
Classroom Expectations related to COVID-19

 In order to attend class meetings in person, all students are 
expected to abide by all behaviors indicated in A Tartan’s 
Responsibility, including any timely updates based on the current 
conditions.

 In terms of specific classroom expectations, whenever the 
requirement to wear a facial covering is in effect on campus, 
students are expected to wear a facial covering throughout class. 
Note: the requirement to wear a facial covering is in effect for the 
start of the Fall 2021 semester. If you do not wear a facial covering 
to class, I will ask you to put one on (and if you don’t have one with 
you, I will direct you to a distribution location on campus, 
see https://www.cmu.edu/coronavirus/health-and-wellness/facial-
covering.html). If you do not comply, you will be referred to the 
Office of Community Standards and Integrity for follow up, which 
could include student conduct action. Finally, please note that 
sanitizing wipes should be available in our classroom for those who 
wish to use them.
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Course Staff
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Instructor

Name Dr. Fei Fang

Contact Info Email: feifang@cmu.edu

No Teaching Assistant



Course Information

 Lecture modality: In person expected

 Office Hour: W 1-2pm, TCS 321 or Zoom (link on 
Canvas)

 Canvas: canvas.cmu.edu
 Syllabus, Quizzes, Assignments, Lecture slides

 Website: A copy of the syllabus page on Canvas

 Prerequisites: linear algebra, probability, algorithms, and at 
least one course in artificial intelligence
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http://canvas.cmu.edu/
https://feifang.info/advanced-topics-in-machine-learning-and-game-theory-fall-2021/


Today

 Course Logistics

 Introduction to Convex Optimization
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Course Logistics



Course Scope

 Basics of Machine Learning and Game Theory
 Introduction to convex optimization, game theory, online learning, 

reinforcement learning

 Learning in Games
 Learning rules

 Learning game parameters

 Multiagent Reinforcement Learning (MARL)
 Classical algorithms/Recent advances in MARL

 Strategic Behavior in Learning
 Adversarial Machine Learning (AML)

 Learning from strategic data sources

 Applications of Machine Learning and Game Theory
 Security and sustainability,Transportation
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Connection to Other AI Courses

 The “Basics of Machine Learning and Game Theory” 

part has some overlaps with other AI courses

 15-281: AI; 15-780: Graduate AI

 10-701/15-781: Machine Learning; 10-715 Advanced 

Introduction to Machine Learning

 10-725/36-725: Convex Optimization; 10-703 Deep 

Reinforcement Learning or 10-707 Topics in Deep Learning

 This course focuses on recent advances at the 

intersection of ML and game theory
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Class Format

 Lectures

 Paper presentations and paper discussions led by 

students

 Quizzes (In-class + after-class)
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Learning Objective

 Describe fundamental theoretical result in learning in 
games, strategic classification, and multi-agent 
reinforcement learning

 Describe and implement classical and recent algorithms at 
the intersection of machine learning and game theory

 Describe the applications of techniques integrating 
machine learning and game theory

 Deliver a report of course project and present the work 
through oral presentation
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Assignments and Grading

Course Component # Points Expected Workload

Class Participation
14 weeks

26 lectures
10 points 3h/week

Paper Reading 

Assignment
5 15 points 1h/week (≈3h/paper)

Paper Presentation 2 15 points 1h/week (7h/paper)

Programming 

Assignment
2 20 points 1.5h/week (10.5h/assignment)

Course Project 40 points 5 hours/week
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 Final Grade: Letter graded



Remarks about Paper Presentation

 25-30 min/paper (confirm with instructor)

 0~3 paper presentations per lecture (start from Lec 5)

 Presenters for the same lecture should coordinate

 E.g., choose the order of presentation and avoid repeated content

 Contact instructor 1 week before presentation for 

additional information (e.g., length of presentation)

 Submit slides 48h before lecture for feedback (on Canvas)

 Combine/concatenate the slides from multiple presenters
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Late Submission Policy

 Late submission will be discounted by 0.7

 Late submissions will not be peer reviewed and 

cannot earn the peer review points
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Use of Peer Review

 For all peer-reviewed assignments, the instructor will 

provide the final evaluation taking into account the 

reviews by the peers.
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Textbook and Additional Reference

 No formal textbook

 List of additional resources will be provided (check 

Canvas and slides)
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Academic Integrity

 Be collaborative, give credits
 If discuss with others, specify names and complete on your own

 Leverage resources
 If use publicly available code packages, specify source

 If your complete submissions are the same, you will get 
zero score and the case will be reported

 Course project report should follow standard academic 
integrity policy. Plagiarism is not allowed.

 See CMU policy on academic integrity for general 
information
 https://www.cmu.edu/student-affairs/ocsi/academic-

integrity/index.html
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Special Needs

 If you have a disability and require accommodations, 

please contact Catherine Getchell, Director of 

Disability Resources, 412-268-6121, 

getchell@cmu.edu

 If you have an accommodations letter from the 

Disability Resources office, discuss with me as early 

as possibly

 Students who may require some short-term academic 

accommodations related to COVID-19 should 

contact Disability Resources at 

access@andrew.cmu.edu
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Student Well-Being

 Start early! Avoid last-minute panic.

