Reminder

- Quiz for Lecture 4 (9/15, 10pm)
- Paper Bidding Result
 - Next Mon's presenter
- Paper Reading Assignment I (9/13, 10pm)
 - Peer reviewed (Due I week after assignment due)
- Confirm group members for course project (9/13, 10pm)

Advanced Topics in Machine Learning and Game Theory Lecture 5: Introduction to Online Learning

17599/17759 Fei Fang feifang@cmu.edu

Outline

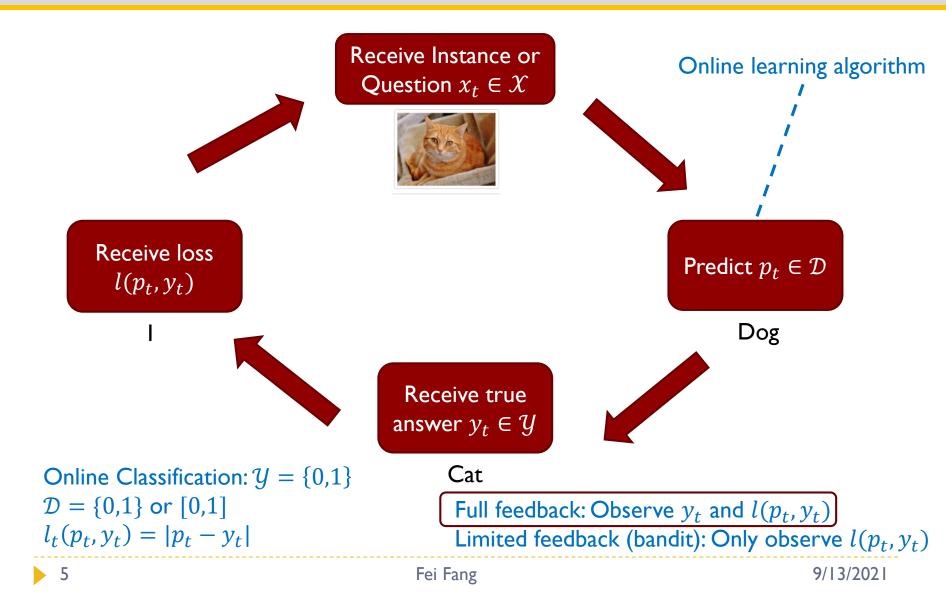
- Online Learning
- Regret Analysis
- Follow-the-(Regularized)-Leader
- Online Mirror Descent

Online Learning

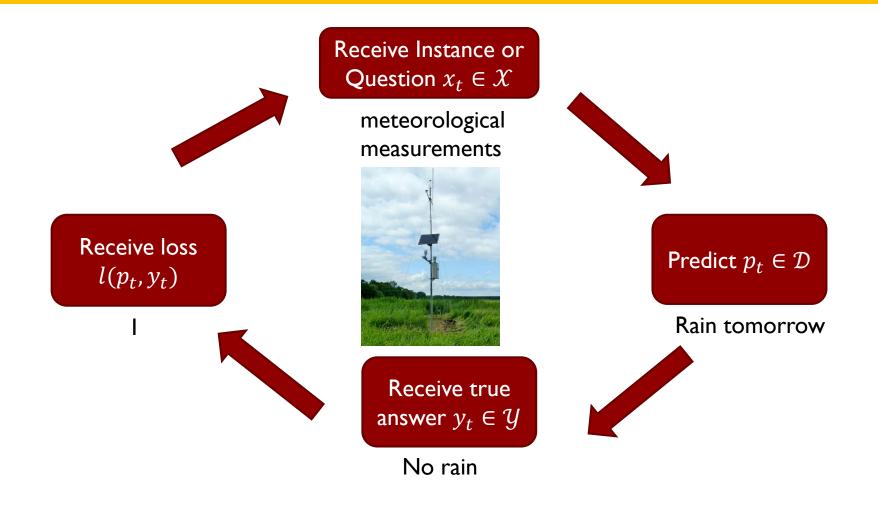
- Supervised Learning: Learn from a dataset with labels
- Unsupervised Learning: Learn from a dataset without labels
- Online Learning: Data come online

Chihuahua or Muffin?

