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ABSTRACT
Several competing human behavior models have been proposed
to model and protect against boundedly rational adversaries in re-
peated Stackelberg security games (SSGs). However, these existing
models fail to address three main issues which are extremely detri-
mental to defender performance. First, while they attempt to learn
adversary behavior models from adversaries’ past actions (“attacks
on targets”), they fail to take into account adversaries’ future adap-
tation based on successes or failures of these past actions. Second,
they assume that sufficient data in the initial rounds will lead to
a reliable model of the adversary. However, our analysis reveals
that the issue is not the amount of data, but that there just is not
enough of the attack surface exposed to the adversary to learn a
reliable model. Third, current leading approaches have failed to in-
clude probability weighting functions, even though it is well known
that human beings’ weighting of probability is typically nonlin-
ear. The first contribution of this paper is a new human behavior
model, SHARP, which mitigates these three limitations as follows:
(i) SHARP reasons based on success or failure of the adversary’s
past actions on exposed portions of the attack surface to model ad-
versary adaptiveness; (ii) SHARP reasons about similarity between
exposed and unexposed areas of the attack surface, and also in-
corporates a discounting parameter to mitigate adversary’s lack of
exposure to enough of the attack surface; and (iii) SHARP inte-
grates a non-linear probability weighting function to capture the
adversary’s true weighting of probability.

Our second contribution is a first “longitudinal study” – at least
in the context of SSGs – of competing models in settings involving
repeated interaction between the attacker and the defender. This
study, where each experiment lasted a period of multiple weeks
with individual sets of human subjects, illustrates the strengths and
weaknesses of different models and shows the advantages of SHARP.
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1. INTRODUCTION
Whereas previous real-world deployments of Stackelberg Secu-

rity Games (SSGs) to protect airports, ports or flights have been
one-shot game models [32], recent work has focused on domains
involving repeated interactions between defenders and adversaries.
These domains include security of wildlife (repeated interactions
between rangers and poachers) [34], security of fisheries (repeated
interactions between coast guard and illegal fishermen) [12], for-
est protection or drug interdiction, and are modeled via repeated
SSGs. In a repeated SSG model, the defender periodically deploys
new patrol strategies (in “rounds” of the game) and the adversary
observes these strategies and acts accordingly.

Research in repeated SSGs has produced different approaches to
address uncertainty in key dimensions of the game such as payoff
uncertainty (but assuming a perfectly rational adversary) [4, 20, 23]
or uncertainty in adversary behavior model (but assuming known
payoffs) [12, 34]. Our work follows the second approach, learning
a model of boundedly rational adversaries with known adversary
payoffs, as (arguably) it provides a better fit for domains of inter-
est in this work. This is because (i) in real-world settings such as
wildlife or fishery protection, it is feasible to model adversary pay-
offs via animal or fish density in different locations; and (ii) there
is significant support in the literature for bounded rationality of hu-
man adversaries [35, 29].

Unfortunately, despite the promise of Bounded Rationality mod-
els in Repeated Stackelberg Games (henceforth referred to as BR-
RSG models), existing work in this area [12, 34] suffers from three
key limitations which are extremely detrimental to defender perfor-
mance. First, existing models reason about the adversary’s future
actions based on past actions taken but not the associated successes
and failures. Our analysis reveals that the adversary adapts in future
rounds based on past success and failure. Hence, failing to consider
an adaptive adversary leads to erroneous predictions about his fu-
ture behavior, and thus significantly flawed defender strategies.

Second, existing approaches for learning BR-RSG models as-
sume that enough data will be collected in the initial rounds to
learn a reliable adversary model. Our analysis reveals that the is-
sue is not the amount of data, but insufficient exposure of attack
surface [14, 21] in initial rounds to gather sufficient information
about adversary responses to various strategies and learn a reliable
model. Learning is biased towards the limited available informa-
tion and hence significant losses are incurred by the defender until
enough of the right kind of data becomes available. This degraded
performance in initial rounds may have severe consequences for
three reasons: (i) In domains like wildlife crime or fisheries protec-
tion, each round lasts for weeks or potentially months and so initial
round losses (if massive) could imply irrecoverable losses of re-
sources (e.g., animal populations). (ii) Following heavy losses, hu-



man defenders may lose confidence in recommendations provided
by the game-theoretic approach. (iii) Given the nature of these do-
mains, re-initialization of the game may periodically be necessary
and thus initial rounds may be repeated; in domains such as wildlife
crime, re-initialization can stem from man-made or natural changes
in parks, e.g., changes in vegetation, water bodies, or possible de-
velopmental activities. The construction of an oil-refinery [1] and
the simultaneous re-introduction of rhinos in the Murchison Falls
National Park in Uganda is an example. In addition, re-initializing
the game after a year or so would mean repeating the initial rounds
after four to five rounds, adding to the importance of addressing
initial rounds.

Finally, BR-RSG models have failed to include probability weight-
ing functions (how humans “perceive” probabilities), even though
it is well known that probability weighting curves for humans –
e.g., in prospect theory [33] – are typically nonlinear. In light of
this, we show that direct application of existing models such as
SUQR [29] which assume a linear probability model, provide re-
sults that would be extremely detrimental to defender performance.