 CMU services are available, and treatment does work

 http://www.cmu.edu/counseling/

 412-268-2922
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Details about Assignments and Grading
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Class Participation

 Quizzes

 Asking and answering questions in class/on Canvas
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Paper Reading Assignment

 Summary (2.5 points)
 Overview of paper content (0.5 points)

 Detailed comments (1 point)
 Cover Strengths (0.5 points) and Weaknesses (0.5 points)

 Questions or Discussion (0.5 points)

 Peer review (0.5 points)
 Provide an evaluation of each other's summary

 Discuss the strengths and weaknesses of the paper, and/or 
questions each other have

 Possibly useful references:
 Guidelines for critiquing a research study

 Sample paper review for an academic conference
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http://geekyartistlibrarian.pbworks.com/f/Quals+Sp+10+Critiqueguidlines_DC(2).pdf
http://www.sis.pitt.edu/jjoshi/IS2935/Sample_review.pdf


Paper Presentation

 Each student present 2 papers during the semester

 Each presentation should be 25-30 minutes

 In addition to the list of paper we provide, you can 

propose other papers relevant to the topic

 The instructor will assign the papers by taking into 

account a number of factors, including the students’ 

preference, the quality of the paper, the relevance, etc.

 Bid in the google spreadsheet (link on Canvas) by 9/6

 Assignment results will be announced on 9/8
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Paper Presentation

 Peer reviewed

 Evaluation criteria: how much one has learned from 

the presentation

 Try engage the audience!
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Programming Assignment

 Two programming assignments

 Designing an agent to play in a multi-agent particle 

environment

 Defending and attacking an image classifier
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https://github.com/openai/multiagent-particle-envs
https://adversarial-ml-tutorial.org/introduction/


Course Project

 Work in small groups (1-3 students in each group) on 
a project relevant to topics covered in this course

 Progress will be checked through Project Proposal, 
Project Progress Report, Project Presentation, and 
Final Project Report

 The proposal and progress report will be peer-
reviewed

 Final report gets full score if at the same level as 
accepted papers at major AI conferences such as 
AAAI, IJCAI, NeurIPS, ICML, ICLR etc

 Submissions should follow AAAI format
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https://www.aaai.org/Publications/Templates/AuthorKit21.zip


Course Project

 Advisor is not required and will not be assigned

 Students are encouraged to reach out to faculty 

members/senior students/domain experts for advice

 I can provide feedback and advice during OHs
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Checkpoints and Grading Criteria

 Confirm group members
 No points; Due 9/13 (Mon)

 Project Proposal
 5 points; Due 9/20 (Mon); Peer-reviewed

 Project Progress Report
 5 points; Due 10/25 (Mon); Peer-reviewed

 Project Presentation
 10 points; Presentation date 11/29 & 12/1

 Full Project Report
 20 points; Due 12/10 (Fri)

 Each group submit one PDF file in each stage

9/13/2021Fei Fang27



Project Proposal (5 points)

 ≥300 words

 Pin down the problem (1 point)

 Briefly discuss related work (1 point)

 Describe 2~3 envisioned milestones of the proposed 
project, i.e., the important checkpoints that demonstrate 
the progress of the project (1 point)

 Describe the tentative plan of action, including the steps 
and the expected time needed for each step (1 point)

 Describe the tentative plan of distributing workload 
among team members (0.5 point)

 Provide comments and constructive feedback to the 
proposals assigned in peer-review (0.5 point)
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Project Progress Report (5 points)

 ≥1 page double column (excluding references)

 Describe the problem (1 point)

 Describe the progress has been made towards the 

milestones (2 points)

 Provide an outline of the final report (0.5 point)

 Provide a tentative plan of next steps and distribution 

of workload (0.5 point)

 Provide comments and constructive feedback to the 

proposals assigned in peer-review (1 point)
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Project Presentation (10 points)

 The presenter should be able to convey the following 

aspects clearly

 Motivation (1 point)

 Problem Description (1 point)

 Related work / Background (1 point)

 Contribution (3 point)

 Evaluation/Results (2 points)

 Future Work (1 point)

 Q&A (1 points)
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Full Project Report (20 points)

 ≥6 page in AAAI format (excluding references)

 Submission will be evaluated as a conference paper 

submission

 Relevance to ML and Game Theory

 Novelty and significance

 Engagement with literature

 Soundness of work

 Quality of evaluation

 Quality of presentation
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Introduction to Convex Optimization



Outline

 Convex Optimization

 Gradient Descent and Projected Gradient Descent

 Linear Programming (LP)

 Dual Problem and KKT Conditions
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Optimization Problem: Definition

 Optimization Problem: Determine value of optimization 
variable within feasible region/set to optimize 
optimization objective

 Optimization variable 𝑥 ∈ ℝ𝑛

 Feasible region/set ℱ ⊂ ℝ𝑛

 Optimization objective 𝑓: ℱ → ℝ

 Optimal solution: 𝑥∗ = argmin
𝑥∈ℱ

𝑓(𝑥)

 Optimal objective value 𝑓∗ = min
𝑥∈ℱ

𝑓(𝑥) = 𝑓(𝑥∗)
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min
𝑥

𝑓(𝑥)

s.t. 𝑥 ∈ ℱ



Optimization Problem: How to Solve

 No general way to solve

 Special classes
 Convex optimization problem: 𝑓 and ℱ are convex

 Linear Program (LP): 𝑓 is linear, ℱ is a polytope

 Integer Linear Program (ILP): LP + variables are integer

 Mixed Integer Linear Program (MILP)

 Many other classes

 Existing solvers and code packages
 Cplex, Gurobi, GLPK, Cvxopt…
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min
𝑥

𝑓(𝑥)

s.t. 𝑥 ∈ ℱ



Convex Optimization

 Convex Optimization Problem:

