Reminder

- Quiz for Lecture I (9/I, I0pm)
- Quiz for Lecture 2 (9/3, 10pm)
- Paper Bidding (9/6, 10pm)
- Paper Reading Assignment I (9/13, 10pm)
 - Peer reviewed (Due I week after assignment due)
- Confirm group members for course project (9/13, 10pm)

• Consider the following two LPs (LP-L and LP-R) where $b \ge 0$

LP-L	LP-R
min $1^T z$	$\min c^T x$
χ ,Z	x
s.t. $Ax + z = b$	s.t. $Ax = b$
$x, z \geq 0$	$x \ge 0$

- Applying simplex algorithm to LP-L with the initial vertex $x_0 = 0$, $z_0 = b$. Denote the optimal solution as (x^*, z^*) . If $z^* = 0$, then which of the following claims are true about x^* ?
 - A: x^* is not in the feasible region of LP-R
 - B: x^* is in the feasible region of LP-R
 - C: x^* is a vertex of the feasible region of LP-R
 - > D: x^* is an optimal solution of LP-R

Revisit Lec 1, Quiz 3

• Consider the following two LPs (LP-L and LP-R) where $b \ge 0$

LP-L $\begin{array}{ll} \underset{x,z}{\min} 1^{T}z & \underset{x}{\min} c^{T}x \\ \text{s.t. } Ax + z = b & \text{s.t. } Ax = b \\ x, z \ge 0 & x \ge 0 \end{array}$

- Denote the optimal solution of LP-L as (x^*, z^*) . If $z^* = 0$, then x^* is a vertex of the feasible region of LP-R
- (x^*, z^*) is a vertex of feasible region of LP-L. LP-L has m + nvariables, m(< n) equality constraints, m + n inequality constraints (non-negative constraints). So the vertex is defined by the mequality constraints Ax + z = b and make n non-negative constraints equality constraints, i.e., n of x and z variables have to be 0. Since $z^* = 0$ (m variables), we know that at least m - nvariables in x^* are 0. So x^* only has m non-zero values and satisfies $Ax^* = b$, which means x^* is a vertex of LP-R

Advanced Topics in Machine Learning and Game Theory Lecture 2: Introduction to Game Theory

17599/17759 Fei Fang <u>feifang@cmu.edu</u>

From Games to Game Theory

- The study of mathematical models of conflict and cooperation between intelligent decision makers
- Used in economics, political science etc

John von Neumann

John Nash

Heinrich Freiherr von Stackelberg

Winners of Nobel Memorial Prize in Economic Sciences

Outline

- Normal-Form Games
- Solution Concepts
- Linear Programming-based Equilibrium Computation
- Extensive-Form Games

Some Classical Games

- Rock-Paper-Scissors (RPS)
- Prisoner's Dilemma (PD)
 - If both Cooperate: I year in jail each
 - If one Defect, one Cooperate: 0 year for (D), 3 years for (C)
 - If both Defect: 2 years in jail each
- Football vs Concert (FvsC)
 - Historically known as Battle of Sexes
 - ▶ If football together:Alex ☺☺, Berry ☺
 - ▶ If concert together: Alex ☺, Berry ☺☺
 - ▶ If not together: Alex ☺, Berry ☺

Normal-Form Games

- A finite, n-player normal-form game is described by a tuple (N, A, u)
 - Set of players $N = \{1..n\}$
 - Set of joint actions $A = \prod_i A_i$
- May also be called matrix form, strategic form, or standard form
- ▶ $\mathbf{a} = (a_1, \dots, a_n) \in A$ is an action profile
- ▶ Payoffs / Utility functions $u_i: A \to \mathbb{R}$
 - $u_i(a_1, \dots, a_n)$ or $u_i(\mathbf{a})$
- Players move simultaneously and then game ends immediately
- Zero-Sum Game: $\sum_i u_i(\mathbf{a}) = 0, \forall \mathbf{a}$

Payoff Matrix

- A two-player normal-form game with finite actions can be represented by a (bi)matrix
 - Player I: Row player, Player 2: Column player
 - First number is the utility for Player I, second for Player 2

			Player 2	
		Rock	Paper	Scissors
/er	Rock	0,0	-1,1	١,-١
Player	Paper	۱,-۱	0,0	-1,1
	Scissor	-1,1	١,-١	0,0

	Player 2		er Z
		Cooperate	Defect
ver l	Cooperate	-1,-1	-3,0
Player	Defect	0,-3	-2,-2
		Born	

Diavon 2

	Berry		
		Football	Concert
Alex	Football	2,1	0,0
A	Concert	0,0	١,2

Q:What if we have more than 2 players?

9/13/2021

Pure Strategy, Mixed Strategy, Support

- Pure strategy: choose an action deterministically
- Mixed strategy: choose action randomly
- Given action set A_i , player *i*'s strategy set is $S_i = \Delta^{|A_i|}$
- Support: set of actions chosen with non-zero probability
- Let $s_i = (x_1, ..., x_{|A_i|})^T$ where x_j is the probability of choosing the j^{th} action of player i, then
 - Pure strategy:
 - Mixed strategy:
 - ▶ Support≜

Pure Strategy, Mixed Strategy, Support

- Pure strategy: choose an action deterministically
- Mixed strategy: choose action randomly
- Given action set A_i , player *i*'s strategy set is $S_i = \Delta^{|A_i|}$
- Support: set of actions chosen with non-zero probability
- Let s_i = (x₁,..., x<sub>|A_i|)^T where x_j is the probability of choosing the jth action of player i, then
 Pure strategy: ∃j^{*}, x_{j*} = 1
 </sub>
 - Mixed strategy: $\exists j_1, j_2$ where $j_1 \neq j_2, x_{j_1} > 0, x_{j_2} > 0$
 - Support $\triangleq \{j: x_j > 0\}$

Expected Utility

- Given players' strategy profile s = (s₁, ..., s_n), what is the expected utility for each player?
- Let s_i(a) be the probability of choosing action a ∈ A_i, then
 - $u_i(s_1, \dots, s_n) =$

Expected Utility

- Given players' strategy profile s = (s₁, ..., s_n), what is the expected utility for each player?
- Let s_i(a) be the probability of choosing action a ∈ A_i, then
 - $u_i(s_1, \dots, s_n) = \sum_{\mathbf{a} \in A} P(\mathbf{a}) u_i(\mathbf{a}) = \sum_{\mathbf{a} \in A} u_i(\mathbf{a}) \prod_{i'} s_{i'}(a_{i'})$