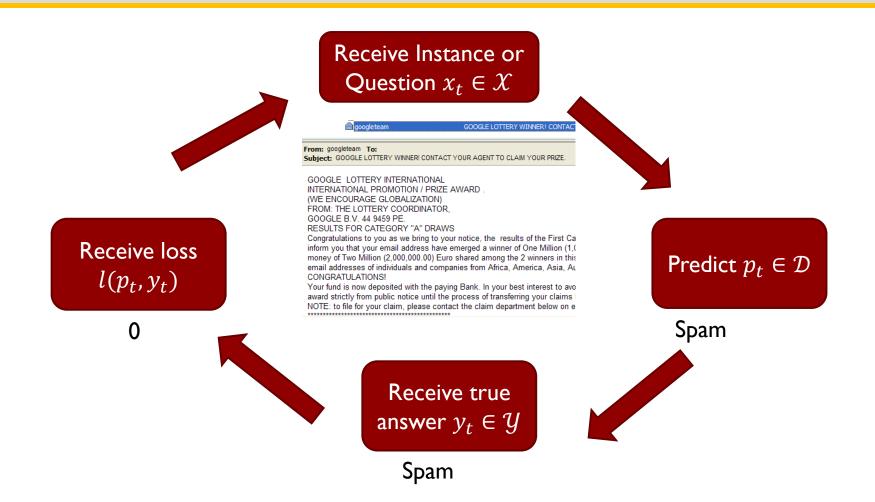
Cat or Dog?



6

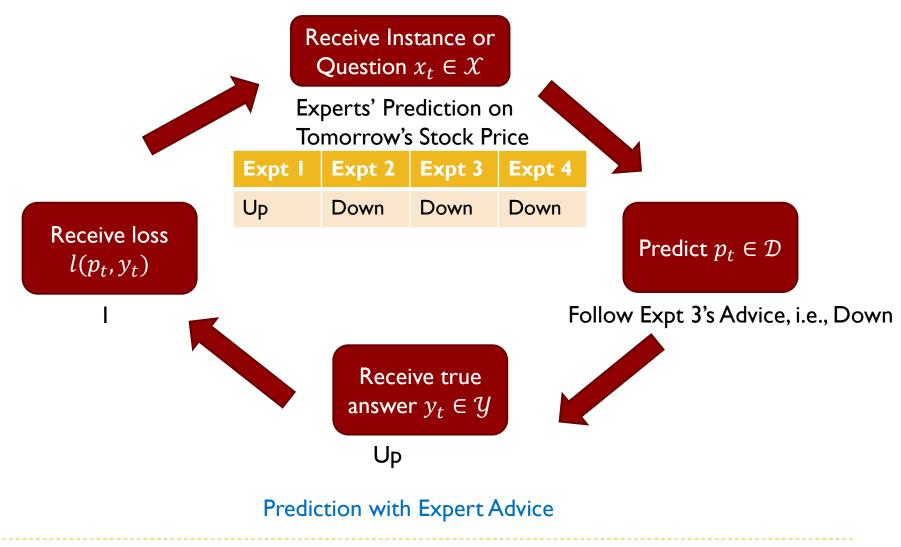


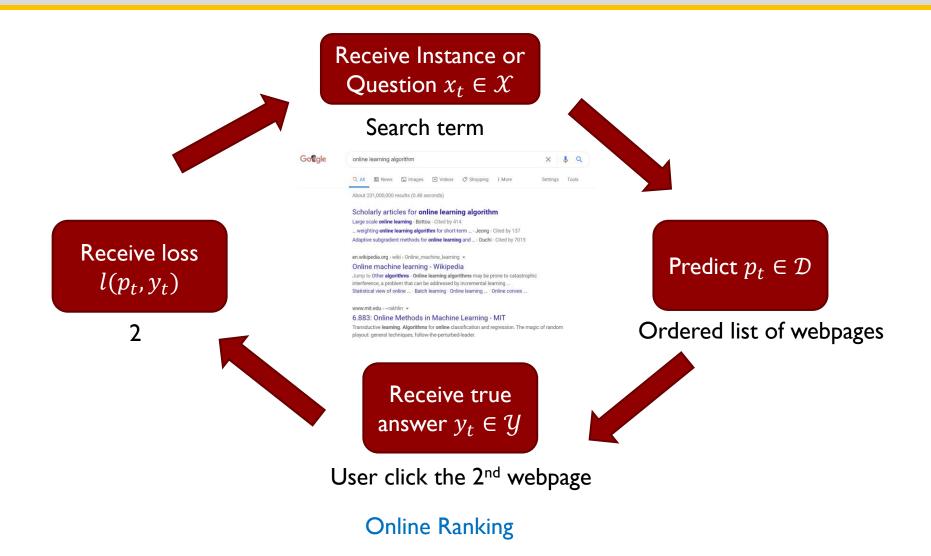
9/13/2021



The spam designer may adapt to learner's learning algorithm!