The primary contribution of this paper is a new model called
SHARP (Stochastic Human behavior model with AttRactiveness
and Probability weighting) that mitigates these three limitations: (i)
Modeling the adversary’s adaptive decision making process, SHARP
reasons based on success or failure of the adversary’s past actions
on exposed portions of the attack surface. (ii) Addressing lim-
ited exposure to significant portions of the attack surface in ini-
tial rounds, SHARP reasons about similarity between exposed and
unexposed areas of the attack surface, and also incorporates a dis-
counting parameter to mitigate adversary’s lack of exposure to enough
of the attack surface. (iii) Addressing shortcomings of probability
weighting functions, we incorporate a two parameter probability
weighting function in existing human behavior models.

Our second contribution is to provide evidence from the first
“longitudinal study” of competing models in repeated SSGs. In
our study, a suite of well-established models and SHARP take the
battlefield (much like the warring factions in “A Game of Thrones”
who are fighting for supremacy) in an attempt to prove themselves
best in repeated SSGs. Our results show: (i) SHARP outperforms
existing approaches consistently over all rounds, most notably in
initial rounds. (ii) As discussed earlier, existing approaches per-
form poorly in initial rounds with some performing poorly through-
out all rounds. (iii) Surprisingly, simpler models which were orig-
inally proposed for single-shot games performed better than re-
cent advances which are geared specifically towards addressing re-
peated SSGs. Taken together, given the critical importance of the
repeated ‘initial rounds’ as discussed above, these results indicate
that SHARP should be the model of choice in repeated SSGs.

2. BACKGROUND

2.1 Background on SSGs
In an SSG, the defender plays the role of a leader who protects

a set of targets from the adversary, who acts as the follower [5,
30, 18]. The defender’s pure strategy is an assignment of a limited
number of security resources M to the set of targets T . An assign-
ment of a resource to a target is also referred to as covering a target.
A defender’s mixed-strategy x (0 ≤ xi ≤ 1; ∀xi, i ∈ T ) is then
defined as a probability distribution over the set of all possible pure
strategies. A pure strategy of an adversary is defined as attacking
a single target. The adversary receives a reward Rai for selecting i
if it is not covered and a penalty P ai for selecting i if it is covered.
Similarly, the defender receives a reward Rdi for covering i if it is
selected by the adversary and penalty P di for not covering i if it is

selected. Then, utility for the defender for protecting target i while
playing mixed strategy x is:

Udi (x) = xiR
d
i + (1− xi)P di (1)

Similarly, the utility for the adversary for attacking target i is:

Uai (x) = (1− xi)Rai + xiP
a
i (2)

Recent work has focused on modeling boundedly rational adver-
saries in SSGs, developing models discussed below.
Subjective Utility Quantal Response (SUQR): SUQR [29] builds
upon prior work on quantal response [25] according to which rather
than strictly maximizing utility, an adversary stochastically chooses
to attack targets, i.e., the adversary attacks a target with higher ex-
pected utility with a higher probability. SUQR proposes a new util-
ity function called Subjective Utility, which is a linear combination
of key features that are considered to be the most important in each
adversary decision-making step. Nguyen et al. [29] experimented
with three features: defender’s coverage probability, adversary’s
reward and penalty at each target. According to this model, the
probability that the adversary will attack target i is given by:

qi(ω|x) =
eSU

a
i (x)∑

j∈T
eSU

a
j (x)

(3)

where SUai (x) is the Subjective Utility of an adversary for attack-
ing target i when defender employs strategy x and is given by:

SUai (x) = ω1xi + ω2R
a
i + ω3P

a
i (4)

The vector ω = (ω1, ω2, ω3) encodes information about the adver-
sary’s behavior and each component of ω indicates the relative im-
portance the adversary gives to each attribute in the decision mak-
ing process. The weights are computed by performing Maximum
Likelihood Estimation (MLE) on available attack data.
Bayesian SUQR: SUQR assumes that there is a homogeneous pop-
ulation of adversaries, i.e., a single ω is used to represent an adver-
sary in [29]. However, in the real-world we face heterogeneous
populations. Therefore Bayesian SUQR is proposed to learn a par-
ticular value of ω for each attack [34]. Protection Assistant for
Wildlife Security (PAWS) is an application which was originally
created using Bayesian SUQR.
Robust SUQR: Robust SUQR [12] combines data-driven learning
and robust optimization to address settings where not enough data
is available to provide a reasonable hypothesis about the distribu-
tion of ω. It computes the worst-case expected utility over all previ-
ously seen SUQR models of the adversary and deploys the optimal
strategy against the adversary type that reduces the defender’s util-
ity the most. Robust SUQR has been applied to fisheries protection
domain[12].

2.2 Probability Weighting Functions
Probability weighting functions model human perceptions of prob-

ability. Perhaps the most notable is the weighting function in nobel-
prize winning work on Prospect Theory [17, 33], which suggests
that people weigh probability non-uniformly, as shown in Fig. 1.
It indicates that people tend to overweigh low probabilities and un-
derweigh high probabilities. Other works in this domain propose
and experiment with parametric models which capture both inverse
S-shaped as well as S-shaped probability curves [2, 10] (Fig. 2).