Outline

- Normal-Form Games
- Solution Concepts
- Linear Programming-based Equilibrium Computation
- Extensive-Form Games

Best Response

- Let $a_{-i} = (a_1, \dots, a_{i-1}, a_{i+1}, \dots a_n)$.
- An action profile can be denoted as $\mathbf{a} = (a_i, a_{-i})$
- Similarly, define u_{-i} and s_{-i}
- Best Response: Set of actions or strategies leading to highest expected utility given the strategies or actions of other players

▶
$$a_i^* \in BR(a_{-i})$$
 iff

- $s_i^* \in BR(s_{-i})$ iff
- Theorem (Nash 1951): A mixed strategy is BR iff all actions in the support are BR
 - $s_i \in BR(s_{-i})$ iff

Best Response

• Let
$$a_{-i} = (a_1, \dots, a_{i-1}, a_{i+1}, \dots a_n).$$

- An action profile can be denoted as $\mathbf{a} = (a_i, a_{-i})$
- Similarly, define u_{-i} and s_{-i}
- Best Response: Set of actions or strategies leading to highest expected utility given the strategies or actions of other players

▶
$$a_i^* \in BR(a_{-i})$$
 iff $\forall a_i \in A_i, u_i(a_i^*, a_{-i}) \ge u_i(a_i, a_{-i})$

▶
$$s_i^* \in BR(s_{-i})$$
 iff $\forall s_i \in S_i, u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i})$

- Theorem (Nash 1951): A mixed strategy is BR iff all actions in the support are BR
 - $s_i \in BR(s_{-i}) \text{ iff } \forall a_i: s_i(a_i) > 0, a_i \in BR(s_{-i})$

		Cooperate	Defect
Dominant Strategy	Cooperate	-1,-1	-3,0
Dominant Strategy	Defect	0,-3	-2,-2

- Dominant Strategy
 - One strategy is always better/never worse/never worse and sometimes better than any other strategy
 - Focus on single player's strategy
 - Not always exist
 - s_i strictly dominates s'_i if
 - s_i very weakly dominates s'_i if
 - s_i weakly dominates s'_i if

 s_i is a (strictly/very weakly/weakly) dominant strategy if it dominates s'_i , $\forall s'_i \in S_i$

		Cooperate	Defect
Dominant Stratogy	Cooperate	-1,-1	-3,0
Dominant Strategy	Defect	0,-3	-2,-2

Dominant Strategy

- One strategy is always better/never worse/never worse and sometimes better than any other strategy
- Focus on single player's strategy
- Not always exist
 - s_i strictly dominates s'_i if $\forall s_{-i}, u_i (s_i, s_{-i}) > u_i(s'_i, s_{-i})$
 - s_i very weakly dominates s'_i if $\forall s_{-i}, u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$

$$s_i \text{ weakly dominates } s'_i \text{ if } \forall s_{-i}, u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}) \\ \text{and } \exists s_{-i}, u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i}) \end{cases}$$

 s_i is a (strictly/very weakly/weakly) dominant strategy if it dominates s'_i , $\forall s'_i \in S_i$

Dominant Strategy Equilibrium or Dominant Strategy Solution

- Dominant strategy equilibrium/solution
 - Every player plays a dominant strategy
 - Focus on strategy profile for all players
 - Not always exist
 - Can be found through enumerating pure strategies for each player

Q: Is there a dominant strategy equilibrium in the following game?

	Cooperate	Defect
Cooperate	-1,-1	-3,0
Defect	0,-3	-2,-2

	С	d
a	2,1	4,0
b	١,0	3,2

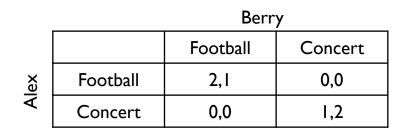
Nash Equilibrium

- Nash Equilibrium (NE)
 - ▶ $\mathbf{s} = \langle s_1, ..., s_n \rangle$ is NE if $\forall i, s_i \in BR(s_{-i})$
 - Everyone's strategy is a BR to others' strategy profile
 - Focus on strategy profile for all players
 - One cannot gain by unilateral deviation
 - Pure Strategy Nash Equilibrium (PSNE)
 - ▶ $\mathbf{a} = \langle a_1, ..., a_n \rangle$ is PSNE if $\forall i, a_i \in BR(a_{-i})$
 - Mixed Strategy NE: at least one player use a mixed strategy

	Player 2		
		Cooperate	Defect
/er	Cooperate	-1,-1	-3,0
Player	Defect	0,-3	-2,-2

Q:What are the PSNEs in this game?

Is the following strategy profile an NE? Alex: (2/3,1/3), Berry: (1/3,2/3)



 $\mathbf{s} = \langle s_1, \dots, s_n \rangle$ is NE if $\forall i, s_i \in BR(s_{-i})$

Quiz I

Is the following strategy profile an NE? Alex: (2/3,1/3), Berry: (1/3,2/3)

$$u_{A}(s_{A}, s_{B}) = \frac{2}{3} * \frac{1}{3} * 2 + \frac{1}{3} * \frac{2}{3} * 1 = 2/3$$
$$u_{A}(F, s_{B}) = 2 * \frac{1}{3} = \frac{2}{3}$$
$$u_{A}(C, s_{B}) = 1 * \frac{2}{3} = \frac{2}{3}$$
So $u_{A}(s'_{A}, s_{B}) = \epsilon u_{A}(F, s_{B}) + (1 - \epsilon)u_{A}(C, s_{B}) = 2/3$ So Alex has no incentive to deviate (u_{A} cannot increase)
Similar reasoning goes for u_{B}

		Berr	у
		Football	Concert
Alex	Football	2,1	0,0
A	Concert	0,0	١,2

Nash Equilibrium

- Theorem (Nash 1951): NE always exists in finite games
 - Finite game: $n < \infty$, $|A| < \infty$
 - NE: pure or mixed

Maximin Strategy

- Maximin Strategy (applicable to multiplayer games)
 - Maximize worst case expected utility
 - Maximin strategy for player *i* is $\underset{s_i}{\operatorname{argmax}} \min_{s_{-i}} u_i(s_i, s_{-i})$
 - Maximin value for player *i* is $\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$ (Also called safety level)
 - Focus on single player's strategy
 - Can be computed through linear programming