 𝑓 is a convex function

 ℱ is a convex set
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min
𝑥

𝑓(𝑥)

s.t. 𝑥 ∈ ℱ

Convex Set Nonconvex Set Convex Function Nonconvex Function



Convex Set and Convex Function

 A set ℱ is convex if ∀𝑥, 𝑦 ∈ ℱ, ∀𝜃 ∈ 0,1
z = 𝜃𝑥 + 1 − 𝜃 𝑦 ∈ ℱ

 Any convex combination of two points in the set is also in 

the set

 A function 𝑓: ℱ → ℝ is convex in a convex set ℱ if 

∀𝑥, 𝑦 ∈ ℱ,∀𝜃 ∈ 0,1 ,
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓(𝑦)

 Value in the middle point is lower than average value

 If ℱ = ℝ𝑛, we simply say 𝑓 is convex
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Quiz 1

 The _______ of convex sets is convex

 1. Intersection

 2. Union
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Convex Function

 How to determine if a function is convex?

 If 𝑓 is a twice continuously differentiable function of 𝑛
variables, 𝑓 is convex on ℱ iff its Hessian matrix of second 

partial derivatives is positive semidefinite on the interior of 

ℱ
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𝐻 is positive semidefinite in 𝑆 if ∀𝑥 ∈ 𝑆, ∀𝑧 ∈
ℝ𝑛, 𝑧𝑇𝐻(𝑥)𝑧 ≥ 0

𝐻 is positive semidefinite in ℝ𝑛 iff all 

eigenvalues of 𝐻 are non-negative

Alternatively, prove 𝑧𝑇𝐻 𝑥 𝑧 =  𝑖 𝑔𝑖 𝑥, 𝑧
2



Convex Function

 Other ways to show convexity:

 Prove by definition

 Sum of convex functions is convex

 If 𝑓 𝑥 =  𝑖 𝑤𝑖𝑓𝑖 𝑥 , 𝑤𝑖 ≥ 0, 𝑓𝑖 𝑥 convex, then 𝑓(𝑥) is 

convex

 Convexity is preserved under a linear transformation

 If 𝑓 𝑥 = 𝑔(𝐴𝑥 + 𝑏), 𝑔 convex, then 𝑓(𝑥) is convex
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Concave Function

 A function 𝑓 is concave if −𝑓 is convex

 Let ℱ be a convex set. A function 𝑓: ℱ → ℝ is concave in ℱ if 

∀𝑥, 𝑦 ∈ ℱ,∀𝜃 ∈ 0,1 ,
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≥ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦
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max
𝑥

𝑓(𝑥)

s.t. 𝑥 ∈ ℱ

Q: If 𝑓 is a concave function and ℱ is a convex set, 

can the following problem converted to a convex 

optimization problem?

We also view such problem as convex optimization problem



Quiz 2

 Is the following optimization problem a convex 

optimization problem?
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max
𝑥1,𝑥2,…,𝑥𝑛

 

𝑖

𝑎𝑖𝑥𝑖 −  

𝑖

𝑥𝑖 log 𝑥𝑖

s.t.  𝑖 𝑥𝑖 = 1
𝑥𝑖 > 0



Affine function

 An affine function is a function of the form 𝑓 𝑥 =
𝑎𝑇𝑥 + 𝑏 where 𝑎 ∈ ℝ𝑛, 𝑏 ∈ ℝ
 If a function 𝑓 is both convex and concave in ℝ𝑛, then 𝑓 is 

an affine function
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Affine function

 If a function 𝑓 is both convex and concave in ℝ𝑛, then 𝑓
is an affine function

 Proof: Let 𝑔 𝑥 = 𝑓 𝑥 − 𝑓(0). 

 Clearly 𝑔(𝑥) is convex and concave. 

 By definition, 𝑔(𝑥) satisfies (i) 𝑔 𝑥 + 𝑦 = 𝑔 𝑥 + 𝑔(𝑦); 
(ii) 𝑔 𝜃𝑥 = 𝜃𝑔(𝑥). 

 Let 𝑒𝑗 1

𝑛
be the canonical basis of ℝ𝑛, then 𝑥 =  𝑗 𝑥𝑗𝑒𝑗. 

 Therefore 𝑔 𝑥 =  𝑗 𝑥𝑗𝑔(𝑒𝑗) = 𝑎𝑇𝑥 where 𝑎𝑗 = 𝑔(𝑒𝑗). 

 So 𝑓 𝑥 = 𝑔 𝑥 + 𝑓 0 = 𝑎𝑇𝑥 + 𝑏

9/13/2021Fei Fang44



Convex Optimization: Local Optima=Global Optima

 Theorem: For a convex optimization problem, all 

locally optimal points are globally optimal
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min
𝑥

𝑓(𝑥)

s.t. 𝑥 ∈ ℱ

𝑥 is globally optimal if 𝑥 ∈ ℱ and ∀𝑦 ∈ ℱ, 𝑓 𝑥 ≤ 𝑓 𝑦

𝑥 is locally optimal if 𝑥 ∈ ℱ and ∃𝑅 > 0 such that ∀𝑦: 𝑦 ∈
ℱ and 𝑥 − 𝑦 2 ≤ 𝑅, 𝑓 𝑥 ≤ 𝑓 𝑦



Convex Optimization: Local Optima=Global Optima

 Prove by contradiction
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(1) 𝑧 ∈ ℱ due to convexity of ℱ
(2) 𝑥 − 𝑧 2 = 𝑥 − 𝜃𝑥 − 1 − 𝜃 𝑦 2 = 1 − 𝜃 𝑥 − 𝑦 2

=
𝑅

2 𝑥 − 𝑦 2
𝑥 − 𝑦 2 =

𝑅

2
≤ 𝑅

(3) 𝑓 𝑧 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦 < 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑥 = 𝑓 𝑥

So 𝑥 is not local optima. Contradiction.

