack data
in 2015 is significantly different than all other previous years; 2015
is a difficult dataset to test on when the training dataset of 2003-
2014 represents a different distribution of attack data, and we will
demonstrate this impact in the following evaluation.

7.1 Attackability Prediction Results
In Tables 1 and 2, we show a comparison of the performance be-

tween our best INTERCEPT system (the five decision tree ensem-
1http://teamcore.usc.edu/papers/AAMAS2017_Ensemble_Appendix.pdf
2Note that due to data confidentiality agreements, we are unable to
show an example decision tree in this paper.



Classifier Type F1 L&L Precision Recall
PositiveBaseline 0.06 1 0.03 1
UniformRandom 0.05 0.51 0.03 0.50
CAPTURE 0.31 3.52 0.25 0.39
CAPTURE-PCov 0.13 1.29 0.08 0.48
CAPTURE-PCov-LB 0.08 0.87 0.04 0.58
CAPTURE-DKHO 0.10 1.05 0.06 0.67
INTERCEPT 0.41 5.83 0.37 0.45

Table 1: Attackability Prediction Results on 2014 Test Data

Classifier Type F1 L&L Precision Recall
PositiveBaseline 0.14 1 0.07 1
UniformRandom 0.19 0.50 0.11 0.50
CAPTURE 0.21 1.08 0.13 0.63
CAPTURE-PCov 0.19 0.87 0.11 0.57
CAPTURE-PCov-LB 0.18 0.69 0.11 0.46
CAPTURE-DKHO 0.20 0.71 0.12 0.5
INTERCEPT 0.49 3.46 0.63 0.41

Table 2: Attackability Prediction Results on 2015 Test Data

ble with majority voting), the current state-of-the-art CAPTURE,
its variants, and other baseline models towards accurately predict-
ing the attackability of targets in QENP for years 2014 and 2015,
respectively. The PositiveBaseline corresponds to a model that pre-
dicts every target to be attacked (p(at,i) = 1;∀i, t), and the Uni-
formRandom corresponds to the baseline where each target is pre-
dicted to be attacked or not attacked with equal probability. Note
that, in this subsection, when evaluating two-layered models such
as CAPTURE and its variants, we are examining the performance
of just the attackability layer output, and we defer the evaluation
of the observation predictions to Section 7.2. Since we evaluate
the attackability predictions of our models on metrics for binary
classification, the real-valued output of the attackability layer of
CAPTURE and its variants were converted to a binary classifica-
tion where probabilities greater than or equal to the mean attack
probability were classified as positive.

We make the following observations from these tables: First, IN-
TERCEPT completely outperforms the previous best model CAP-
TURE and its variants, as well as other baseline models in terms
of L&L and F1 scores. For 2014, INTERCEPT outperforms CAP-
TURE in terms of precision, recall, F1, and L&L score. For 2015
test data, INTERCEPT represents an even larger performance in-
crease by approximately 3.50 times (L&L score of 3.46 vs 1.08)
over CAPTURE and even more so for CAPTURE-PCov (L&L
score of 3.46 vs 0.87). CAPTURE-PCov doesn’t even outperform
the positive baseline. Second, CAPTURE performs better on the
2014 dataset (when the training and testing data were similarly dis-
tributed) than on the 2015 dataset. In contrast, INTERCEPT re-
mained flexible enough to perform well on the difficult 2015 test-
ing set. However, CAPTURE-PCov, the more realistic variant of
CAPTURE that can actually be used for forecasting, fails to make
meaningful predictions about the attackability of targets. Its similar
performance to PositiveBaseline demonstrates the need for mod-
els to learn the attackability of targets independently of observa-
tion probability to avoid learning models that make incorrect infer-
ences about the attackability of the park (e.g., the entire park can
be attacked). This is particularly important in the wildlife poaching
domain because, due to the limited number of security resources,
rangers cannot patrol every target all the time. Therefore, the attack
probability model’s predictions need to be extremely precise (high
precision) while also being useful indicators of poaching activi-
ties throughout the park (high recall). Third, CAPTURE-PCov-LB