3. RELATED WORK
We have already discussed related work in SSGs in the previous

section, including key behavioral models. Here we discuss addi-
tional related work:



Figure 1: Probability Weighting
Function (Prospect Theory)

Figure 2: Probability Weighting
Function (Gonzalez & Wu, 99)

Learning in repeated Stackelberg games: The problem of learn-
ing the adversary’s payoffs in an SSG by launching a minimum
number of games against a perfectly rational adversary is studied
in [20, 4]. Additionally, Marecki et al. [23] focused on optimiz-
ing the defender’s overall utility during the learning process when
faced with a perfectly rational adversary with unknown payoffs.
Robust strategies in repeated games: In cases where the oppo-
nent cannot be successfully modeled, McCracken et al. [24] pro-
posed techniques to generate ε-safe strategies which bound the loss
from a safe value by ε. Johanson et al. [16, 15] studied the prob-
lem of generating robust strategies in a repeated zero-sum game
while exploiting the tendency in the adversary’s decision making
and evaluated their technique in a game of two-player, Limit Texas
Hold’em. Recently, Ponsen et al. [31] proposed techniques to com-
pute robust best responses in partially observable stochastic games
using sampling methods.

All of the above work differs from ours in three ways: (i) They do
not model bounded rationality in human behavior; (ii) They do not
consider how humans weigh probabilities; and (ii) None of these
existing work address the important problem of significant initial
round losses. Initial round losses is a critical problem in domains
such as wildlife security as explained above; requiring a funda-
mental shift at least in the learning paradigm for SSGs. In addition,
work on learning in SSGs differ because in our game, the payoffs
are known but we are faced with boundedly rational adversaries
whose parameters in their behavioral model are to be learned.

4. WILDLIFE POACHING GAME
We conducted longitudinal experiments1 [22] with human sub-

jects to test the effectiveness of existing behavioral models and al-
gorithms against our proposed approach on repeated SSGs.

4.1 Game Overview
In our game, human subjects play the role of poachers looking to

place a snare to hunt a hippopotamus in a protected park. The game
interface is shown in Fig. 3. In the game, the portion of the park
shown in the map is divided into a 5*5 grid, i.e. 25 distinct cells.
Overlaid on the Google Maps view of the park is a heat-map, which
represents the rangers’ mixed strategy x— a cell iwith higher cov-
erage probability xi is shown more in red, while a cell with lower
coverage probability is shown more in green. As the subjects play
the game, they are given the following detailed information: Rai ,
P ai and xi for each target i. However, they do not know the pure
strategy that will be played by the rangers, which is drawn ran-
domly from mixed strategy x shown on the game interface. Thus,
we model the real-world situation that poachers have knowledge
of past pattern of ranger deployment but not the exact location of
ranger patrols when they set out to lay snares. In our game, there

1Whereas “longitudinal study” is often used to describe research that spans years – in
which measurement occasions are conducted every X years – we use the term longitu-
dinal study because our study included 5 measurement points with a single population.

Figure 3: Game Interface for our simulated online repeated SSG (Re-
ward, penalty and coverage probability for a selected cell are shown)

wereM = 9 rangers protecting this park, with each ranger protect-
ing one grid cell. Therefore, at any point in time, only 9 out of the
25 distinct regions in the park are protected.

In addition to animal density, which is strongly correlated with
high-risk areas of poaching [28, 27, 11], distance is another im-
portant factor in poaching, e.g., recent snare-density studies have
found that significant poaching happens within 5 kilometers of South
Africa’s Kruger National Park border [19]. Therefore, the reward
obtained by a poacher in successfully placing a snare at target i
is calculated by discounting the animal density by a factor of the
distance traveled and is calculated as follows:

Rai = int(φi − ζ ∗
Di

max
j

(Dj)
) (5)

Here, φi and Di refer to the animal density at target i and the dis-
tance to target i from the poacher’s starting location respectively.
int(y) rounds the value y to the closest integer value. The param-
eter ζ is the importance given to the distance factor in the reward
computation and may vary based on the domain. When the poacher
successfully poaches, he may thus obtain a reward that is less than
the animal density (Eqn. 5), but the defender loses a value equal to
that of the animal density, i.e., the game is non-zero-sum.

4.2 Experimental Procedures
We recruited human subjects on Amazon Mechanical Turk (AMT).

We first primed participants with a background story about the
hardships of a poacher’s life. To enhance understanding of the
game, participants played two trial games, one validation game,
and finally the actual game. Data from subjects who played the
validation game incorrectly were discarded.

We tested a set of behavioral models introduced in Section 2.1
by deploying the mixed strategy generated based on each of these
models repeatedly over a set of five rounds. For each model, we
recruited a new set of participants to eliminate any learning bias.
Due to unavailability of data, the strategy shown for each first round
was Maximin. We then learned the model parameters based on
previous rounds’ data, recomputed and redeployed strategies, and
asked the same players to play again in the subsequent rounds. For
each model, all five rounds were deployed over a span of weeks.

4.3 Online Longitudinal Experiments
Longitudinal studies on AMT are rare at AAMAS (in fact we are

not aware of any); and certainly none have been conducted in the
context of SSGs. Indeed, while the total time of engagement over
our 20 experimental settings was 46 weeks, each setting required on
average 2.3 weeks, a duration typically not seen in related research
at AAMAS (Table 1). Therefore this section highlights our method-



(a) ADS1 (b) ADS2

(c) ADS3 (d) ADS4

Figure 4: Animal density structures
Table 1: Experiment Details

Average
time taken
per model
per payoff
structure

(all 5
rounds)

Average time
taken for a set of

participants to
play each round

Number of
participants
who played

round 1
(minimum,
maximum)

Average
number of

participants
who played
all 5 rounds

Average
retention
rate from
round 2 to

round 5

2.3 weeks 4 days (42 , 49) 38 83.69%

ological contributions to conduct such experiments. Specifically,
challenges of longitudinal studies on AMT include: (i) minimizing
attrition and maximizing retention, particularly for our study which
required five separate measurement occasions; (ii) setting up a pay-
ment scheme to maximize participant retention across five rounds;
and (iii) lengthy rounds due to participants’ long latencies (in some
instances forgetfulness) in responding to notifications.