Assume 𝑥 is a local optima with optimality radius 𝑅, and ∃𝑦 ∈

ℱ, 𝑓 𝑥 > 𝑓 𝑦 . Let 𝑧 = 𝜃𝑥 + 1 − 𝜃 𝑦 where 𝜃 = 1 −
𝑅

2 𝑥−𝑦 2
. 



Outline

 Convex Optimization

 Gradient Descent and Projected Gradient Descent

 Linear Programming (LP)

 Dual Problem and KKT Conditions
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Gradient Descent (GD)

 For unconstrained optimization min
𝑥∈ℝ𝑛

𝑓(𝑥)

 Iteratively update the value of 𝑥
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Algorithm: Gradient Descent

Input: function 𝑓, initial point 𝑥0, step size 𝛼 > 0

Initialize 𝑥 ← 𝑥0

Repeat

𝑥 ← 𝑥 − 𝛼𝛻𝑥𝑓 𝑥
Until convergence

Gradient 𝛻𝑥𝑓 𝑥 =
𝜕𝑓 𝑥

𝜕𝑥1
,
𝜕𝑓 𝑥

𝜕𝑥2
, … ,

𝜕𝑓 𝑥

𝜕𝑥𝑛

T



Gradient Descent

 Theorem: For differentiable 𝑓 and small enough 𝛼, for 

any 𝑥 with 𝛻𝑥𝑓 𝑥 ≠ 0, 𝑓 𝑥 − 𝛼𝛻𝑥𝑓 𝑥 < 𝑓 𝑥

 𝑓 can be convex or non-convex

 Prove using Taylor expansion

 For convex and differentiable 𝑓 and small enough 𝛼, 

gradient descent converges to global optimum

9/13/2021Fei Fang49



Gradient Descent

 Proof: 𝑓 𝑥 − 𝛼𝛻𝑥𝑓 𝑥 = 𝑓 𝑥 +

𝛻𝑥𝑓 𝑥 𝑇 −𝛼𝛻𝑥𝑓 𝑥 + 𝑂 −𝛼𝛻𝑥𝑓 𝑥 2
2

= 𝑓 𝑥 − 𝛼 𝛻𝑥𝑓 𝑥 2
2 + 𝑂 𝛼𝛻𝑥𝑓 𝑥 2

2

≤ 𝑓 𝑥 − 𝛼 𝛻𝑥𝑓 𝑥 2
2 + 𝐶𝛼2 𝛻𝑥𝑓 𝑥 2

2

< 𝑓(𝑥)

 Last inequality holds for 𝛼 <
1

𝐶
since 𝛻𝑥𝑓 𝑥 2

2 > 0
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Projected Gradient Descent (PGD)

 For constrained optimization problem
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Algorithm: Projected Gradient Descent

Input: function 𝑓, initial point 𝑥0, step size 𝛼 > 0

Initialize 𝑥 ← 𝑥0

Repeat

𝑥 ← 𝑃ℱ(𝑥 − 𝛼𝛻𝑥𝑓 𝑥 )
Until convergence

min
𝑥

𝑓(𝑥)

s.t. 𝑥 ∈ ℱ

Add a projection step to ensure feasibility

𝑃ℱ(𝑥) = argmin
𝑥′∈ℱ

𝑥 − 𝑥′
2
2

Again a constrained optimization problem



Projected Gradient Descent

 If ℱ is a 𝑙2 ball, i.e., ℱ = {𝑥: 𝑥 2 ≤ 1}, then

 𝑃ℱ(𝑥) = 𝑥/ 𝑥 2 for 𝑥 ∉ ℱ

 If ℱ is a box, i.e., ℱ = {𝑥: 𝑙 ≤ 𝑥 ≤ 𝑢}, then

 𝑃ℱ 𝑥 𝑖 = 𝑙𝑖 if 𝑥𝑖 < 𝑙𝑖
 𝑃ℱ 𝑥 𝑖 = 𝑢𝑖 if 𝑥𝑖 > 𝑢𝑖

 𝑃ℱ 𝑥 𝑖 = 𝑥𝑖 otherwise
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Outline

 Convex Optimization

 Gradient Descent and Projected Gradient Descent

 Linear Programming (LP)

 Dual Problem and KKT Conditions
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Linear Program

 Linear Program: 

 A special case of convex optimization problem

 An optimization problem whose optimization objective is a 

linear function and feasible region is a polytope (defined by a 

set of linear constraints)

 𝑐 ∈ ℝ𝑛

 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Note: can also be minimization



Linear Program

 An LP may be

 Infeasible: Feasible region is empty

 Unbounded: The objective value can be arbitrarily large (for 

a maximization problem)

 If an LP has an optimal solution, at least one vertex of 

the polytope is an optimal solution
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The Simplex Algorithm

 Intuition: no need to enumerate all vertices

 Recall local search and gradient descent

 Move towards a neighbor to get reduced objective value

 Still need to enumerate almost all the vertices in the 

worst case, but very efficient in most cases
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min
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Q: How to find a vertex? How to find a neighboring vertex?