Classifier Type F1 L&L Precision Recall
Weighted DecisionTree 0.11 1.01 0.06 0.48
SVM-BestFPCost-0.3 0.13 1.18 0.46 0.45
Logistic Regression - - - 0
AdaBoostDecisionTree-
BestFPCost-0.2

0.13 1.22 0.07 0.48

INTERCEPT 0.41 5.83 0.37 0.45

Table 3: Additional Attackability Prediction Results on 2014 Test
Data

Classifier Type F1 L&L Precision Recall
Weighted DecisionTree 0.25 1.42 0.15 0.69
SVM-BestFPCost-0.25 0.19 0.72 0.12 0.43
Logistic Regression - - - 0
AdaBoost-DT-
BestFPCost-0.15

0.21 0.86 0.13 0.49

INTERCEPT 0.49 3.46 0.63 0.41

Table 4: Additional Attackability Prediction Results on 2015 Test
Data

performs even worse than CAPTURE-PCov in terms of L&L score
for these attackability predictions, although the only difference be-
tween the two models is the observation layer. This occurs because
the attackability prediction layer and the observation layer are not
independent of one another; with the EM algorithm, the parame-
ters are being learned for both layers simultaneously. In addition,
by incorporating domain knowledge and penalizing the unattractive
areas, CAPTURE-DKHO unfortunately does not lead to a signif-
icant improvement in performance. Fourth, INTERCEPT’s preci-
sion values are significantly better compared to CAPTURE-PCov
in 2014 and both CAPTURE and CAPTURE-PCov in 2015 with
only modest losses of recall, indicating a significant reduction in
the number of false positive predictions made throughout the park.

In Tables 3 and 4, we also compare INTERCEPT with other
models including: (i) a decision tree where each sample was
weighted based on the patrol intensity for the corresponding tar-
get (Weighted Decision Tree); (ii) the best performing SVM; (iii)
Logistic Regression (which predicted no attacks and thus metrics
could not be computed); and (iv) the best performing AdaBoosted
Decision Tree. INTERCEPT provides significantly better perfor-
mance than these other models as well.

7.2 Observation Prediction Results
Tables 5 and 6 correspond to how accurately each model pre-

dicted the observations in our test datasets. For a fair comparison,
we also cascade the attackability predictions of the PositiveBase-
line and UniformRandom baselines with an LB observation layer,
and convert those unconditional observation probabilities to binary
predictions with a mean threshold, as was done for CAPTURE’s
attackability predictions. We observe the following. First, incorpo-
rating the observation model in Equation 4 improved the PR-AUC
score of CAPTURE in both test datasets (for 2014, 0.36 vs 0.33; for
2015, 0.32 vs 0.29). Second, INTERCEPT outperforms the other
models by a large margin, both in terms of F1 and PR-AUC, for
both test datasets. Combined with the attackability results, these
results demonstrate the benefit of learning more precise attackabil-
ity models in order to better predict observation probability.

7.3 Impact of Ensemble and Voting Rules
INTERCEPT consists of five experts with a majority voting rule.

We now investigate the impact of combining different decision
trees into an ensemble, and the impact of different voting rules.



Classifier Type F1 Precision Recall PR-AUC
PositiveBaseline 0.13 0.07 0.79 0.12
UniformRandom 0.09 0.05 0.46 0.07
CAPTURE 0.14 0.08 0.73 0.33
CAPTURE-PCov 0.12 0.07 0.61 0.31
CAPTURE-PCov-
LB

0.13 0.08 0.48 0.36

CAPTURE-DKHO 0.16 0.09 0.72 0.33
INTERCEPT 0.36 0.32 0.89 0.45

Table 5: Observation Prediction Results on 2014 Test Data

Classifier Type F1 Precision Recall PR-AUC
PositiveBaseline 0.26 0.16 0.66 0.20
UniformRandom 0.19 0.12 0.45 0.14
CAPTURE 0.29 0.18 0.70 0.29
CAPTURE-PCov 0.29 0.18 0.70 0.29
CAPTURE-PCov-LB 0.34 0.21 0.85 0.32
CAPTURE-DKHO 0.36 0.24 0.79 0.32
INTERCEPT 0.50 0.65 0.41 0.49