7





If we assume the actual selling price is a linear function of the features: Online Regression

10

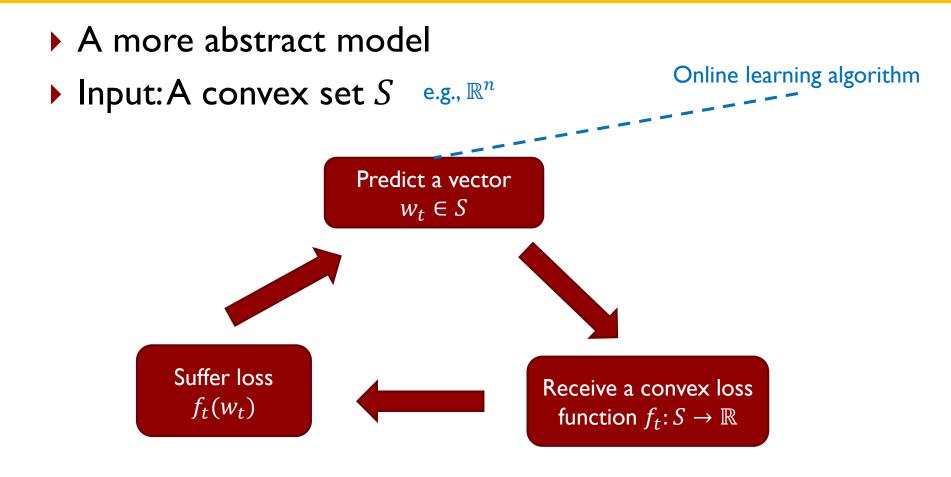
Stochastic vs Adversarial Online Learning

- Stochastic/statistical setting: instances are drawn i.i.d. from a fixed distribution
 - Image classification, predict stock prices
- Adversarial setting: an adversary picks the worst instance at every time step (adapt to learner's past actions and even the learner's learning algorithm)
 - Spam detection, anomaly detection, game playing

Applications of Online Learning

- Learn to make decisions in daily life
 - How to commute to school? Bus, walking, or driving? Which route?
- Learn to gamble or buy stocks
- Advertisers learn to bid for keywords
- Others?

Online Convex Optimization



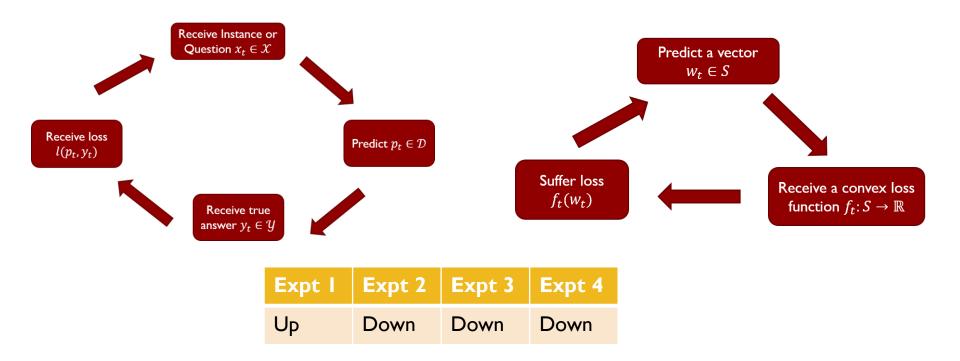
Online Convex Optimization

Convexity is preserved under a linear transformation: If f(x) = g(Ax + b), g convex, then f(x) is convex