To mitigate the above challenges, we took the following steps: (i)
To be eligible for initial study enrollment, participants had to com-
mit to completing all five rounds, i.e, remain in the study through
completion. (ii) We allowed respondents sufficient time to respond
[26], as giving them an immediate deadline to finish a particular
task can result in high attrition rates. (iii) We maintained persis-
tent contact by sending repeated reminders [6]. (iv) We set up
the payment scheme to consistently reward participation in each
round plus offering a relatively high completion incentive at the
end of the experiment. Specifically, each participant was paid a
‘base compensation’ of $0.50 for each round and a relatively high
‘completion bonus’ of $2.50 for completing all the rounds. In ad-
dition, to motivate the participants to play the game competitively,
we also gave incentives, called ‘performance bonus’, based on the
reward/penalty of the region they chose to attack. On average, each
participant was paid $7.60 in total.

4.4 Payoff Structures
The payoff structures used in our human subject experiments

vary in terms of the animal densities and hence the adversary re-
wards. We henceforth refer to payoff structures and animal density
structures interchangeably in this paper. The total number of ani-
mals in all the payoffs we generate is the same (= 96). However,
the variation in these payoffs is in the way the animals are spread
out in the park. In payoff 1, the animal density is concentrated to-
wards the center of the park, whereas the animal density is higher
towards the edges of the park in payoff structure 2. These represent
scenarios that might happen in the real world. The animal density
for both payoffs is symmetric, thus eliminating any bias due to the
participant’s starting point in the game.

Contrary to the above, animals in the park may be randomly scat-
tered without any particular orientation. So, we randomly generate
two additional animal density structures (payoffs 3 and 4) and test

our proposed model on these payoffs. To generate a random struc-
ture, one out of 25 cells was chosen uniformly at random and then
an animal was allocated to it until the total number of animals in
all the cells was 96, keeping in mind that if a cell total reached 10
(maximum animal density in a cell), that cell was not chosen again.
Figs. 4(a)– 4(d) show heatmaps of four animal density structures,
denoted as ADS1, ADS2, ADS3 and ADS4 respectively.

5. SHARP: PROBABILITY WEIGHTING
This paper contributes a novel human behavior model called SHARP

for BR-RSG settings. SHARP has three key novelties, of which
probability weighting is the first. The need for probability weight-
ing became apparent after our initial experiments. In particular, ini-
tially following up on the approach used in previous work [29, 36,
34, 12], we applied MLE to learn the weights of the SUQR model
based on data collected from our human subject experiments and
found that the weights on coverage probability were positive for
all the experiments. That is, counter-intuitively humans were mod-
eled as being attracted to cells with high coverage probability, even
though they were not attacking targets with very high coverage but
they were going after targets with moderate to very low coverage
probability. Examples of the learned weights for SUQR from data
collected from the first round deployment of the game for 48 human
subjects on ADS1 and ADS2 are: (ω1, ω2, ω3)=(2.876, -0.186,
0.3) and (ω1, ω2, ω3)=(1.435, -0.21, 0.3). We prove a theorem
(Theorem 5.1) to show that, when the weight on the coverage prob-
ability in the SUQR model (ω1) is found to be positive, the optimal
defender strategy is a pure strategy. The proof of the theorem can
be found in the online appendix2.

THEOREM 5.1. When ω1 > 0, the optimal defender strategy is
a pure strategy.

Employing a pure strategy means that there will be no uncertainty
about the defender’s presence. Several cells will always be left
unprotected and in those cells, the attackers will always succeed.
In our example domains, even if the top-valued cells are covered
by a pure strategy, we can show that such a strategy would lead
to significantly worse defender expected utility than what results
from the simplest of our defender mixed strategies deployed. For
example, if cells of value 4 are left unprotected, the defender ex-
pected value will be -4, which is much lower than what we achieve
even with Maximin. In repeated SSG domains like wildlife crime,
this would mean that the poachers successfully kill animals in each
round without any uncertainty of capture by rangers.

We hypothesize that this counter-intuitive result of a model with
ω1 > 0 may be because the SUQR model may not be consider-
ing people’s actual weighting of probability. SUQR assumes that
people weigh probabilities of events in a linear fashion, while ex-
isting work on probability weighting (Sec. 2.2) suggest otherwise.
To address this issue, we augment the Subjective Utility function
with a two-parameter probability weighting function (Eqn. 6) pro-
posed by Gonzalez and Wu [10], that can be either inverse S-shaped
(concave near probability zero and convex near probability one) or
S-shaped.

f(p) =
δpγ

δpγ + (1− p)γ (6)

The SU of an adversary denoted by ‘a’ can then be computed as:

SUai (x) = ω1f(xi) + ω2R
a
i + ω3P

a
i (7)

where f(xi) for coverage probability xi is computed as per Eqn.
6. The two parameters δ and γ control the elevation and curvature
2
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Table 2: Performance (Squared Errors) of various feature sets
Eqn. 7 Eqn. 8 Eqn. 9 Eqn. 10

P-SUQR ADS1 Algorithm 1 0.1965 0.2031 0.1985 0.1025
P-SUQR ADS2 Algorithm 1 0.2065 0.2156 0.2625 0.1136

of the function respectively. γ < 1 results in an inverse S-shaped
curve while γ > 1 results in an S-shaped curve. We will hence-
forth refer to this as the PSU (Probability weighted Subjective Util-
ity) function and the models (SUQR, Bayesian SUQR and Robust
SUQR) augmented with PSU will be referred to as P-SUQR, P-
BSUQR and P-RSUQR respectively. Our SHARP model will also
use PSU. We will use these PSU-based models in our experiments.