Table 6: Observation Prediction Results on 2015 Test Data

Tables 7 and 8 show that constructing an ensemble, INTERCEPT,
significantly improves the performance of the system as a whole,
compared to the performance of its individual decision tree and
BoostIT members. The standard decision tree is more conservative
as it predicts less false positives, leading to higher precision, but
suffers from low recall.

Table 9 shows the impact that a voting rule has on performance
on 2015 test data (due to space, we omit the 2014 test data as it
exhibits the same trends). We evaluate the performances of the best
ensemble compositions, with three and five experts for each voting
rule. We observe that: (i) Ensembles which predict an attack if any
one expert predicts an attack (Any) are significantly better in terms
of recall (0.68), but do poorly in terms of precision (0.23). This is
because such ensembles are more generous in terms of predicting
an attack, and this leads to a significantly higher number of false
positives; (ii) Ensembles with a voting rule where all experts have
to agree (All) perform worse in terms of recall (0.16), but do best
in terms of precision (0.89) as it makes less positive predictions
(both true positives as well as false positives). This would mean
that it would miss a lot of attacks in our domain, however; (iii)
The majority voting based ensembles (Maj), used by INTERCEPT,
provide an important balance between precision (0.63) and recall
(0.41) as they are neither extremely conservative nor generous in
terms of their predictions and therefore outperform other voting
rules significantly (L&L of 3.46).

This analysis provides important guidance for selecting ensem-
bles depending on the requirements of the domain. For example, if
it is extremely crucial to predict as many true positives as possible
and a high number of false positives is acceptable, then using an
Any voting method would be beneficial. However, in our wildlife
poaching prediction problem, we have limited security resources
and therefore cannot send patrols to every target all the time. There-
fore, we not only wish to limit the number of false positives but also
increase the number of correct poaching predictions. The majority
voting rule provides this important balance in our domain.

8. EVALUATION ON REAL-WORLD DE-
PLOYMENT

INTERCEPT represents a paradigm shift from complex logit-
based models such as CAPTURE [24], and many others, to deci-
sion tree-based models. During development, we worked with a

Classifier Type F1 L&L Precision Recall
PositiveBaseline 0.06 1 0.03 1
DecisionTree 0.2 1.8 0.14 0.36
BoostIT-1NN 0.19 2.23 0.12 0.55
BoostIT-2NN 0.21 2.13 0.13 0.45
BoostIT-3NN 0.2 2.01 0.13 0.45
INTERCEPT 0.41 5.83 0.37 0.45

Table 7: Attackability Prediction Results For Decision Tree Models
on 2014 Test Data

Classifier Type F1 L&L Precision Recall
PositiveBaseline 0.14 1 0.07 1
DecisionTree 0.39 2.01 0.39 0.38
BoostIT-1NN 0.39 2.16 0.32 0.50
BoostIT-2NN 0.37 2.00 0.30 0.50
BoostIT-3NN 0.42 2.45 0.35 0.52
INTERCEPT 0.49 3.46 0.63 0.41

Table 8: Attackability Prediction Results For Decision Tree Models
on 2015 Test Data

domain expert from the Wildlife Conservation Society to improve
and validate our decision tree models and their corresponding pre-
dictions. Indeed, one advantage of shifting to a decision tree-based
approach (as opposed to methods like CAPTURE) is that the un-
derlying rules can be easily expressed to experts in non-AI fields.