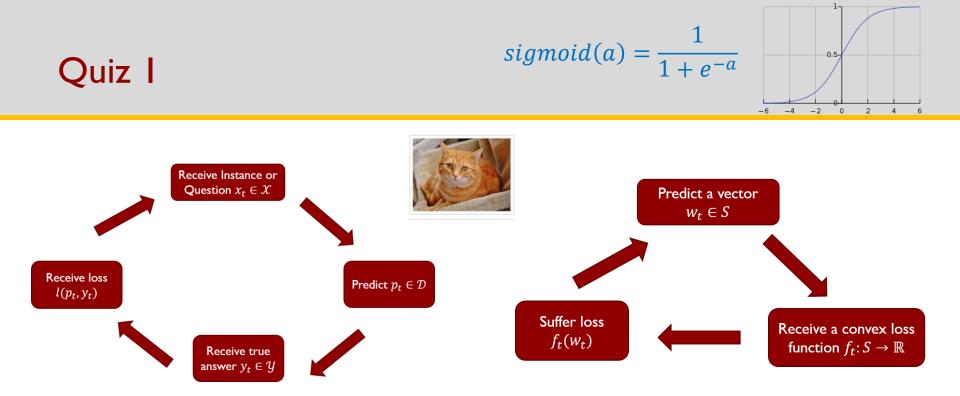
Online Regression: w_t are the parameters in the linear regression model

$$p_t = \sum_i w_t[i]x_t[i] = \langle w_t, x_t \rangle$$
$$f_t(w_t) = l(p_t, y_t) = \left(\sum_i w_t[i]x_t[i] - y_t\right)^2$$

Online Convex Optimization



Prediction with Expert Advice: If there are *n* experts $w_t \in \mathbb{R}^n$ are the probabilities of following each expert's advice $p_t \sim w_t$, i.e., $\mathbb{P}[p_t = i] = w_t[i]$ $f_t(w_t) = \mathbb{E}_{p_t \sim w_t}[l(p_t, y_t)]$



Assume we use a simple model for online image classification:

 $p_t = g\left(\sum_i w_t[i]x_t[i]\right)$ g maps the linear combination to [0,1], e.g., sigmoid

When can the online image classification problem be described as an OCO problem? A: $l(p_t, y_t)$ is a convex function of p_t B: $f_t(w_t)$ is a convex function of w_t C: g(a) is a convex function of a

Outline

- Online Learning
- Regret Analysis
- Follow-the-(Regularized)-Leader
- Online Mirror Descent

Regret

- How "sorry" the learner is in retrospect
- In online classification
 - $\mathcal{Y} = \{0,1\}, \mathcal{D} = \{0,1\} \text{ or } [0,1] \text{ (randomize over } \{0,1\}\text{)}$

►
$$l_t(p_t, y_t) = |p_t - y_t|$$

- \blacktriangleright An online learning algorithm A makes predictions p_t
- After *T* time steps, regret relative to a fixed predictor $h^*: \mathcal{X} \to \mathcal{Y} = \{0,1\}$ is $\operatorname{Regret}_T(h^*) = \sum_{t=1}^T l(p_t, y_t) - \sum_{t=1}^T l(h^*(x_t), y_t)$
- \blacktriangleright Regret relative to a hypothesis class ${\cal H}$ is

$$\operatorname{Regret}_{T}(\mathcal{H}) = \max_{h^{\star} \in \mathcal{H}} \operatorname{Regret}_{T}(h^{\star})$$

Compare to the best fixed hypothesis in hindsight

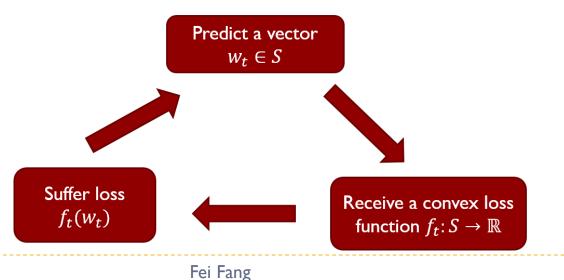
Regret

- Generally, in online convex optimization
- Regret w.r.t. some vector u is Regret_T $(u) = \sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(u)$
- Regret w.r.t. a set of vectors U is

 $\operatorname{Regret}_{T}(U) = \max_{u \in U} \operatorname{Regret}_{T}(u)$

Compare to the best fixed vector in U in hindsight

9/13/2021



No Regret

- Consider the average regret $\overline{R} = \frac{\text{Regret}_T}{T}$
- If $\overline{R} \to 0$ as $T \to \infty$, we say the online learning algorithm has no-regret
 - Equivalently, we can say, the regret is sublinear in T
- A typical goal in online learning is to design no-regret algorithms