One of our key findings, based on experiments with the PSU
function is that the curve representing human weights for probabil-
ity is S-shaped in nature, and not inverse S-shaped as prospect the-
ory suggests. The S-shaped curve indicates that people would over-
weigh high probabilities and underweigh low to medium probabil-
ities. Some learned curves are shown in Sec. 9.2. Recent studies
[3, 13, 9] have also found S-shaped probability curves which con-
tradict the inverse S-shaped observation of prospect theory. Given
S-shaped probability weighting functions, the learned ω1 was neg-
ative as it accurately captured the trend that a significantly higher
number of people were attacking targets with low to medium cov-
erage probabilities and not attacking high coverage targets.
Feature Selection and Weight Learning: In Sec. 4.1, we intro-
duced a new feature – distance – that affected the reward and hence
the obvious question for us was to investigate the effect of this new
feature in predicting adversary behavior. We considered several
variations of PSU with different combinations of features. In addi-
tion to Eqn. 7, three more are discussed below (Eqns. 8,9,10).

SUai (x) = ω1f(xi) + ω2φi + ω3P
a
i (8)

SUai (x) = ω1f(xi) + ω2R
a
i + ω3P

a
i + ω4Di (9)

SUai (x) = ω1f(xi) + ω2φi + ω3P
a
i + ω4Di (10)

To compare these variations, we need to learn the behavioral
parameters for each of the variations (e.g, for Eqn. 10, a 6-tuple
b =< δ, γ, ω1, ω2, ω3, ω4 > is to be learned; δ and γ due to in-
clusion of Eqn. 6) from available data and evaluate their effective-
ness in predicting the attack probability. To learn the behavioral
parameters b from available data, we propose an algorithm based
on Repeated Random Sub-sampling Validation (Algorithm 1 – see
online appendix2). For SUQR, we learn a single b, while for P-
BSUQR and P-RSUQR we learn a set of b ∈ B for each attack.
We divided the first round data for the experiment with P-SUQR
on ADS1 into 10 random train-test splits. We then computed the
sum of squared errors (SE) of predicting the attack probability for
each of the test splits and for each of the feature combinations us-
ing the weights learned by Algorithm 1. Results in Table 2 show
that Eqn. 10 achieves the least SE and it is statistically significant
(with two-tailed t-tests at confidence=0.05).

This shows that we can achieve higher accuracy in modeling by
generalizing the subjective utility form used in [29] that relied on
just three parameters, by adding more features as shown in Eqn.
10. This opens the door to novel subjective utility functions for
different domains that exploit different domain features.

Based on our experiments, in addition to ω1 < 0, we found that
ω2 > 0, ω3 < 0 and ω4 < 0. The rest of the formulations in this
paper will be based on these observations about the feature weights.

6. SHARP: ADAPTIVE UTILITY MODEL
A second major innovation in SHARP is the adaptive nature of

the adversary and addressing the issue of attack surface exposure.

(a) Maximin ADS2 (b) P-RSUQR ADS2

Figure 5: Evidence for adaptivity of attackers

First, we define key concepts, present evidence from our experi-
ments, and then present SHARP’s innovations.

Definition The attack surface α is defined as the n-dimensional
space of the features used to model adversary behavior. Formally,
α =< F 1, F 2, ..., Fn > for features F j(∀j; 1 ≤ j ≤ n).

For example, as per the PSU model in Eqn. 10, this would mean the
space represented by the following four features: coverage proba-
bility, animal density, adversary penalty and distance from the start-
ing location.

Definition A target profile βk ∈ α is defined as a point on the
attack surface α and can be associated with a target. Formally,
βk =< F 1

k , F
2
k , ..., F

n
k > denotes the kth target profile on the

attack surface.

In our example domain, the kth target profile can be represented as
βk =< xβk , φβk , P

a
βk
, Dβk >, where xβk , φβk , P aβk andDβk de-

note values for coverage probability, animal density, attacker penalty
and distance from starting location respectively3. For example,
<0.25, 2, -1, 4> is the target profile associated with the top-leftmost
cell of ADS1 in round 1. Exposing the adversary to a lot of differ-
ent target profiles would therefore mean exposing the adversary to
more of the attack surface and gathering valuable information about
their behavior. While a particular target location, defined as a dis-
tinct cell in the 2-d space, can only be associated with one target
profile in a particular round, more than one target may be associ-
ated with the same target profile in the same round. βik denotes that
target profile βk is associated with target i in a particular round.

6.1 Observations and Evidence
Below are two observations from our human subjects data, based

on the above concepts, that reveal interesting trends in attacker be-
havior in repeated SSGs.

OBSERVATION 1. Adversaries who have succeeded in attack-
ing a target associated with a particular target profile in one round,
tend to attack a target with ‘similar’ target profiles in next round.

OBSERVATION 2. Adversaries who have failed in attacking a
target associated with a particular target profile in one round, tend
not to attack a target with ‘similar’ target profiles in the next round.