Minimax Strategy

- Minimax Strategy in two-player games:
 - Minimize best case expected utility for the other player (just want to harm your opponent)
 - Minimax strategy for player *i* against player -i is argmin max $u_{-i}(s_i, s_{-i})$ s_i
 - Minimax value for player -i is $\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$
 - Focus on single player's strategy
 - Can be computed through linear programming

Minimax Strategy

- Minimax Strategy in n-player games:
 - Coordinate with other players to minimize best case expected utility for a particular player (just want to harm that player)
 - Minimax strategy for player i against player j is i's component of s_{-j} in argmin max u_j(s_j, s_{-j})
 - Minimax value for player j is min max $u_j(s_j, s_{-j})$
 - Focus on single player's strategy
 - Can be computed through linear programming (treating all players other than j as a meta-player)

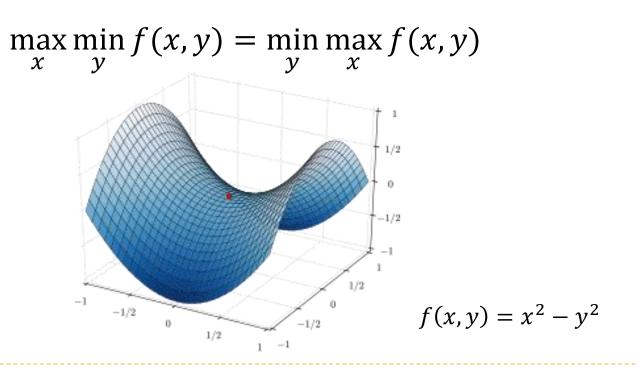
Minimax Theorem

- Theorem (von Neumann 1928, Nash 1951):
 - Informal: Minimax value=Maximin value=NE value in finite 2player zero-sum games
 - Formally
 - $\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i}) = \min_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i})$
 - ▶ $\exists v \in \mathbb{R}$ such that Player I can guarantee value at least v and Player 2 can guarantee loss at most v (v is called value of the game)
 - Indication: All NEs leads to the same utility profile in a finite two-player zero-sum game

Minimax Theorem

- Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^n$ be compact convex sets
- If f: X × Y → R is a continuous concave-convex function, i.e., f(·, y) is a concave function of x for any fixed y, f(x,·) is a convex function of y for any fixed x

Then



https://en.wikipedia.org/wiki/Saddle_point

Power of Commitment

▶ NE utility=(2,1)

- If leader (player I) commits to playing b, then player has to play d, leading to a utility of 3 for leader
- If leader (player 1) commits to playing a and b uniformly randomly, then player still has to play d, leading to a utility of 3.5 for leader

		Playe	er 2
_		С	d
Player	а	2,1	4,0
Ы	b	١,0	3,2

Best Response Function

- Recall: Best response: Set of actions or strategies leading to highest expected utility given the strategies or actions of other players
 - ▶ $a_i^* \in BR(a_{-i})$ iff $\forall a_i \in A_i, u_i(a_i^*, a_{-i}) \ge u_i(a_i, a_{-i})$
 - ▶ $s_i^* \in BR(s_{-i})$ iff $\forall s_i \in S_i, u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i})$

Best Response Function

- A mapping from a strategy of one player to a strategy of another player in the best response set
- ▶ $f: S_1 \rightarrow S_2$ is a best response function iff $u_2(s_1, f(s_1)) \ge u_2(s_1, s_2), \forall s_1 \in S_1, s_2 \in S_2$. Or equivalently, $u_2(s_1, f(s_1)) \ge u_2(s_1, a_2), \forall s_1 \in S_1, a_2 \in A_2$

Stackelberg Equilibrium

_		С	d
Player	а	2,1	4,0
Ы	b	١,0	3,2

- Stackelberg Equilibrium
 - Focus on strategy profile for all players
 - Follower responds according a best response function
 - ($s_1, f(s_1)$) is a Stackelberg Equilibrium iff
 - I) f is a best response function
 - ▶ 2) $u_1(s_1, f(s_1)) \ge u_1(s'_1, f(s'_1)), \forall s'_1 \in S_1$
 - There may exist many Stackelberg Equilibria due to different best response functions. For some best response functions, the Stackelberg Equilibrium may not exist

 $EU^{1}(p, BR(p))$ $\frac{11}{3}$ p * 4 + (1-p) * 3 $\frac{5}{3}$ p * 2 + (1-p) * 1 p $\frac{2}{3}$ $\frac{2}{3}$ $\frac{p}{3}$ If $f(p = \frac{2}{2}) = d$, then SE

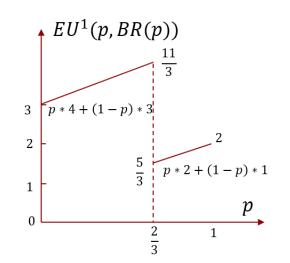
is $s_1 = \left(\frac{2}{2}, \frac{1}{2}\right), s_2 = (0, 1)$

If $f\left(p=\frac{2}{2}\right)=c$, then SE

does not exist

	_		с	d
Quiz 2	Player	а	2, I	4,0
		b	١,0	3,2

If the best response function breaks tie uniform randomly, does Stackelberg Equilibrium exist in this game?