Outline

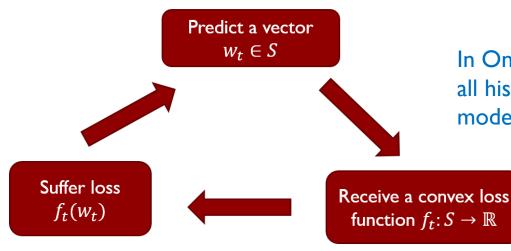
- Online Learning
- Regret Analysis
- Follow-the-(Regularized)-Leader
- Online Mirror Descent

Follow-the-Leader (FTL)

Follow-the-Leader

$$\forall t, w_t = \operatorname{argmin}_{w \in S} \sum_{i}^{t-1} f_i(w)$$

- Pick the best vector on all past rounds
- Break ties arbitrarily



In Online Regression: Train a model with all historical data, and use the trained model for prediction in the next round

Quiz 2

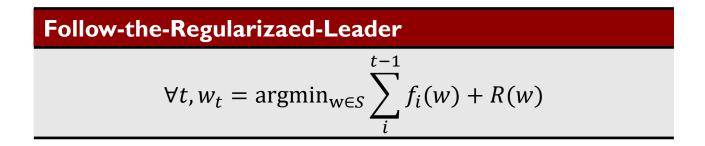
- If we apply FTL to Prediction with Expert Advice, which expert's advice will be followed in each round? (Assume the expert's advice is binary)
 - A: Probability of choosing expert i is proportional to the number of past rounds expert i is correct
 - B:Always follow the expert with the minimum number of mistakes in the past rounds
 - C: None of the above

Follow-the-Leader

$$\forall t, w_t = \operatorname{argmin}_{w \in S} \sum_{i}^{t-1} f_i(w)$$

Prediction with Expert Advice: If there are *n* experts $w_t \in \mathbb{R}^n$ are the probabilities of following each expert's advice $p_t \sim w_t$, i.e., $\mathbb{P}[p_t = i] = w_t[i]$ $f_t(w_t) = \mathbb{E}_{p_t \sim w_t}[l(p_t, y_t)]$

Fei Fang



- Use a regularization function
- Different regularization functions will yield different algorithms with different regret bounds

FoReL

$$\forall t, w_t = \operatorname{argmin}_{w \in S} \sum_{i}^{t-1} f_i(w) + R(w)$$

- Consider a problem where $f_t(w) = \langle w, z_t \rangle$ for some vector z_t and $S = \mathbb{R}^d$
- Run FoReL with regularization function $R(w) = \frac{1}{2\eta} ||w||_2^2$ for some positive scalar η
- Then $w_{t+1} =$

Online gradient descent!

FoReL

$$\forall t, w_t = \operatorname{argmin}_{w \in S} \sum_{i}^{t-1} f_i(w) + R(w)$$

- Consider a problem where $f_t(w) = \langle w, z_t \rangle$ for some vector z_t and $S = \mathbb{R}^d$
- Run FoReL with regularization function $R(w) = \frac{1}{2\eta} ||w||_2^2$ for some positive scalar η
- Then $w_{t+1} = \operatorname{argmin}_{w \in S} \sum_{i}^{t} f_i(w) + R(w) = \operatorname{argmin}_{w \in S} \sum_{i}^{t} w^T z_t + \frac{1}{2\eta} ||w||_2^2$

Set gradient of the function w.r.t w to be 0 to get w_{t+1} , i.e.,

$$\sum_{i}^{t} z_{t} + \frac{1}{2\eta} 2w = 0$$

So $w_{t+1} = -\eta \sum_{i=1}^{t} z_{t} = w_{t} - \eta z_{t} = w_{t} - \eta \partial f_{t}(w_{t})$

Online gradient descent!

FoReL

It can be proved that running this version of FoReL on this problem yield

Regret_T(u)
$$\leq \frac{1}{2\eta} \|u\|_2^2 + \eta \sum_{t=1}^T \|z_t\|_2^2$$
, $\forall u$

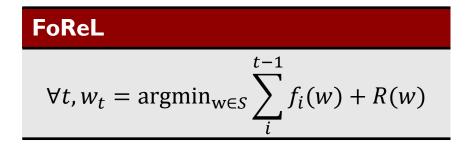
• If we consider a set of vectors $U = \{u: ||u|| \le B\}$, with a properly chosen constant η , we can get

 $\operatorname{Regret}_T(U) \leq BL\sqrt{2T}$

Is this version of FoReL a no-regret algorithm for the problem?