Quiz 3

 Consider the following two LPs (LP-L and LP-R) where 𝑏 ≥ 0

 Applying simplex algorithm to LP-L with the initial vertex 𝑥0 =
0, 𝑧0 = 𝑏. Denote the optimal solution as (𝑥∗, 𝑧∗). If 𝑧∗ = 0, 
then which of the following claims are true about 𝑥∗?

 A: 𝑥∗ is not in the feasible region of LP-R

 B: 𝑥∗ is in the feasible region of LP-R

 C: 𝑥∗ is a vertex of the feasible region of LP-R

 D: 𝑥∗ is an optimal solution of LP-R
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min
𝑥,𝑧

1𝑇𝑧

s.t. 𝐴𝑥 + 𝑧 = 𝑏
𝑥, 𝑧 ≥ 0

min
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 = 𝑏
𝑥 ≥ 0

LP-L LP-R



Solve LPs in practice

 All the solvers/algorithms for Convex Optimization 

problems can be applied

 Additional solvers/algorithms for LPs

 linprog (MATLAB), linprog (in Python package SciPy)

 Cvxpy (Python)

 PuLP (Python)

 Cplex, Gurobi

 https://www.informs.org/ORMS-Today/Public-Articles/June-

Volume-38-Number-3/Software-Survey-Linear-Programming
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https://www.informs.org/ORMS-Today/Public-Articles/June-Volume-38-Number-3/Software-Survey-Linear-Programming


Outline

 Convex Optimization

 Gradient Descent and Projected Gradient Descent

 Linear Programming (LP)

 Dual Problem and KKT Conditions
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Lagrange Multiplier

 Consider a simple optimization problem with two 

variables and one equality constraint

 Define the Lagrangian

 Claim: The optimal solution 𝑥1
∗, 𝑥2

∗ satisfies
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min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2)

s.t. ℎ 𝑥1, 𝑥2 = 0

𝐿 𝑥1, 𝑥2, 𝜆 = 𝑓(𝑥1, 𝑥2) + 𝜆ℎ 𝑥1, 𝑥2

𝜕𝐿

𝜕𝑥1
=

𝜕𝐿

𝜕𝑥2
=

𝜕𝐿

𝜕𝜆
 
𝑥1

∗ ,𝑥2
∗ ,𝜆

= 0

For some 𝜆



Lagrange Multiplier
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𝑓 𝑥1, 𝑥2 = 5

43

ℎ 𝑥1, 𝑥2 = 0

𝛻𝑓 𝑥1, 𝑥2  
𝑥1

∗ ,𝑥2
∗

= 𝜆𝛻ℎ 𝑥1, 𝑥2  
𝑥1

∗ ,𝑥2
∗
, 𝜆 ≠ 0

Case 2: Gradient vectors of ℎ and 𝑓
are parallel at 𝑥1

∗, 𝑥2
∗

𝐿 𝑥1, 𝑥2, 𝜆 = 𝑓(𝑥1, 𝑥2) + 𝜆ℎ 𝑥1, 𝑥2

𝜕𝐿

𝜕𝑥1
=

𝜕𝐿

𝜕𝑥2
=

𝜕𝐿

𝜕𝜆
 
𝑥1

∗ ,𝑥2
∗ ,𝜆

= 0

ℎ 𝑥1, 𝑥2 = 0

Case 1: ℎ 𝑥1
∗, 𝑥2

∗ = 0, 𝛻𝑓 𝑥1, 𝑥2  𝑥1
∗ ,𝑥2

∗ = 0

Combines the two cases

𝛻𝑓 𝑥1, 𝑥2  
𝑥1

∗ ,𝑥2
∗

= 0

min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2)

s.t. ℎ 𝑥1, 𝑥2 = 0



Dual Problem

 Define the Lagrangian

 Let 𝑑 𝜇, 𝜆 = inf
𝑥

𝐿(𝑥, 𝜇, 𝜆). Define the dual problem as

 Whether or not 𝑓 is convex, we can show 𝑓∗ ≥ 𝑑∗ (weak duality)

 When 𝑓 is convex, we can prove 𝑓∗ = 𝑑∗ (strong duality)
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𝐿 𝑥, 𝜇, 𝜆 = 𝑓 𝑥 +  

𝑖

𝜇𝑖𝑔𝑖(𝑥) +  

𝑗

𝜆𝑗ℎ𝑗(𝑥)

min
𝑥∈ℝ𝑛

𝑓(𝑥)

s.t. 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1… 𝑚
ℎ𝑗 𝑥 = 0, 𝑗 = 1 … 𝑙

max
𝜇,𝜆

𝑑(𝜇, 𝜆)

s.t. 𝜇𝑖 ≥ 0, 𝑖 = 1 … 𝑚

𝑥: primal variables

𝜇 and 𝜆: dual variables 

(Lagrange multipliers)



Quiz 4

 For the following problem

 The dual problem is equivalent to
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min
𝑥∈ℝ𝑛

𝑓(𝑥)

s.t. 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1 … 𝑚
ℎ𝑗 𝑥 = 0, 𝑗 = 1 … 𝑙