Yes

No

Strong Stackelberg Equilibrium

- Strong Stackelberg Equilibrium (SSE)
 - Follower breaks tie in favor of the leader
 - $(s_1, f(s_1))$ is a Strong Stackelberg Equilibrium iff
 - I) f is a best response function
 - ▶ 2) $f(s) \in \underset{s_2 \in BR(s)}{\operatorname{argmax}} u_1(s, s_2)$
 - ▶ 3) $u_1(s_1, f(s_1)) \ge u_1(s'_1, f(s'_1)), \forall s'_1 \in S_1$
 - There may exist many SSEs but the leader's utility is the same in all these equilibria
 - Leader can induce the follower to breaks tie in favor of the leader by perturbing the strategy in the right direction
 - SSE always exist in two-player finite games

Outline

- Normal-Form Games
- Solution Concepts
- Linear Programming-based Equilibrium Computation
- Extensive-Form Games

Find All NEs (PSNE and Mixed Strategy NE)

- Special case: Two player, finite, zero-sum game
 - NE=Minimax=Maximin (Minimax theorem)
 - Solved by LP
- General case: PPAD-Complete (Chen & Deng, 2006)
 - Unlikely to have polynomial time algorithm
 - Conjecture: slightly easier than NP-Complete problems
- Two-player, general-sum bimatrix game: Support Enumeration Method

Compute Maximin Strategy

- For bimatrix games, maximin strategy can be computed through linear programming
- Let U¹_{ij} be player I's payoff value when player I choose action i and player 2 choose action j

Denote $s_1 = \langle x_1, ..., x_{|A_1|} \rangle$ where x_i is the probability of choosing the i^{th} action of player I

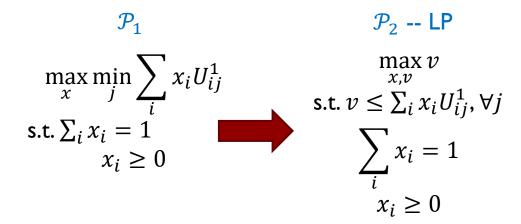
- For bimatrix games, maximin strategy can be computed through linear programming
- Let U¹_{ij} be player I's payoff value when player I choose action i and player 2 choose action j

To get $\underset{s_1}{\operatorname{argmax}} \underset{s_2}{\min} u_1(s_1, s_2)$, we denote $s_1 = \langle x_1, \dots, x_{|A_1|} \rangle$ where x_i is the probability of choosing the i^{th} action of player I. Now we need to find the value of x_i

$$\max_{\substack{x_1, \dots, x_{|A_1|} \\ \text{s.t.} \sum_i x_i = 1 \\ x_i \ge 0}} \min_{i} \sum_{i} x_i U_{ij}^1$$

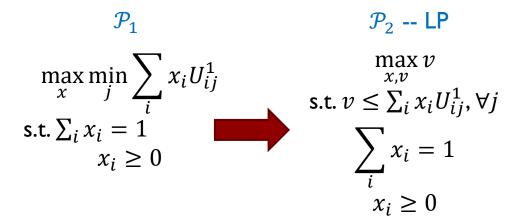
Only need to check pure strategies. Recall the theorem of BR:A mixed strategy is BR iff all actions in the support are BR

Convert to LP



• Claim: x^* is optimal solution for \mathcal{P}_1 iff it is optimal solution for \mathcal{P}_2

Convert to LP



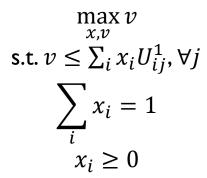
• Claim: x^* is optimal solution for \mathcal{P}_1 iff it is optimal solution for \mathcal{P}_2

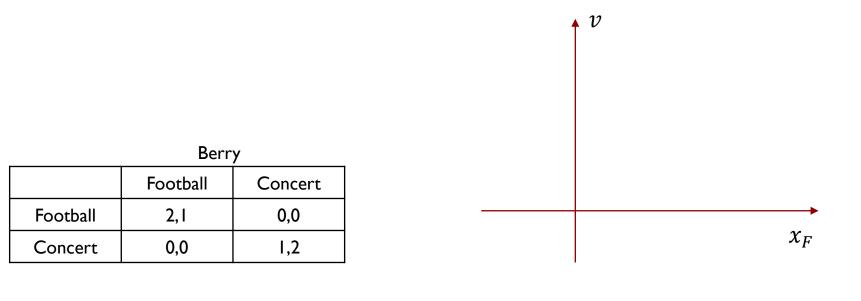
Let U^1 be the payoff matrix for player I (row player). Then \mathcal{P}_2 can be rewritten in matrix form

$$\max_{\mathbf{x},v} v$$

s.t. $v \le (\mathbf{x}^{\mathrm{T}}U^{1})_{j}, \forall j$
 $\mathbf{x}^{\mathrm{T}}\mathbf{1} = 1$
 $\mathbf{x} \ge \mathbf{0}$

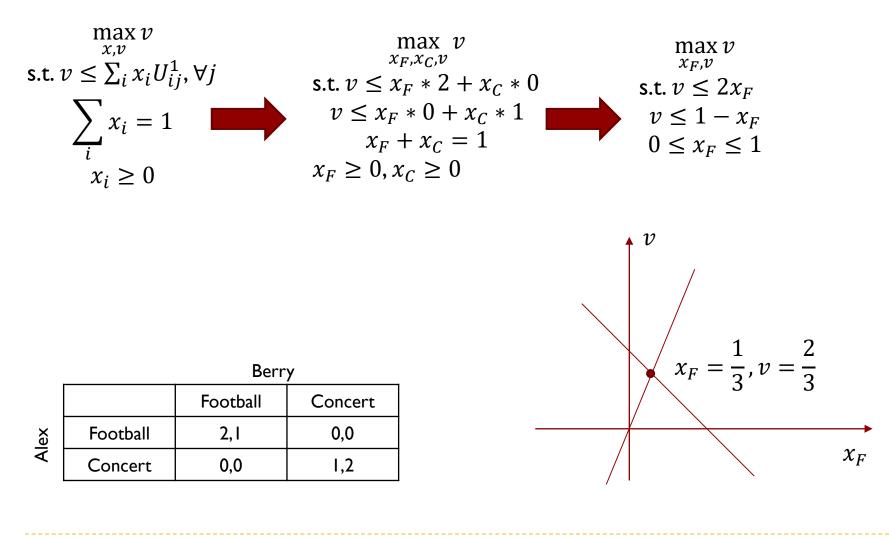
39





40

Alex



9/13/2021

Compute Minimax Strategy

- For bimatrix games, minimax strategy can be computed through linear programming
- Let U²_{ij} be player 2's payoff value when player I choose action i and player 2 choose action j. Denote s₁ = (x₁, ..., x_{|A₁|}) where x_i is the probability of choosing the ith action of player I. Then the minimax strategy can be found through solving the following LP