Disadvantage of FoReL

Need to solve an optimization problem at each online round



Outline

- Online Learning
- Regret Analysis
- Follow-the-(Regularized)-Leader
- Online Mirror Descent

Online Mirror Descent (OMD)

A family of algorithms without solving an optimization problem in each round

Online Mirror Descent Parameters: a link function $g: \mathbb{R}^d \to S$ Initialize: $\theta_1 = 0$ for t = 1, 2, ...predict $w_t = g(\theta_t)$ Update $\theta_{t+1} = \theta_t - z_t$ where $z_t = \partial f_t(w_t)$

 Different link functions will yield different algorithms with different regret bounds

30

Quiz 3

- If $S = \mathbb{R}^d$, $g(\theta) = \eta \theta$, what is the relationship between w_{t+1} and w_t ?
 - $\blacktriangleright A: w_{t+1} \ge w_t$
 - $\blacktriangleright \mathsf{B}: w_{t+1} \le w_t$
 - $\bullet \ \mathsf{C}: w_{t+1} = w_t \eta \partial f_t(w_t)$
 - $\blacktriangleright \mathsf{D}: w_{t+1} = w_t \eta \theta_t$
 - E: None of the above

Online Mirror Descent

Parameters: a link function $g: \mathbb{R}^d \to S$ Initialize: $\theta_1 = 0$ for t = 1, 2, ...predict $w_t = g(\theta_t)$ Update $\theta_{t+1} = \theta_t - z_t$ where $z_t = \partial f_t(w_t)$

Quiz 3

- If $S = \mathbb{R}^d$, $g(\theta) = \eta \theta$, what is the relationship between w_{t+1} and w_t ? Online gradient descent again!
 - $\blacktriangleright A: w_{t+1} \ge w_t$
 - $\bullet \quad \mathsf{B}: w_{t+1} \le w_t$

$$\bullet \ \mathsf{C}: w_{t+1} = w_t - \eta \partial f_t(w_t)$$

$$\blacktriangleright \mathsf{D}: w_{t+1} = w_t - \eta \theta_t$$

E: None of the above

Online Mirror Descent

Parameters: a link function $g: \mathbb{R}^d \to S$ Initialize: $\theta_1 = 0$ for t = 1, 2, ...predict $w_t = g(\theta_t)$ Update $\theta_{t+1} = \theta_t - z_t$ where $z_t = \partial f_t(w_t)$

Discussion

Suppose we are playing a two-player normal-form game repeatedly. Can this be described as an online learning problem? An online convex optimization problem? What would FTL and FoReL mean?

Additional Resources

 Online Learning and Online Convex Optimization, Chp I-3

Acknowledgment

The slides are prepared based on slides made by Haifeng Xu

Backup Slides

Multi-Armed Bandit (MAB)

- K arms
- Each arm k is associated with a reward distribution R_k (pdf p_k(r)), with expected reward μ_k (μ_k = ∫_r rp_k(r)dr)
- Gambler does not know R_k , μ_k
- In each round $t \in \{1 \dots T\}$, gambler chooses one arm k_t , and observe a reward $\hat{r_t}$ drawn from the distribution
- Task: design an online learning algorithm A
- Example Goal: find the best arm with a minimum number of arm pulls

Stochastic feedback Limited feedback

Regret

- Let $\mu^* = \max_k \mu_k$
- Regret $\rho = T\mu^* \sum_{t=1}^T \widehat{r_t}$
- A typical research problem in MAB: find zero-regret strategy
 - $\lim_{T \to \infty} \frac{\rho}{T} = 0$
- Probably approximately correct (PAC): with high probability, it is close to being correct $Pr(error \le \epsilon) \ge 1 \delta$
- ► PAC version of zero-regret strategy $\Pr(\lim_{T \to \infty} \frac{\rho}{T} \le \epsilon) \ge 1 - \delta$

Binary MAB

- ► K arms
- Reward is either 0 or 1, R_k : $Pr(r = 1) = p_k$, $Pr(r = 1) = p_k$

- Let N(k) be the number of times that k is chosen
- Let H(k) be the number of times that k is chosen and reward is 1
- Let $\widehat{\mu_k} = H(k)/N(k)$, average reward when k is chosen
- Given N(k), H(k), $\widehat{\mu_k}$, δ , we can estimate the range of μ_k , i.e., we can compute μ_{LB}^k and μ_{UB}^k such that $\Pr(\mu_{LB}^k \le \mu_k \le \mu_{UB}^k) \ge 1 - \delta$