After this development and evaluation on historical data was
completed, we deployed INTERCEPT to the field. Based on IN-
TERCEPT’s predictions, we chose two patrol areas for QENP
rangers to patrol for one month. We selected these areas (approxi-
mately 9 square km each) such that they were (1) predicted to have
multiple attacks and (2) previously infrequently patrolled as rangers
did not previously consider these as important as other areas (and
thus are good areas to test our predictions). After providing the
rangers with GPS coordinates of particular points in these areas,
they patrolled these areas on foot and utilized their expert knowl-
edge to determine where exactly in these areas they were most
likely to find snares and other signs of illegal human activity (e.g.,
salt licks, watering holes). On each patrol, in addition to their other
duties, rangers recorded their observations of animal sightings (i.e.,
21 animals were sighted in one month) and illegal human activity.

We now present our key findings in Tables 10 and 11 and provide
a selection of photos in Figures 1 and 3. The most noteworthy find-
ings of these patrols are those related to elephant poaching; rangers,
unfortunately, found one poached elephant with its tusks removed.
However, this result demonstrates that poachers find this area, pre-
dicted by our model, attractive for poaching. On a more positive
note, our model’s predictions led rangers to find many snares be-
fore they caught any animals: one large roll of elephant snares, one
active wire snare, and one cache of ten antelope snares. INTER-
CEPT’s predictions assisted rangers’ efforts in potentially saving
the lives of multiple animals including elephants.

In addition to wildlife signs, which represent areas of interest to
poachers, the findings of trespassing (e.g., litter, ashes) are signifi-
cant as these represent areas of the park where humans were able to
enter illegally and leave without being detected; if we can continue
to patrol areas where poachers are visiting, rangers will eventually
encounter the poachers themselves.

So as to provide additional context for these results, we present
a set of base rates in Table 11. These base rates, computed in and
around our proposed patrol areas, correspond to the average num-
ber of observed crimes per month from 2003-2015. Animal com-
mercial (AnimalCom) crimes correspond to elephant, buffalo, and



Classifier Type F1 L&L Precision Recall
BoostIT-3Experts-Any 0.36 2.11 0.26 0.59
BoostIT-5Experts-Any 0.34 2.13 0.23 0.68
BoostIT-3Experts-All 0.36 2.68 0.88 0.22
BoostIT-5Experts-All 0.28 1.97 0.89 0.16
BoostIT-3Experts-Maj 0.49 3.34 0.58 0.43
INTERCEPT 0.49 3.46 0.63 0.41

Table 9: Attackability Prediction Results For Different Ensembles
on 2015 Test Data

Week# Illegal Activity Count
2 Trespassing 19
3 Active Snares 1

Plant Harvesting 1
4 Poached Elephants 1

Elephant Snare Roll 1
Antelope Snares 10
Fish Roasting Racks 2

Table 10: Real World Patrol Results: Illegal Activity

hippopotamus poaching; animal noncommercial (AnimalNoncom)
corresponds to all other poaching and poaching via snares; and
plant noncommercial (PlantNoncom) corresponds to illegal har-
vesting of non-timber forest products (e.g., honey). The percentile
rank corresponds to the number of months where our deployed pa-
trols recorded more observations than in the historical data. For
animal noncommercial crime, there was an average of 0.73 attacks
observed monthly; for our deployed patrols, there were 3 separate
observations (such as a roll of elephant snares), and in 91% of the
months from 2003-2015, 2 or fewer observations were recorded.

9. LESSONS LEARNED
After our extensive modifications to the CAPTURE model and

our subsequent evaluation, it is important to identify the reasons
why we obtained such a surprising result: decision trees out-
performed a complex, domain-specific temporal model. (1) The
amount of data and its quality need to be taken into considera-
tion when developing a model. The QENP dataset had significant
noise (e.g., imperfect observations) and extreme class imbalance.
As such, attempting to develop a complex model for such a dataset
can backfire when there does not exist sufficient data to support
it. Our decision tree approach, generally regarded as simpler, bene-
fits from being able to express non-linear relationships and can thus

Figure 3: Elephant snare roll found by rangers directed by INTER-
CEPT. Photo credit: Uganda Wildlife Authority ranger