$$\min_{\substack{x,v \\ x,v}} v$$

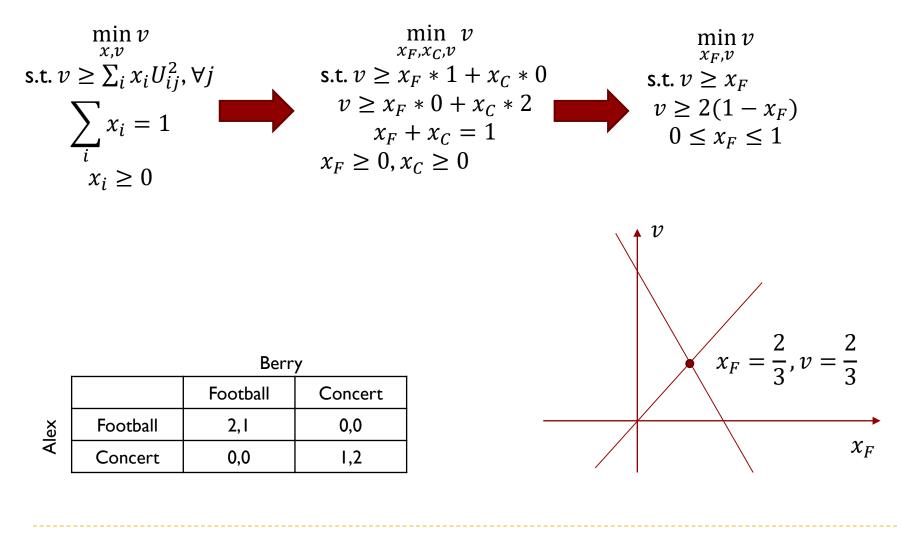
s.t. $v \ge \sum_{i} x_{i} U_{ij}^{2}, \forall j$
$$\sum_{i} x_{i} = 1$$
$$x_{i} \ge 0$$

Quiz 3

- What is the minimax value for player 2 in the following game?
 - ► A: I/3
 - ► B: 2/3
 - ► C:0
 -) D: I

	Berry		
		Football	Concert
Alex	Football	2,1	0,0
	Concert	0,0	١,2

Quiz 3



9/13/2021

Fei Fang

- Recall: A mixed strategy is BR iff all actions in the support are BR
- To find all NEs, think from the inverse direction: enumerate support
 - If we know in a NE, for player *i*, action 1, 2, and 3 are in the support of s_i, action 4, 5 are not what does it mean?
 (I)
 - ► (2)
 - ► (3)
 - (4)

- Recall: A mixed strategy is BR iff all actions in the support are BR
- To find all NEs, think from the inverse direction: enumerate support
 - If we know in a NE, for player *i*, action 1, 2, and 3 are in the support of s_i, action 4, 5 are not what does it mean?
 - (I) Action 1, 2, and 3 are chosen with non-zero probability, action 4,5 are chosen with zero probability
 - (2) The probability of choosing action 1, 2, 3 sum up to 1
 - (3) Action 1, 2, and 3 lead to the exactly same expected utility
 - (4) The expected utility of taking action 1, 2, and 3 is not lower than action 4, 5

- If support for both Alex and Berry is (F, C), then action F and C should lead to same expected utility for Alex when fixing Berry's strategy and vice versa
- Assume Alex's strategy is $s_A = (x_1, x_2)$ and Berry's strategy is $s_B = (y_1, y_2)$ then similar to (1)-(4) in the previous slide, we know

		Football	Concert
ex	Football	2,1	0,0
A	Concert	0,0	١,2

- If support for both Alex and Berry is (F, C), then action F and C should lead to same expected utility for Alex when fixing Berry's strategy and vice versa
- Assume Alex's strategy is $s_A = (x_1, x_2)$ and Berry's strategy is $s_B = (y_1, y_2)$ then similar to (1)-(4) in the previous slide, we know

$$\begin{array}{l} (1): x_1 > 0, x_2 > 0, y_1 > 0, y_2 > 0 \\ (2): x_1 + x_2 = 1, y_1 + y_2 = 1 \\ (3): u_A(F, s_B) = u_A(C, s_B), u_B(s_A, F) = u_B(s_A, C) \\ u_A(F, s_B) = 2 \times y_1 + 0 \times y_2 \qquad u_B(s_A, F) = 1 \times x_1 + 0 \times x_2 \\ u_A(C, s_B) = 0 \times y_1 + 1 \times y_2 \qquad u_B(s_A, C) = 0 \times x_1 + 2 \times x_2 \\ \text{So } 2y_1 = y_2 \qquad \qquad \text{So } x_1 = 2x_2 \end{array}$$

Alex		Football	Concert
	Football	2,1	0,0
	Concert	0,0	١,2

Solve the equations in (2)(3) and get $s_A = \left(\frac{2}{3}, \frac{1}{3}\right)$, $s_B = \left(\frac{1}{3}, \frac{2}{3}\right)$ which satisfy (1). It is indeed a NE with specified support.

- Support Enumeration Method (for bimatrix games)
 - Enumerate all support pairs with the same size for size=1 to $\min_{i} |A_i|$
 - For each possible support pair J_1 , J_2 , build and solve a LP

An NE is found if the LP has a feasible solution

- Support Enumeration Method (for bimatrix games)
 - Enumerate all support pairs with the same size for size=1 to $\min_{i} |A_i|$
 - For each possible support pair J_1 , J_2 , build and solve a LP

$$\max_{x,y,v} 1$$

$$x_i \ge 0, \forall i; y_j \ge 0, \forall j$$

$$x_i = 0, \forall i \notin J_1; y_j = 0, \forall j \notin J_2$$

$$\sum_{i \in J_1} x_i = 1$$

$$\sum_{j \in J_2} y_j u_1(i,j) = v_1, \forall i \in J_1$$

$$\sum_{i \in J_1} x_i u_2(i,j) = v_2, \forall j \in J_2$$

$$\sum_{j \in J_2} y_j u_1(i,j) \le v_1, \forall i \notin J_1$$

$$\sum_{i \in J_1} x_i u_2(i,j) \le v_2, \forall j \notin J_2$$

An NE is found if the LP has a feasible solution

- Support Enumeration Method (for bimatrix games)
 - Enumerate all support pairs with the same size for size=1 to $\min |A_i|$
 - For each possible support pair J_1 , J_2 , build and solve a LP
 - Variables: $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n, v_1, v_2$
 - Objective: a dummy one max 1
 - Constraints (1b,1c): Probabilities are nonnegative, probability of actions not in the support is zero