In order to provide evidence in support of Observations 1 and 2,
we show results from our data highlighting these trends on ADS2

in Figs. 5(a) - 5(b). Results of other models on ADS1 and ADS2

can be found in the online appendix2. In each plot, the y-axis de-
notes the percentage of (i) attacks on similar targets out of the total
successful attacks in the previous round (ζss) and (ii) attacks on
similar targets out of the total failed attacks in the previous round
(ζfs). The x-axis denotes pairs of rounds for which we are comput-
ing the percentages, for example, in R12, 1 corresponds to round
3In our experiments, φβi > 0, P aβi < 0 and Dβi > 0



(r − 1) and 2 means round r in our claim. Thus, ζss correspond-
ing to R23 in ADS2 is 80%, meaning that out of all the people
who succeeded in round 2, 80% attacked similar target profiles in
round 3. Similarly, ζfs corresponding to R23 in ADS2 is 33.43%,
meaning that out of all people who failed in round 2, 33.43% at-
tacked similar target profiles in round 3. All statistical significance
results reported below are on two-tailed t-tests at confidence=0.05.
The average (over all four models on two payoffs and for all round
pairs) of ζss is 75.2% and the average of ζfs which is 52.45%. This
difference is statistically significant, thus supporting Observation 1
and Observation 2.

These observations are also consistent with the “spillover effect”
in psychology [8], which in our case suggests that an adversary
will tend to associate properties of unexposed target profiles with
knowledge about similar target profiles to which he has been ex-
posed, where similarity is expressed in terms of the Euclidean dis-
tance between two points on the attack surface. Smaller distance in-
dicates higher similarity. The above aspects of adversary behavior
currently remain unaccounted for, in BR-RSG models. Based on
observations above, we define two key properties below to capture
the consequences of past successes and failures on the adversary’s
behavior and reason based on them.

Definition The vulnerability associated with a target profile βi
which was shown to the adversary in round r, denoted V rβi , is de-
fined as a function of the total number of successes and failures on
the concerned target profile in that round (denoted by successrβi
and failurerβi respectively). This is shown in Eqn. 11:

V rβi =
successrβi − failure

r
βi

successrβi + failurerβi
(11)

Therefore, more successful attacks and few failures on a target
profile indicate that it was highly vulnerable in that round. Because
multiple targets can be associated with the same target profile and
the pure strategy generated based on the mixed strategy x in a par-
ticular round may result in a defender being present at some of
these targets while not at others, there may be both successes and
failures associated with the same target profile in that round.

Definition The attractiveness of a target profile βi at the end of
roundR, denotedARβi , is defined as a function of the vulnerabilities
for βi from round 1 to round R. It is computed using Eq. 12.

ARβi =

∑R
r=1 V

r
βi

R
(12)

Therefore, we model the attractiveness of a target profile as the
average of the Vulnerabilities for that target profile over all the
rounds till round R. This is consistent with the notion that a tar-
get profile which has led to more successful attacks over several
rounds will be perceived as more attractive by the adversary.

6.2 SHARP’s Utility Computation
Existing models (such as SUQR, which is based on the subjective

utility function (Eqn. 4)) only consider the adversary’s actions from
round (r − 1) to predict their actions in round r. However, based
on our observations (Obs. 1 & 2), it is clear that the adversary’s
actions in a particular round are dependent on his past successes
and failures. The adaptive probability weighted subjective utility
function proposed in Eq. 13 captures this adaptive nature of the ad-
versary’s behavior by capturing the shifting trends in attractiveness
of various target profiles over rounds.

ASURβi = (1− d ∗ARβi)ω1f(xβi) + (1 + d ∗ARβi)ω2φβi

+(1 + d ∗ARβi)ω3P
a
βi + (1− d ∗ARβi)ω4Dβi (13)

There are three main parts to SHARP’s computation: (i) Adapt-
ing the subjective utility based on past successes and failures on
exposed parts of the attack surface; (ii) Discounting to handle situ-
ations where not enough attack surface has been exposed; and (ii)
Reasoning about similarity of unexposed portions of the attack sur-
face based on other exposed parts of the attack surface.

The intuition behind the adaptive portion of this model is that,
the subjective utility of target profiles which are highly attractive to
the adversary should be increased, and that of less attractive target
profiles should be decreased, to model the adversary’s future de-
cision making. Hence, for a highly attractive target profile βi, the
attacker would view the coverage xβi and distance from starting
locationDβi to be of much lower value, but the animal density φβi
to be of higher value, as compared to the actual values. The contri-
bution of the penalty term would also increase the utility (recall that
P aβi < 0 and ω3 < 0). Taking an example from our game, for a tar-
get profile βi =< 0.25, 2,−1, 4 > which hadA1

βi
= 1 after round

1, and the weights learned were b =< δ, γ, ω1, ω2, ω3, ω4 > =<
2.2, 2.4,−3, 0.9,−0.3,−0.5 >, P-SUQR would compute the sub-
jective utility as -0.29, while (assuming d (explained later) = 0.25,
for example) SHARP’s adaptive utility function would compute the
subjective utility as 0.855. In comparison to the original subjective
utility function, this function is adaptive due to the positive or nega-
tive boosting of model weights based on the defender’s knowledge
about the adversary’s past experiences. Here, learning the model
parameters b has been decoupled from boosting the model param-
eters for future prediction to ensure simplicity in terms of both the
model formulation as well the weight learning process. Through
an example in Sec. 8, we show the effect of this design decision on
the defender mixed strategy generated.