𝐿 𝑥, 𝜇, 𝜆 = 𝑓 𝑥 +  

𝑖

𝜇𝑖𝑔𝑖(𝑥) +  

𝑗

𝜆𝑗ℎ𝑗(𝑥)

max
𝜇,𝜆

𝑑(𝜇, 𝜆)

s.t. 𝜇𝑖 ≥ 0, 𝑖 = 1 … 𝑚

𝑑(𝜇, 𝜆) = inf
𝑥

𝐿(𝑥, 𝜇, 𝜆)min
𝑥∈ℝ

3𝑥 + 4

s.t. 2𝑥 − 1 ≤ 0
−𝑥 + 5 ≤ 0

A:   max
𝜇1,𝜇2

2𝜇1 + 𝜇2

s.t. 2𝜇1 − 𝜇2 − 3 ≥ 0
𝜇1 ≥ 0, 𝜇2 ≥ 0

B:   max
𝜇1,𝜇2

−𝜇1 + 5𝜇2

s.t. 2𝜇1 − 𝜇2 = −3
𝜇1 ≥ 0, 𝜇2 ≥ 0

Recall



Quiz 4
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max
𝜇1,𝜇2

inf
𝑥

3𝑥 + 4 + 𝜇1(2𝑥 − 1) + 𝜇2(−𝑥 + 5)

s.t. 𝜇1 ≥ 0, 𝜇2 ≥ 0

max
𝜇,𝜆

𝑑(𝜇, 𝜆)

s.t. 𝜇𝑖 ≥ 0, 𝑖 = 1 … 𝑚

𝑑(𝜇, 𝜆) = inf
𝑥

𝐿(𝑥, 𝜇, 𝜆)

𝐿 𝑥, 𝜇, 𝜆 = 𝑓 𝑥 +  

𝑖

𝜇𝑖𝑔𝑖(𝑥) +  

𝑗

𝜆𝑗ℎ𝑗(𝑥)



Quiz 4
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max
𝜇1,𝜇2

inf
𝑥

3𝑥 + 4 + 𝜇1(2𝑥 − 1) + 𝜇2(−𝑥 + 5)

s.t. 𝜇1 ≥ 0, 𝜇2 ≥ 0

max
𝜇1,𝜇2

inf
𝑥

3 + 2𝜇1 − 𝜇2 𝑥 + 4 − 𝜇1 + 5𝜇2

s.t. 𝜇1 ≥ 0, 𝜇2 ≥ 0

max
𝜇1,𝜇2

−𝜇1 + 5𝜇2

2𝜇1 − 𝜇2 = −3
𝜇1 ≥ 0, 𝜇2 ≥ 0

max
𝜇,𝜆

𝑑(𝜇, 𝜆)

s.t. 𝜇𝑖 ≥ 0, 𝑖 = 1 … 𝑚

𝑑(𝜇, 𝜆) = inf
𝑥

𝐿(𝑥, 𝜇, 𝜆)

𝐿 𝑥, 𝜇, 𝜆 = 𝑓 𝑥 +  

𝑖

𝜇𝑖𝑔𝑖(𝑥) +  

𝑗

𝜆𝑗ℎ𝑗(𝑥)



Linear Program Duality

 Dual problem of an LP: also a linear program

 Each dual variable corresponds to a constraint in primal LP
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min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP



Linear Program Duality

 Strong duality holds (if feasible and bounded)

 Primal and dual have the same optimal objective value

 The dual of the dual of a problem is itself
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min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP

Weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗

Strong duality: 𝑐𝑇𝑥∗ = 𝑏𝑇𝑦∗



Linear Program Duality

 Prove weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗
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min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP



Linear Program Duality

 Prove weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗
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min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP

𝑐𝑇𝑥∗ = 𝐴𝑇𝑦∗ 𝑇𝑥∗ = 𝑦∗𝑇𝐴𝑥∗ = 𝑦∗𝑇 𝐴𝑥∗ ≤ 𝑦∗𝑇𝑏



Write the Dual of an LP
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Maximize Minimize

ith constraint ≤ ith variable ≥ 0 

ith constraint ≥ ith variable ≤ 0

ith constraint = ith variable unrestricted 

jth variable ≥ 0 jth constraint ≥ 

jth variable ≤ 0 jth constraint ≤ 

jth variable unrestricted jth constraint =



Linear Program Duality

 Let LP-1 denote the original LP, LP-2 denote the dual of LP-1, 
and LP-3 denote the dual of LP-2. Then LP-1 and LP-3 are the 
same (or can be converted to each other with variable 
substitution)
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min
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 = 𝑏
𝑥 ≥ 0

max
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≤ 𝑐

Lp-1 Lp-2

min
𝑦+,𝑦−,𝑧

𝑏𝑇𝑦+ − 𝑏𝑇𝑦−

s.t. 𝐴𝑇𝑦+ − 𝐴𝑇𝑦− + 𝑧 = 𝑐
𝑦+, 𝑦−, 𝑧 ≥ 0

Lp-2 (Standard form)

max
𝑤

𝑐𝑇𝑤

s.t. 𝐴𝑤 ≤ 𝑏𝑇

𝐴𝑤 ≤ −𝑏𝑇

𝑤 ≤ 0

LP-3

𝑦 = 𝑦+ − 𝑦−

dual

𝑥 = 𝑤



Proof of strong duality theorem

 Farkas’ lemma: Let 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚. Then exactly 
one of the following two statements is true
 I. There exists an 𝑥 ∈ ℝ𝑛 such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0

 II. There exists a 𝑦 ∈ ℝ𝑚 such that 𝐴𝑇𝑦 ≥ 0 and 𝑏𝑇𝑦 < 0

 Proof: 

 If (I) is true, i.e., 𝐴𝑥 = 𝑏 holds for some 𝑥. If 𝐴𝑇𝑦 ≥ 0 for some 𝑦, then 
𝑏𝑇𝑦 = 𝐴𝑥 𝑇𝑦 = 𝑥𝑇 𝐴𝑇𝑦 ≥ 𝑥𝑇𝟎 = 0. So (I)(II) cannot both be true. 