 $\Box \ x_i \ge 0, \forall i; y_j \ge 0, \forall j; x_i = 0, \forall i \notin J_1; y_j = 0, \forall j \notin J_2$

- Constraints (2): Probability of taking actions in the support sum up to I
 □ ∑_{i∈J1} x_i = 1; ∑_{j∈J2} y_j = 1
- Constraints (3): Expected utility (EU) of choosing any action is the support is the same when fixing the other player's strategy
 - $\Box \quad \sum_{j \in J_2} y_j u_1(i,j) = v_1, \forall i \in J_1; \sum_{i \in J_1} x_i u_2(i,j) = v_2, \forall j \in J_2$
- Constraints (4): Actions not in support does not lead to higher expected utility $\sum_{j \in J_2} y_j u_1(i,j) \le v_1, \forall i \notin J_1; \sum_{i \in J_1} x_i u_2(i,j) \le v_2, \forall j \notin J_2$
- An NE is found if the LP has a feasible solution

Compute Nash Equilibrium

- Find all Nash Equilibrium (two-player)
 - Support Enumeration Method
 - Lemke-Howson Algorithm
 - Linear Complementarity (LCP) formulation (another special class of optimization problem)
 - Solve by pivoting on support (similar to Simplex algorithm)
 - In practice, available solvers/packages: nashpy (python), gambit project (<u>http://www.gambit-project.org/</u>)

- Find Strong Stackelberg Equilibrium (not restricted to pure strategy)
 - Finite zero-sum games: SSE=NE=Minimax=Maximin
 - General case: solve multiple linear programs or a mixed integer linear program
 - For some security games: greedy algorithm

- Find Strong Stackelberg Equilibrium (not restricted to pure strategy)
 - Special case (zero-sum): SSE=NE=Minimax=Maximin
 - General case: Solve Multiple Linear Programs
 - Key idea: Enumerate the follower's best response (similar to support enumeration method for finding NE)
 - If the leader (player I) plays a mixed strategy $s_1 = \langle x_1, \dots, x_{|A_1|} \rangle$, and follower's (player 2) best response is action *j*, then

 \square I) $x_1, \dots, x_{|A_1|}$ sum up to I

- \square 2) All actions other than *j* lead to no higher expected utility for player 2
- No matter what the leader plays, one of the actions in A_2 is a best response for player 2

Solve Multiple Linear Programs

Let U_{ij}^1 be player 1's payoff value when player 1 choose action i and player 2 choose action j

For each $j = 1.. |A_2|$, solve the following LP

Then pick the solution with the highest optimal objective value among all j's

Solve Multiple Linear Programs

Let U_{ij}^1 be player 1's payoff value when player 1 choose action i and player 2 choose action j

For each $j = 1 .. |A_2|$, solve the following LP

$$\max_{x} \sum_{i} x_{i} U_{ij}^{1}$$

s.t.

$$\begin{split} \sum_{i} x_{i} &= 1 \\ x_{i} \geq 0 \\ \sum_{i} x_{i} U_{ij}^{2} \geq \sum_{i} x_{i} U_{ij'}^{2} \text{, } \forall j' \in A_{2} \end{split}$$

Then pick the solution with the highest optimal objective value among all j's

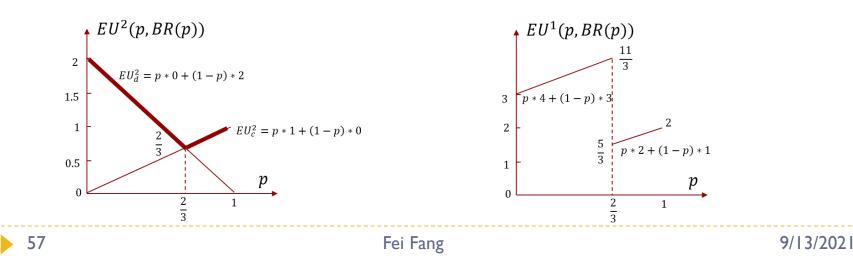
Multiple LP

_		С	d
Player	а	2,1	4,0
Ы	b	١,0	3,2

Let
$$s_1 = \langle p, 1-p \rangle$$

If BR is c, solve

If BR is d, solve



Multiple LP

_		С	d
Player	а	2,1	4,0
Ы	b	١,0	3,2

$$Let s_{1} = \langle p, 1 - p \rangle$$
If BR is c, solve

$$max EU^{1}(p,c) = p * 2 + (1 - p) * 1$$

$$s.t.0 \le p \le 1$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0 \ge EU_{d}^{2}$$

$$p * 0 + (1 - p) * 2$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0 \ge EU_{d}^{2}$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 2$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 2$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 1 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 0$$

$$EU_{c}^{2} = p * 0 + (1 - p) * 0$$

$$EU_{c}^{2} = 0 + (1 - p) * 0$$

$$EU_{c}^{2} = 0 + (1 - p) * 0$$

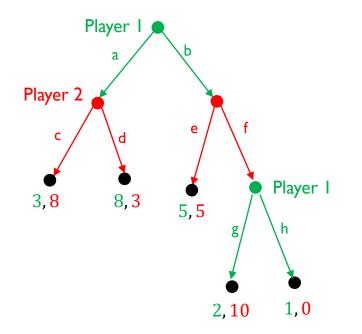
Compare the optimal objective value, pick the second LP. So $p = \frac{2}{3}$, SSE is $s_1 = \left(\frac{2}{3}, \frac{1}{3}\right)$, $s_2 = (0, 1)$ $EU^2(p, BR(p))$ $\downarrow EU^1(p, BR(p))$ $\frac{11}{3}$ 2 $EU_d^2 = p * 0 + (1 - p) * 2$ 1.5 3 p * 4 + (1 - p) * 31 2 $EU_c^2 = p * 1 + (1 - p) * 0$ $\frac{5}{3}$ p * 2 + (1 - p) * 10.5 1 р р 0 0 $\frac{2}{3}$ $\frac{2}{3}$ 1 1 58 Fei Fang 9/13/202

Outline

- Normal-Form Games
- Solution Concepts
- Linear Programming-based Equilibrium Computation
- Extensive-Form Games