Now we turn to the next aspect of SHARP’s utility computa-
tion. Recall the problem that the defender does not necessarily have
information about the attacker’s preferences for enough of the at-
tack surface in the initial rounds. This is because, the attacker is
exposed to only a limited set of target profiles in each round and
the defender progressively gathers knowledge about the attacker’s
preferences for only those target profiles. We provide evidence in
support of this observation in Sec. 9.3.

The parameter d (0 ≤ d ≤ 1) in Eqn. 13 mitigates this attack
surface exposure problem. It is a discounting parameter which is
based on a measure of the amount of attack surface exposed. d is
low in the initial rounds when the defender does not have enough of
the right kind of data, but would gradually increase as more infor-
mation about the attacker’s preferences about various regions of the
attack surface become available. For our experiments, we varied d
based on Eqn. 14:

d =
1

Nr − r
(14)

where Nr is the total number of rounds and r is the round whose
data is under consideration. For example, Nr = 5 and r = 1
for data collected in round 1 of an experiment conducted over five
rounds. The intuition behind this formulation is that, as more rounds
are played, more information about the adversary’ preferences for a
lot of the attack surface will be available and hence d will increase
from a very small value gradually as rounds progress.

Finally, we look at how we reason about unexposed portions of
the attack surface based on the exposed areas. If a target profile
βu was not exposed to attacker response in round r, the defender
will not be able to compute the vulnerability V rβu . Therefore, we
will also not be able to estimate the attractiveness for βu and hence
the optimal defender strategy. So, in keeping with our analysis on
available data and based on the spillover effect introduced earlier,



we use the distance-weighted k-nearest neighbors algorithm [7] to
obtain the Vulnerability V rβu of an unexposed target profile βu in
round r, based on the k most similar target profiles which were
exposed to the attacker in round r (Eqns. 15 and 16).

V rβu =

∑k
i=1 θi ∗ V

r
βi∑k

i=1 θi
(15)

θi ≡
1

d(βu, βi)2
(16)

where, d(βu, βi) denotes the Euclidean distance between βu and
βi in the feature space. We use k = 5 for our experiments.

7. GENERATING DEFENDER STRATEGIES
AGAINST SHARP

While SHARP provides an adversary model, we must now gen-
erate defender strategies against such a model. To that end, we first
learn the parameters of SHARP from available data (See Sec. 5).
We then generate future round strategies against the boundedly ra-
tional adversary characterized by the learned model parameters by
solving the following optimization problem:

max
x∈X

[∑
i∈T

Udi (x) qRi (ω |x)

]
(17)

qRi (ω|x) is the probability that the adversary will attack target i in
round R and is calculated based on the following equation:

qRi (ω|x) =
e
ASUR

βi
k

(x)

∑
i∈T
e
ASUR

βi
k

(x)
(18)

βik denotes that target profile βk is associated with target i. ASUR
βi
k

and Udi (x) are calculated according to Eqns. 13 and 1 respectively.
To solve the non-linear and non-convex optimization problem in

Eqn. 17 and generate the optimal defender strategy, we use PASAQ
[37] as it provides an efficient approximated computation of the
defender strategy with near-optimal solution quality.

8. SHARP IN ACTION: AN EXAMPLE
Here we give an example to show the effectiveness of SHARP

in terms of the design of each component. Figs. 6(a), 6(b) and
6(c) show second round strategies generated by SHARP with dis-
counting of Eqn. 14 but without Attractiveness, SHARP without
discounting, i.e., d = 1 but with Attractiveness, and SHARP, based
on parameters learned (b =< δ, γ, ω1, ω2, ω3, ω4 >= <1.2, 1.6,
-3.2791, 0.1952, -0.3, -0.8388>) from first round data collected
for the experiment with SHARP on ADS1. The strategy gener-
ated by SHARP with discounting but without Attractiveness can be
easily exploited due to several unprotected cells with positive ani-
mal density. SHARP without discounting but with Attractiveness
generates a comparatively more robust strategy than SHARP with
discounting but without Attractiveness due to its adaptive utility
function and similarity learning mechanism. SHARP generates the
best strategy due to its capability to model all the design parameters
together into one single framework.

9. RESULTS WITH HUMAN SUBJECTS

9.1 Defender Utilities
In Figs. 7(a)- 7(d) we show actual defender utilities obtained

over 5 rounds for P-SUQR, P-BSUQR, P-RSUQR, SHARP and

(a) SHARP with
discounting but
without
Attractiveness

(b) SHARP without
discounting but
with
Attractiveness

(c) SHARP

Figure 6: Round 2 strategies generated by SHARP (with dis-
counting without Attractiveness), SHARP (no discounting but
with Attractiveness) and SHARP respectively.