 If (I) is false, then define 𝐶 = {𝑞 ∈ ℝ𝑚: ∃𝑥 ≥ 0, 𝐴𝑥 = 𝑞}. We know 𝑏 ≠ 𝐶. 
Notice that 𝐶 is convex. From separating hyperplane theorem, we know 
for some 𝑦 ∈ ℝ𝑚\𝟎 s.t. 𝑞𝑇𝑦 ≥ 0 ∀𝑞 ∈ 𝐶 and 𝑏𝑇𝑦 < 0. Then we can 
show that for this 𝑦, 𝐴𝑇𝑦 ≥ 0. If not, i.e., if 𝐴𝑇𝑦 < 0, then choose any 𝑞 ∈
𝐶, and choose any 𝑥 ≥ 0 such that 𝐴𝑥 = 𝑞, we have 0 ≤ 𝑞𝑇𝑦 =
𝐴𝑥 𝑇𝑦 = 𝑥𝑇𝐴𝑇𝑦 = 𝑥𝑇 𝐴𝑇𝑦 < 𝑥𝑇𝟎 = 0. Contradiction. So this 𝑦

satisfies 𝐴𝑇𝑦 ≥ 0 and 𝑏𝑇𝑦 < 0. Therefore (II) is true.

 So exactly one of (I) and (II ) is true
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Proof of strong duality theorem

 Second variant of Farkas’ lemma: Let 𝐴 ∈ ℝ𝑚×𝑛 and 

𝑏 ∈ ℝ𝑚. Then system 𝐴𝑥 ≤ 𝑏 has a solution if and 

only if 𝜆𝑇𝑏 ≥ 0 holds for all 𝜆 that satisfies 𝜆 ≥ 0 and

𝜆𝑇𝐴 = 0
 Proof: 

 If 𝐴𝑥 ≤ 𝑏 has a solution, denote the solution as 𝑥∗. If 𝜆 ≥ 0 and

𝜆𝑇𝐴 = 0, then 𝜆𝑇𝑏 ≥ 𝜆𝑇 𝐴𝑥∗ = 𝜆𝑇𝐴 𝑥∗ = 0

 If 𝐴𝑥 ≤ 𝑏 does not have a solution, then 𝐴𝑥+ − 𝐴𝑥− + 𝑧 =
𝑏, 𝑥+, 𝑥−, 𝑧 ≥ 0 does not have a solution (otherwise you can easily 

construct a solution for 𝐴𝑥 ≤ 𝑏). By Farkas’ lemma, there exists a 𝜆
such that [𝐴 − 𝐴 𝐼]𝑇𝜆 ≥ 0 and 𝑏𝑇𝜆 < 0. Then for this 𝜆, we know 

𝐴𝑇𝜆 = 0 (and therefore 𝜆𝑇𝐴 = 0) and 𝜆 ≥ 0
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Proof of strong duality theorem

 Suppose the primal has an optimal solution 𝑥∗, leading to optimal value 
f ∗ = 𝑐𝑇𝑥∗, (𝑦∗, 𝑔∗ = 𝑏𝑇𝑦∗) is the optimal solution and the optimal value of 
the dual, and 𝑓∗ > 𝑔∗. Then for any 𝜖 > 0,  we know that ∄𝑦, 𝑏𝑇𝑦 ≥ 𝑔∗ +

𝜖, 𝐴𝑇𝑦 ≤ 𝑐, i.e., 
𝐴𝑇

−𝑏𝑇 𝑦 ≤
𝑐

−𝑔∗ − 𝜖 does not have a solution. Based on 

the variant of the Farkas’ lemma, there exists a 𝜆 ∈ ℝ𝑛+1 satisfying 𝜆 ≥ 0, 

𝜆𝑇 𝐴𝑇

−𝑏𝑇 = 0, and 𝜆𝑇
𝑐

−𝑔∗ − 𝜖 < 0. Write this 𝜆 as 𝜆 =
𝜆1

𝜆2
where 𝜆1 ∈

ℝ𝑛, 𝜆2 ∈ ℝ, 𝜆1 ≥ 0, 𝜆2 ≥ 0. 

 If 𝜆2 = 0, then 𝜆1
𝑇𝐴𝑇 = 0, 𝜆1

𝑇𝑐 < 0, 𝜆1 ≥ 0. According to the variant of the 
Farkas’ lemma, 𝐴𝑇𝑦 ≤ 𝑐 should not have a solution. But 𝑦∗ is a solution of 
the dual and therefore 𝐴𝑇𝑦∗ ≤ 𝑐. Contradiction.