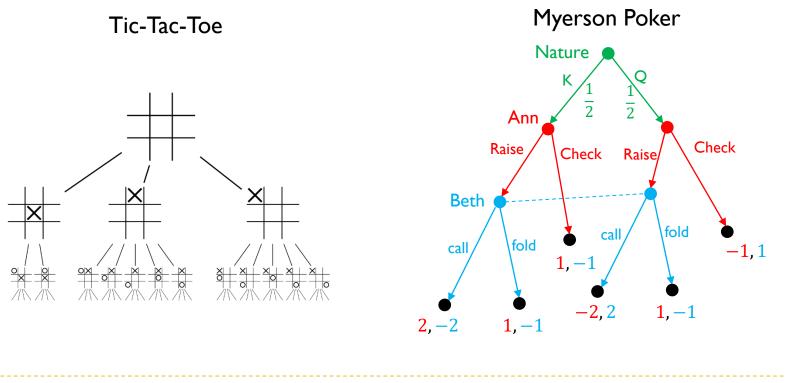
Extensive-Form Games

- A game in extensive-form
 - Timing, sequence of move
 - Can be represented by a game tree with information sets



Extensive-Form Games

- Perfect information vs Imperfect information
- Special fictitious player: Nature or Chance



Fei Fang

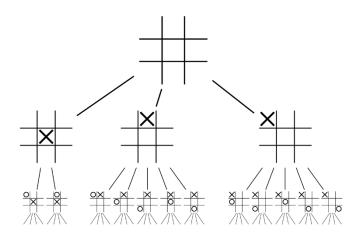
Perfect-Information Extensive-Form Game

- A finite, n-player perfect-information extensive-form game is described by a tuple (N, A, H, Z, χ, ρ, σ, u)
 - $N = \{1..n\}$: Set of players
 - ► A: Set of actions Note: not joint actions
 - H: Set of non-terminal nodes in the game tree
 - Z: Set of terminal nodes
 - ▶ $\chi: H \mapsto \{0,1\}^{|A|}$ specifies actions available at each node
 - ▶ $\rho: H \mapsto N$ specifies the acting player at each node
 - ► $\sigma: H \times A \mapsto H \cup Z$ is the successor function, specifies the successor node after an action is taken at a node
 - ▶ Payoffs / Utility functions $u_i: Z \mapsto \mathbb{R}$

Perfect-Information Extensive-Form Game

 $(N, A, H, Z, \chi, \rho, \sigma, u)$

Tic-Tac-Toe



 $N = \{1..n\}$: Set of players

A: Set of actions

H: Set of non-terminal nodes in the game tree

Z: Set of terminal nodes

 $\chi: H \mapsto \{0,1\}^{|A|}$ specifies actions available at each node

 $\rho: H \mapsto N$ specifies the acting player at each node

 $\sigma: H \times A \mapsto H \cup Z$ is the successor function, specifies the successor node after an action is taken at a node Payoffs / Utility functions $u_i: Z \mapsto \mathbb{R}$

Imperfect-Information Extensive-Form Game

- A finite, *n*-player imperfect-information extensive-form game is described by a tuple (N, A, H, Z, χ, ρ, σ, u, I)
 - I specifies the information sets (infosets in short)
 - $I = (I_1, \dots, I_n)$
 - $I_i = (I_{i1}, ..., I_{ik_i})$
 - > I_i is a partition of the set of nodes belonging to player i

$$\bullet \cap I_{ij} = \emptyset, \forall i, j$$

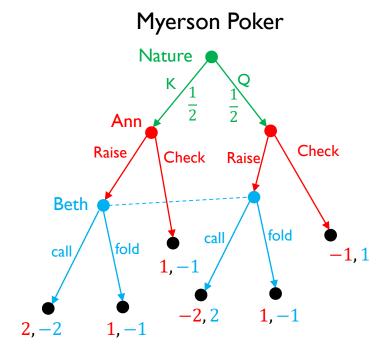
$$\bigcup_{j} I_{ij} = \{h: \rho(h) = i\}$$

Nodes in the same information set should have the same acting player and the same available actions

$$\rho(h) = \rho(h'), \chi(h) = \chi(h')$$

Imperfect-Information Extensive-Form Game

 $(N, A, H, Z, \chi, \rho, \sigma, u, I)$



I specifies the information sets (infosets in short)

$$I = (I_1, \dots, I_n)$$
$$I_i = (I_{i1}, \dots, I_{ik_i})$$

 I_i is a partition of the set of nodes belonging to player i

$$\cap I_{ij} = \emptyset, \forall i, j \cup_j I_{ij} = \{h: \rho(h) = i\}$$

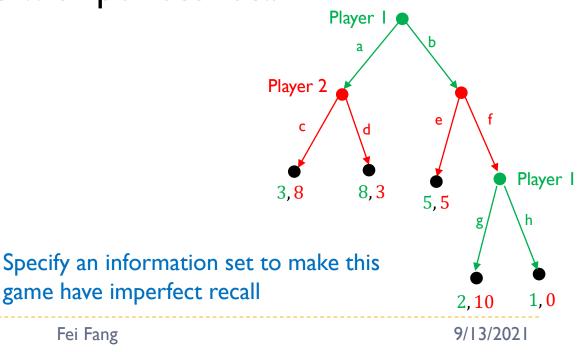
Nodes in the same information set should have the same acting player and the same available actions

$$\rho(h) = \rho(h'), \chi(h) = \chi(h')$$

Q: How many infosets are there in this game (exclude Nature)?

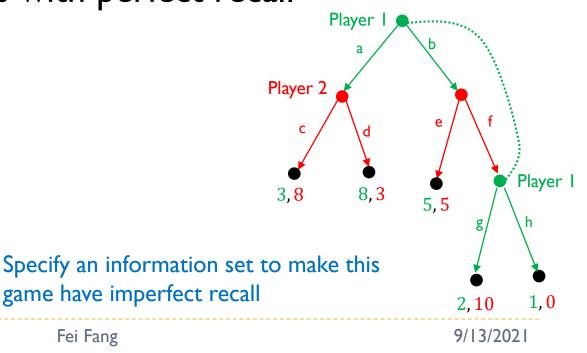
Extensive-Form Games

- An EFG has perfect recall if all players remember their own past actions
 - Nodes in the same infoset has the same "path" if we only consider the actions and decision points of the acting player
- We focus on games with perfect recall