Crime Type INTERCEPT Average Percentile
AnimalCom 1 0.16 89%
AnimalNoncom 3 0.73 91%
Fishing 1 0.73 79%
PlantNoncom 1 0.46 76%
Trespassing 19 0.20 100%
Total 25 2.28

Table 11: Base Rate Comparison: Hits per Month

work with fewer data points. SVMs, also able to express non-linear
relationships, appear to fail due to their complexity and attempt to
define very fine-grained divisions of the dataset. (2) Model inter-
pretability is a necessity when working in the real-world. Our deci-
sion tree model was deployed because, not only did it have superior
performance to CAPTURE, but it was also easy to directly look at
the rules the decision tree had learned and evaluate whether or not
those rules were reasonable (according to a domain expert). Thus,
(3) the tradeoff between interpretability and performance, studied
in domains where interpretability is key (e.g., biopharmaceutical
classification) [13], may not always exist. Indeed, the most inter-
pretable model, out of all that we evaluated, was also the best per-
forming (by a large margin!); future research should (i) not always
forego interpretability in favor of performance under the assump-
tion that there is always a tradeoff but (ii) instead be sure to inves-
tigate simpler, interpretable models in case there isn’t a tradeoff.

10. CONCLUSION
In this paper, we present INTERCEPT, a paradigm shift from

complex logit-based models to simpler decision tree-based models.
While the previous state-of-the-art, CAPTURE, represented the lat-
est in a long line of behavioral game theory research, it suffers from
poor performance and other critical limitations that preclude its ac-
tual deployment in the field. Indeed, in the process of conducting
the most extensive empirical evaluation in the AI literature of one
of the largest poaching datasets, we show a surprising result: IN-
TERCEPT, based on a simpler model, significantly outperformed
the more complex CAPTURE model. Furthermore, decision trees
were specifically chosen due to the fundamental requirement of
interpretability - a key limitation of previous logit-based models
such as CAPTURE. Additionally, as a first for behavior modeling
applications applied to this domain, we presented results from a
month-long test of our model by rangers in QENP where rangers
found and confiscated an active snare and almost a dozen addi-
tional snares, including multiple elephant snares, before they were
deployed. Given that the rangers also found a poached elephant,
their finding and confiscating of new elephant snares before they
were deployed is significant; this research has potentially saved the
lives of multiple elephants and other animals in QENP. Rangers in
QENP are continuing patrols based on INTERCEPT, and we plan
on incorporating INTERCEPT into PAWS’ automated patrol gener-
ation framework [11, 10] to further augment our efforts in assisting
conservation agencies to save endangered animals.

Acknowledgments: This research was supported by MURI
grant W911NF-11-1-0332 and NSF grant with Cornell University
72954-10598. We are grateful to the Wildlife Conservation Society
and the Uganda Wildlife Authority for supporting data collection
in Queen Elizabeth National Park. We thank all the rangers and
wardens in Queen Elizabeth National Park for their contributions
in collecting and providing patrolling data in SMART.



REFERENCES
[1] Y. D. Abbasi, M. Short, A. Sinha, N. Sintov, C. Zhang, and

M. Tambe. Human adversaries in opportunistic crime security games:
Evaluating competing bounded rationality models. In Third Annual
Conference on Advances in Cognitive Systems ACS, page 2, 2015.

[2] N. Basilico and N. Gatti. Strategic guard placement for optimal
response toalarms in security games. In International Conference on
Autonomous Agents and Multiagent systems, 2014.

[3] M. Brown, W. B. Haskell, and M. Tambe. Addressing scalability and
robustness in security games with multiple boundedly rational
adversaries. In Conference on Decision and Game Theory for
Security (GameSec), 2014.

[4] M. Costa-Gomes, V. P. Crawford, and B. Broseta. Cognition and
behavior in normal-form games: An experimental study.
Econometrica, 69(5), 2001.

[5] R. Critchlow, A. Plumptre, B. Andira, M. Nsubuga, M. Driciru,
A. Rwetsiba, F. Wanyama, and C. Beale. Improving law enforcement
effectiveness and efficiency in protected areas using ranger-collected
monitoring data. Conservation Letters, 2016.