- Chernoff-Hoeffding Bound: Let X_1, X_2, \ldots, X_n be independent random variables in the range [0, 1] with $\mathbb{E}[X_i] = \mu$. Then for a > 0 $\Pr(\frac{1}{n}\sum_{i}X_{i} \ge \mu + a) \le e^{-2a^{2}n}$ $\Pr(\frac{1}{n}\sum_{i=1}^{n}X_{i} \le \mu - a) \le e^{-2a^{2}n}$
- That is, with high probability, the observed average value of X_i is very close to the expected value of X_i

- $\widehat{\mu_k} = H(k)/N(k)$
- According to Chernoff-Hoeffding Bound
- $\Pr(\widehat{\mu_k} \ge \mu_k + a) \le e^{-2a^2 N(k)}$

$$\Pr(\widehat{\mu_k} \le \mu_k - a) \le e^{-2a^2 N(k)}$$

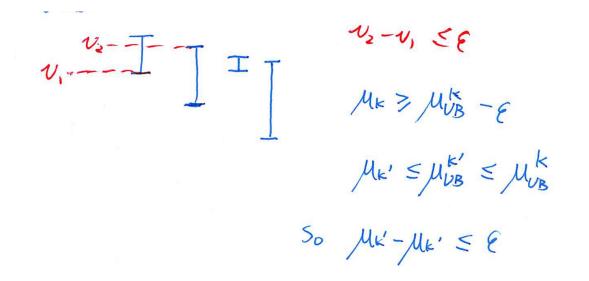
So
$$\Pr(\widehat{\mu_k} - a \le \mu_k \le \widehat{\mu_k} + a) \le 1 - 2e^{-2a^2N(k)}$$

• Given δ , if we want to find μ_{LB}^k and μ_{UB}^k such that $\Pr(\mu_{LB}^k \le \mu_k \le \mu_{UB}^k) \ge 1 - \delta$, then a simple way is to set $\delta = 2e^{-2a^2N(k)}$, i.e., $a = \sqrt{\frac{1}{2N(k)}\ln(\frac{2}{\delta})}$ and • $\mu_{LB}^k = \widehat{\mu_k} - a$, $\mu_{UB}^k = \widehat{\mu_k} + a$

- Heuristic strategy in binary MAB with the goal of finding an arm k such that $\Pr[\mu^* \mu_k \le \epsilon] \ge 1 \delta$ with minimum number of arm pulls (rounds)
 - In very round, choose the arm with highest μ_{UB}^k . Terminates when $\mu_{UB}^k \mu_{LB}^k \le \epsilon$ for the chosen arm.
 - Intuition: If μ^k_{UB} is large, either k is a good arm or N(k) is small (not enough data is gathered)

Q:When the confidence interval of the arm with highest upper bound is smaller than \(\epsilon\), then is the difference between the optimal value and the average value of this arm guaranteed to be smaller than \(\epsilon\)?

Q:When the confidence interval of the arm with highest upper bound is smaller than \(\epsilon\), then is the difference between the optimal value and the average value of this arm guaranteed to be smaller than \(\epsilon\)?



Heuristic strategy in binary MAB with the goal of maximizing accumulated reward: in very round,

choose the arm with highest
$$\mu_{UB}^k = \widehat{\mu_k} + \sqrt{\frac{2\ln(N)}{N(k)}}$$

Previously, to ensure

$$Pr(\mu_{LB}^{k} \le \mu_{k} \le \mu_{UB}^{k}) \ge 1 - \delta$$
We set $\mu_{UB}^{k} = \widehat{\mu_{k}} + a$

$$a = \sqrt{\frac{1}{2N(k)} \ln(\frac{2}{\delta})}$$

46

Upper Confidence Bound

- Extend UCB to general MDP/RL setting
 - Recall in Q-Learning and SARSA, we need to follow some policy (based on current estimates of Q-value)
 - At state s, choose action a with the highest $Q_{UB}(s, a)$

•
$$Q_{UB}(s,a) = Q(s,a) + c_{\sqrt{\frac{\ln N(s)}{N(s,a)}}}$$

Better than *\epsilon*-Greedy in handling exploitation vs exploration tradeoff