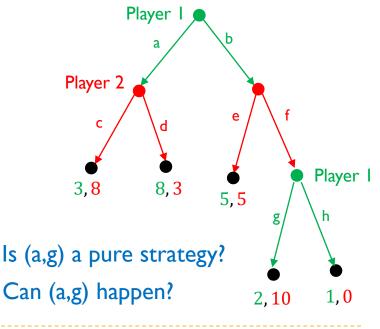
Extensive-Form Games

- An EFG has perfect recall if all players remember their own past actions
 - Nodes in the same infoset has the same "path" if we only consider the actions and decision points of the acting player
- We focus on games with perfect recall



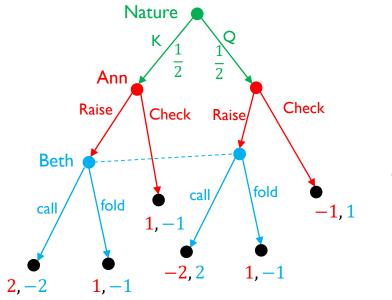
Pure Strategy

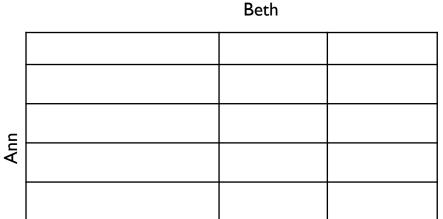
- A pure strategy of a player is a complete contingentplan determining the action to take at each infoset he is to move
 - A mapping from an infoset belonging to that player to an available action at that infoset
- Reduced-form strategy: only specify actions at infosets that are not precluded by the plan



Extensive-Form Games

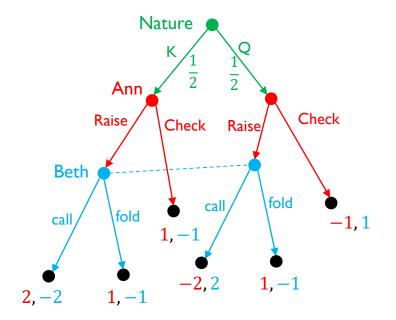
 A game in extensive form can be converted into a game in normal form





Extensive-Form Games

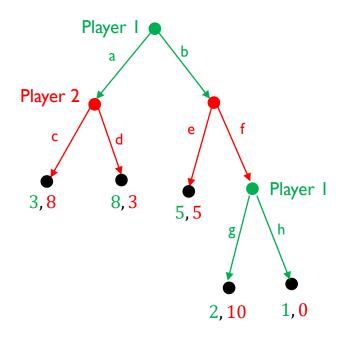
 A game in extensive form can be converted into a game in normal form

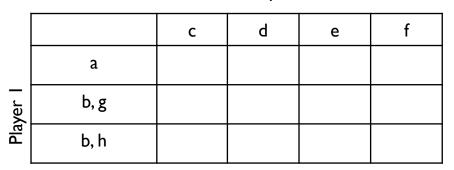


		Call	Fold
	Raise if K, Raise if Q	<i>EU^{Ann}=</i> 0	0
c	Raise if K, Check if Q	0.5	0
Ann	Check if K, Raise if Q	-0.5	I
	Check if K, Check if Q	0	0

Beth

Sometimes we only use reduced-form strategies in the converted normal-form game

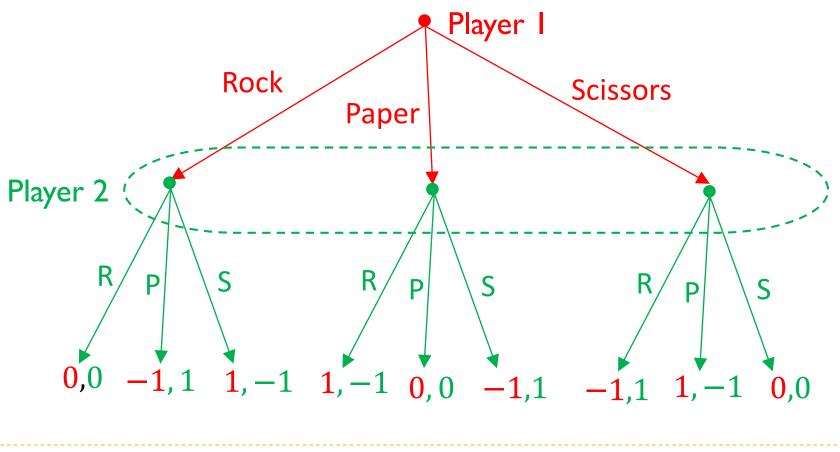




Can we represent a normal-form game (e.g., Rock-Paper-Scissors) as an extensive form game?

Extensive-Form Games

Can we represent a normal-form game (e.g., Rock-Paper-Scissors) as an extensive form game?



Randomized Strategy

- How to represent randomness in the strategy?
 - Option I (mixed strategy):
 Prob. distribution over pure strategies
 - Option 2 (behavioral strategy): Prob. distribution over actions at each infoset



Mixed: $\mathbb{P}(a, g) = 0.3$, $\mathbb{P}(b, h) = 0.7$ Behavioral: $\mathbb{P}(a) = 0.5$, $\mathbb{P}(g) = 0.6$

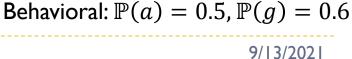
Randomized Strategy

In games with perfect recall:

- Any mixed (behavioral) strategy of an agent can be replaced by an equivalent behavioral (mixed) strategy
- Two strategies of a player are equivalent if they induce the same probabilities on outcomes given any fixed strategy profile of the other players

Provide an example mixed / behavioral strategy of the game

5,5



2,10

Mixed: $\mathbb{P}(a, g) = 0.3$, $\mathbb{P}(b, h) = 0.7$

Player I

1.0

h

75

3.8

8.3

Summary

Solution Concepts	Key Algorithm In Class
Minimax/Maximin	LP
Nash Equilibrium	LP for zero-sum, Support enumeration for general-sum
Strong Stackelberg Equilibrium	LP for zero-sum, multiple LP or MILP for general-sum

Game Theory: Additional Resources

- Algorithmic Game Theory 1st Edition, Chapters 1-3
 Noam Nisan (Editor), Tim Roughgarden (Editor), Eva Tardos (Editor), Vijay V.Vazirani (Editor)
 - http://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmicgame-theory.pdf
- Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, Chp 3,4
- Online course
 - https://www.youtube.com/user/gametheoryonline