[6] R. Critchlow, A. Plumptre, M. Driciru, A. Rwetsiba, E. Stokes,
C. Tumwesigye, F. Wanyama, and C. Beale. Spatiotemporal trends of
illegal activities from ranger-collected data in a ugandan national
park. Conservation Biology, 29(5):1458–1470, 2015.

[7] J. Davis and M. Goadrich. The relationship between precision-recall
and roc curves. In Proceedings of the 23rd International Conference
on Machine Learning, ICML, 2006.

[8] F. M. Delle Fave, A. X. Jiang, Z. Yin, C. Zhang, M. Tambe, S. Kraus,
and J. P. Sullivan. Game-theoretic patrolling with dynamic execution
uncertainty and a case study on a real transit system. Journal of
Artificial Intelligence Research, 50:321–367, 2014.

[9] J. Eck, S. Chainey, J. Cameron, and R. Wilson. Mapping crime:
Understanding hotspots. 2005.

[10] F. Fang, T. H. Nguyen, R. Pickles, W. Y. Lam, G. R. Clements,
B. An, A. Singh, M. Tambe, and A. Lemieux. Deploying paws: Field
optimization of the protection assistant for wildlife security. In
Innovative Applications of Artificial Intelligence Conference, 2016.

[11] F. Fang, P. Stone, and M. Tambe. When security games go green:
Designing defender strategies to prevent poaching and illegal fishing.
In International Joint Conference on Artificial Intelligence, 2015.

[12] W. Haskell, D. Kar, F. Fang, M. Tambe, S. Cheung, and E. Denicola.
Robust protection of fisheries with compass. In Innovative
Applications of Artificial Intelligence (IAAI), 2014.

[13] U. Johansson, C. Sönströd, U. Norinder, and H. Boström. Trade-off
between accuracy and interpretability for predictive in silico
modeling. Future medicinal chemistry, 3(6):647–663, 2011.

[14] M. Kanevski, A. Pozdnoukhov, and V. Timonin. Machine learning
algorithms for geospatial data. applications and software tools. In 4th
Biennial Meeting of the International Environmental Modelling and
Software Society, pages 7–10, 2008.

[15] D. Kar, F. Fang, F. D. Fave, N. Sintov, and M. Tambe. “a game of
thrones”: When human behavior models compete in repeated
stackelberg security games. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2015.

[16] C. Kiekintveld, T. Islam, and V. Kreinovich. Security games with
interval uncertainty. In International Conference on Autonomous
Agents and Multiagent systems, 2013.

[17] D. Korzhyk, V. Conitzer, and R. Parr. Solving stackelberg games with
uncertain observability. In International Conference on Autonomous
Agents and Multiagent Systems, 2011.

[18] W. S. Lee and B. Liu. Learning with positive and unlabeled examples
using weighted logistic regression. In ICML, volume 3, 2003.

[19] D. L. Leottau, J. Ruiz-del Solar, P. MacAlpine, and P. Stone. A study
of layered learning strategies applied to individual behaviors in robot
soccer. In Robot Soccer World Cup, pages 290–302. Springer
International Publishing, 2015.

[20] S. Mc Carthy, M. Tambe, C. Kiekintveld, M. L. Gore, and A. Killion.
Preventing illegal logging: Simultaneous optimization of resource
teams and tactics for security. In AAAI, 2016.

[21] D. McFadden. Conditional logit analysis of qualitative choice
behavior. 1973.

[22] E. Munoz de Cote, R. Stranders, N. Basilico, N. Gatti, and

N. Jennings. Introducing alarms in adversarial patrolling games. In
International Conference on Autonomous agents and Multiagent
systems, 2013.

[23] T. H. Nguyen, F. M. Delle Fave, D. Kar, A. S. Lakshminarayanan,
A. Yadav, M. Tambe, N. Agmon, A. J. Plumptre, M. Driciru,
F. Wanyama, et al. Making the most of our regrets: Regret-based
solutions to handle payoff uncertainty and elicitation in green
security games. In International Conference on Decision and Game
Theory for Security, pages 170–191. Springer, 2015.