 If 𝜆2 > 0, then we can scale every the parameters in the problem so that 
𝜆2 = 1. Then 𝜆1

𝑇𝐴𝑇 = 𝑏𝑇 and 𝜆1
𝑇𝑐 < 𝑔∗ + 𝜖. Therefore 𝜆1 is a feasible 

solution of the primal and has a corresponding objective value lower than 
𝑔∗ + 𝜖. Since primal is minimization, we have 𝑓∗ ≤ 𝑐𝑇𝜆1 < 𝑔∗ + 𝜖. 
According to weak duality theorem, 𝑓∗ ≥ 𝑔∗. So 𝑔∗ ≤ 𝑓∗ < 𝑔∗ + 𝜖 for any 
𝜖 > 0. Then the only possibility is 𝑓∗ = 𝑔∗.
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Karush–Kuhn–Tucker (KKT) conditions

 Let 𝑥∗ be the globally optimal point

 The KKT conditions are
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𝛻𝑓 𝑥∗ +  

𝑖

𝜇𝑖𝛻𝑔𝑖(𝑥
∗) +  

𝑗

𝜆𝑗𝛻ℎ𝑗(𝑥
∗) = 0

Primal feasibility

𝜕𝐿

𝜕𝑥
= 0

𝑔𝑖 𝑥∗ ≤ 0, 𝑖 = 1 … 𝑚
ℎ𝑗 𝑥∗ = 0, 𝑗 = 1 … 𝑙

Dual feasibility𝜇𝑖 ≥ 0, 𝑖 = 1 … 𝑚

Complementary Slackness𝜇𝑖𝑔𝑖(𝑥
∗) = 0, 𝑖 = 1 … 𝑚

min
𝑥∈ℝ𝑛

𝑓(𝑥)

s.t. 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1 … 𝑚
ℎ𝑗 𝑥 = 0, 𝑗 = 1 … 𝑙



Karush–Kuhn–Tucker (KKT) conditions

 For the following convex optimization problem

 The KKT conditions are necessary and sufficient 

conditions for global optima
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min
𝑥∈ℝ𝑛

𝑓(𝑥)

s.t. 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1 … 𝑚
ℎ𝑗 𝑥 = 0, 𝑗 = 1 … 𝑙

where 𝑔𝑖 are differentiable convex functions, ℎ𝑖 are affine 

function, 𝑓 is convex



Quiz 5

 For the following problem

 The KKT conditions are (choose all that apply)

 A: 2𝑥 − 1 ≤ 0

 B: −𝑥 + 5 ≤ 0

 C: 𝜇1 ≥ 0

 D: 𝜇2 ≥ 0

 E: 𝜇1 2𝑥 − 1 = 0

 F: 𝜇2 −𝑥 + 5 = 0

 G: 3𝑥 + 4 ≤ 0

 H: 𝜇1 + 2𝜇2 = 4

 I: 2𝜇1 − 𝜇2 = −3
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min
𝑥∈ℝ𝑛

3𝑥 + 4

s.t. 2𝑥 − 1 ≤ 0
−𝑥 + 5 ≤ 0

Recall 𝛻𝑓 𝑥∗ +  

𝑖

𝜇𝑖𝛻𝑔𝑖(𝑥
∗) +  

𝑗

𝜆𝑗𝛻ℎ𝑗(𝑥
∗) = 0

𝑔𝑖 𝑥∗ ≤ 0, 𝑖 = 1 … 𝑚
ℎ𝑗 𝑥∗ = 0, 𝑗 = 1 … 𝑙

𝜇𝑖 ≥ 0, 𝑖 = 1 … 𝑚

𝜇𝑖𝑔𝑖(𝑥
∗) = 0, 𝑖 = 1 … 𝑚



Quiz 5
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𝛻𝑓 𝑥∗ +  

𝑖

𝜇𝑖𝛻𝑔𝑖(𝑥
∗) +  

𝑗

𝜆𝑗𝛻ℎ𝑗(𝑥
∗) = 0

min
𝑥∈ℝ𝑛

𝑓 𝑥 = 3𝑥 + 4

s.t. 𝑔1 𝑥 = 2𝑥 − 1 ≤ 0
𝑔2 𝑥 = −𝑥 + 5 ≤ 0

3 + 𝜇1 ⋅ 2 + 𝜇2 ⋅ −1 = 0



KKT Conditions for LP
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Primal feasibility

𝜕𝐿

𝜕𝑥
= 0

Dual feasibility

Complementary Slackness

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Necessary and sufficient conditions for optimality!



KKT Conditions for LP
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Primal feasibility

𝜕𝐿

𝜕𝑥
= 0

Dual feasibility

Complementary Slackness

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

𝑦𝑇 𝐴𝑥 − 𝑏 = 0

𝐴𝑇𝑦 = 𝑐

𝐴𝑥 ≤ 𝑏

𝑦 ≥ 0

Necessary and sufficient conditions for optimality!



Dual Problem and KKT Conditions

 Sometimes the dual problem is easier to solve than 

the primal problem

 Sometimes the KKT conditions are easier to solve 

than the primal problem
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Summary
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Optimization Problems

Convex Programs

Linear Programs

Projected Gradient Descent

KKT Conditions

Simplex



Linear Program: Additional Resources

 Textbook
 Applied Mathematical Programming, Chapters 2-4

By Bradley, Hax, and Magnanti (Addison-Wesley, 1977)

http://web.mit.edu/15.053/www/AMP.htm

 Convex Optimization, Chapters 1-4

Stephen Boyd and LievenVandenberghe

Cambridge University Press

https://web.stanford.edu/~boyd/cvxbook/

 Online course
 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-251j-

introduction-to-mathematical-programming-fall-2009/index.htm

 http://ee364a.stanford.edu/courseinfo.html

 https://youtu.be/McLq1hEq3UY
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http://web.mit.edu/15.053/www/AMP.htm
https://web.stanford.edu/~boyd/cvxbook/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-251j-introduction-to-mathematical-programming-fall-2009/index.htm
https://youtu.be/McLq1hEq3UY
https://youtu.be/McLq1hEq3UY
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