Maximin on ADS1, ADS2, ADS3 and ADS4 respectively, with
an average of 38 human subjects playing per round. In the plots, y-
axis corresponds to defender utility and the models tested for each
round is shown on the x-axis. For example, in Fig. 7(b), P-SUQR
performs worst in round 2 with an utility of -5.26. In Fig. 7(b), we
also show (inset) zoomed in results of the second round to high-
light the difference in performance between Maximin (= -0.18) and
SHARP (= -0.1). First round utilities for all models are same as
Maximin strategy was played due to absence of data. All signif-
icance results reported below are computed with bootstrap t-test.
Following are key observations from our experiments.
Heavy initial round losses: For all models except SHARP, there
is statistically significant (p=0.05) loss in defender utility as com-
pared to Maximin in second round. P-SUQR recovers from initial
round losses and outperforms Maximin in rounds 3, 4 and 5 for
ADS1 (statistically significant at p=0.05), and in round 4 (statis-
tically significant at p=0.15) and round 5 for ADS2. P-RSUQR,
which is a robust model, also outperforms Maximin in rounds 4 and
5 (statistically significant at p=0.05) for ADS1 after initial round
losses. Surprisingly, P-BSUQR, which is the basis for wildlife se-
curity application PAWS, performs worst on both payoffs over all
rounds. Figs. 7(e)- 7(h) show cumulative defender utility over five
rounds onADS1,ADS2,ADS3 andADS4 respectively. Observe
that it takes five rounds for P-SUQR to recover from initial round
losses and outperform Maximin in terms of cumulative defender
utility for ADS1 (Fig. 7(e)). None of the other models recover
from the initial round losses on either payoffs in five rounds, thus
highlighting the impact initial round losses have on model perfor-
mance for a long period of time.
Performance of SHARP against other models: SHARP consis-
tently outperforms (statistically significant at p=0.05) all the mod-
els over all rounds (Figs. 7(a)- 7(d)), most notably in initial rounds
(round 2) and ends up with significantly high cumulative utility at
the end of all rounds (Figs. 7(e)- 7(h)).
Performance of SHARP (with and without discounting): To test
the effectiveness of the design decisions in SHARP, we considered
SHARP both with and without discounting. SHARP with d = 1
is compared against SHARP and P-SUQR on ADS1 in Fig. 8(a).
SHARP(d = 1) outperforms P-SUQR (statistically significant at
p=0.05) because it captures the adaptive nature of the adversary.
However, it performs worse than SHARP (statistically significant
at p=0.01) as SHARP also trusts the data less when we don’t have
enough information about the adversary’s responses to most of the
attack surface; in this case the initial rounds.

Therefore, our results on extensive human subjects experiments
on repeated SSGs show SHARP’s ability to perform well through-
out, including the important initial rounds.



(a) Results on ADS1 (b) Results on ADS2

(c) Results on ADS3 (d) Results on ADS4

(e) Results on ADS1 (f) Results on ADS2

(g) Results on ADS3 (h) Results on ADS4

Figure 7: (a), (b), (c) and (d): Defender utilities for various
models on ADS1, ADS2, ADS3 and ADS4 respectively; (e),
(f), (g) and (h): Cumulative defender utilities for various mod-
els on ADS1, ADS2, ADS3 and ADS4 respectively.

9.2 Learned Probability Curves
Fig. 8(b) shows human perceptions of probability in rounds 1 to

4 when the participants were exposed to P-SUQR based strategies
on ADS1. Learned curves from P-SUQR and SHARP on all pay-
offs have this S-shaped nature (See online appendix2), showing that
even though there is little change in the curvature between rounds,
it retains the same S-shape throughout all rounds. The curves in-
dicate that people weigh high probabilities to be higher and low to
medium probabilities to be lower than the actual values.

9.3 Attack surface exposure
In our repeated SSG, the only variation in terms of feature values

for our model (Eqn. 13) from round to round is the mixed strat-
egy x and hence the coverage xi at each target. Hence, exposure
to various regions of the attack surface means exposure to various
values of xi for fixed values of the other model parameters. Fig.
9(a) shows how the adversary was exposed to more unique values
of the coverage probability, and hence attack surface, over the five
rounds for ADS1. We discretize the range of xi, i.e. [0,1] into 10
intervals (x-axis) and show the total number of unique coverages
exposed till a particular round (y-axis) for each interval. Observe

(a) Results on ADS1 (b) Probability curves from
rounds 1 to 4

Figure 8: (a) Comparison of defender utilities between P-
SUQR, SHARP and SHARP(d=1) onADS1; (b) Learned prob-
ability curves for P-SUQR on ADS1.

(a) For ADS1

Figure 9: Total number of unique exposed target profiles till
the end of each round for each coverage probability interval
for ADS1.

that more interval ranges and more unique coverage probabilities
get exposed in rounds 3 to 5. As we showed in Fig. 7(a), the de-
fender performance for P-SUQR improves significantly in rounds
4 and 5. Similar plot for ADS2 is shown in the online appendix2.

10. CONCLUSION
This paper provides two major contributions that are critical for

important domains such as protection of wildlife, fish and forests.
First, it introduces a novel human behavior model called SHARP
for repeated SSG settings. SHARP has three major novelties: (i)
It models the adversary’s adaptive decision making process by rea-
soning based on success or failure of the adversary’s past actions
on exposed portions of the attack surface. (ii) It accounts for lack
of information about the adversary’s preferences due to insufficient
exposure to attack surface by reasoning about similarity between
exposed and unexposed areas of the attack surface, and also in-
corporating a confidence based discounting parameter to model the
learner’s trust in the available data. (iii) It integrates a non-linear
probability weighting function.

Second, we conducted the first “longitudinal study” of compet-
ing models in repeated SSGs to test the performance of SHARP
along with existing approaches. Our results show that: (i) Human
perceptions of probability are S-shaped, contradicting the inverse
S-shaped observation from prospect theory. (ii) Existing human
behavior models and algorithms perform poorly in initial rounds
of repeated SSGs. (iii) SHARP performs significantly better than
existing approaches consistently over all the rounds, most notably
in the initial rounds, earning it the “iron throne” in our game of
competing models in repeated SSGs.
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