[24] T. H. Nguyen, A. Sinha, S. Gholami, A. Plumptre, L. Joppa,
M. Tambe, M. Driciru, F. Wanyama, A. Rwetsiba, R. Critchlow, et al.
Capture: A new predictive anti-poaching tool for wildlife protection.
In International Conference on Autonomous Agents & Multiagent
Systems, 2016.

[25] T. H. Nguyen, R. Yang, A. Azaria, S. Kraus, and M. Tambe.
Analyzing the effectiveness of adversary modeling in security games.
In AAAI, 2013.

[26] T. R. Palfrey and R. McKelvey. Quantal response equilibria in
normal form games. Games and Economic Behavior (special issue
on Experimental Game Theory), 10:6, 1995.

[27] N. Park, E. Serra, T. Snitch, and V. Subrahmanian. Ape: A
data-driven, behavioral model-based anti-poaching engine. IEEE
Transactions on Computational Social Systems, 2(2):15–37, 2015.

[28] N. Park, E. Serra, and V. Subrahmanian. Saving rhinos with
predictive analytics. IEEE Intelligent Systems, 30(4), 2015.

[29] Phys.org. More tigers poached so far this year than in 2015: census.
Web, April 2016. http://phys.org/news/2016-04-
tigers-poached-year-census.html.

[30] E. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo,
B. Maule, and G. Meyer. Protect: A deployed game theoretic system
to protect the ports of the united states. In International Conference
on Autonomous Agents and Multiagent Systems, 2012.

[31] D. Stahl and P. Wilson. Experimental evidence on players’ models of
other players. Journal of Economic Behavior & Organization, 25(3),
1994.

[32] G. Sukthankar, R. Goldman, C. Geib, D. Pynadath, and H. Bui,
editors. Plan, Activity, and Intent Recognition. Elsevier, feb 2014.

[33] Traffic.org. South africa reports small decrease in rhino poaching, but
africa-wide 2015 the worst on record. Web, January 2016.
http://www.traffic.org/home/2016/1/21/south-
africa-reports-small-decrease-in-rhino-
poaching-but-af.html.

[34] J. Wright and K. Leyton-Brown. Beyond equilibrium: Predicting
human behavior in normal-form games, 2010.

[35] J. R. Wright and K. Leyton-Brown. Behavioral game theoretic
models: A bayesian framework for parameter analysis. In
International Conference on Autonomous Agents and Multiagent
Systems, 2012.

[36] J. R. Wright and K. Leyton-Brown. Level-0 meta-models for
predicting human behavior in games. In Proceedings of the Fifteenth
ACM Conference on Economics and Computation, EC, 2014.

[37] R. Yang, B. Ford, M. Tambe, and A. Lemieux. Adaptive resource
allocation for wildlife protection against illegal poachers. In
Iinternational conference on Autonomous Agents and Multiagent
Systems, 2014.

[38] R. Yang, C. Kiekintveld, F. Ordonez, M. Tambe, and R. John.
Improving resource allocation strategy against human adversaries in
security games. In International Joint Conference on Artificial
Intelligence, 2011.

[39] C. Zhang, V. Bucarey, A. Mukhopadhyay, A. Sinha, Y. Qian,
Y. Vorobeychik, and M. Tambe. Using abstractions to solve
opportunistic crime security games at scale. In International
Conference on Autonomous Agents and Multiagent Systems, 2016.

[40] C. Zhang, A. X. Jiang, M. B. Short, P. J. Brantingham, and
M. Tambe. Defending against opportunistic criminals: New
game-theoretic frameworks and algorithms. In International
Conference on Decision and Game Theory for Security, 2014.

[41] C. Zhang, A. Sinha, and M. Tambe. Keeping pace with criminals:
Designing patrol allocation against adaptive opportunistic criminals.
In International Conference on Autonomous Agents and Multiagent
systems, 2015.


