Artificial Intelligence Methods for Social Good M4-4 [Sequential Decision Making]: Ecosystem Management

> 08-537 (9-unit) and 08-737 (12-unit) Instructor: Fei Fang <u>feifang@cmu.edu</u> Wean Hall 4126

Outline

- Multi-Armed Bandit
- Invasive Species Management
- Wildfire Management

Learning Objective

- Understand the concept of
 - Multi-Armed Bandit (MAB)
 - Zero-regret strategy
 - Upper Confidence Bound (UCB)
 - Probably approximately correct (PAC)
- Describe how ecosystem management problems are modeled as MDPs and the key challenges
- Describe the key ideas in the solution approaches for these problems

Multi-Armed Bandit (MAB)

▶ K arms

- Each arm k is associated with a reward distribution R_k, with expected reward μ_k
- Gambler does not know R_k , μ_k
- In each round $t \in \{1 \dots T\}$, gambler chooses one arm k_t , and observe a reward \hat{r}_t drawn from the distribution

Fei Fang

Multi-Armed Bandit (MAB)

• Let
$$\mu^* = \max_k \mu_k$$

- Define regret $\rho = T\mu^* \sum_{t=1}^T \widehat{r_t}$
- A typical research problem in MAB: find zero-regret strategy
 - $\lim_{T \to \infty} \frac{\rho}{T} = 0$
- Probably approximately correct (PAC): with high probability, it is close to being correct $Pr(error \le \epsilon) \ge 1 \delta$
- PAC version of zero-regret strategy $\Pr(\lim_{T \to \infty} \frac{\rho}{T} \le \epsilon) \ge 1 - \delta$

Quiz I

- If we model MAB as an MDP, which of the following representation of the state allows for the highest level of expressiveness of a policy?
- A: $s_t = <1>$, i.e., single state MDP
- B: $s_t = \langle \widehat{\mu_1}, \dots, \widehat{\mu_K} \rangle$ where $\widehat{\mu_k}$ =average reward when k is chosen in rounds 1, ..., t 1
- C: $s_t = \langle N(1), \widehat{\mu_1}, ..., N(K), \widehat{\mu_K} \rangle$ where N(k) =number of rounds that k is chosen in rounds 1, ..., t - 1
- D: $s_t = \langle k_1, \hat{r_1}, k_2, \hat{r_2}, \dots, k_{t-1}, \hat{r_{t-1}} \rangle$ where $k_\tau = arm$ chosen in round τ

Multi-Armed Bandit (MAB)

- Model MAB as an MDP
- State $s_t = \langle k_1, \hat{r_1}, k_2, \hat{r_2}, \dots, k_{t-1}, \hat{r_{t-1}} \rangle$
- Action $k_t \in \{1 ... K\}$
- Transition matrix: $P(s_{t+1}|s_t, k_t) = p_{k_t}(\hat{r}_t)$ if $s_{t+1} = < s_t, k_t, \hat{r}_t >$
- Reward $r_t = R(s_t, a_t, s_{t+1}) = \hat{r_t}$

Binary MAB

- ► K arms
- Reward is either 0 or 1, R_k : $Pr(r = 1) = p_k$, $Pr(r = 1) = p_k$

Upper Confidence Bound in Binary MAB

- Let N(k) be the number of times that k is chosen
- Let H(k) be the number of times that k is chosen and reward is 1
- Let $\widehat{\mu_k} = H(k)/N(k)$, average reward when k is chosen
- Given N(k), H(k), $\widehat{\mu_k}$, δ , we can estimate the range of μ_k , i.e., we can compute μ_{LB}^k and μ_{UB}^k such that $\Pr(\mu_{LB}^k \le \mu_k \le \mu_{UB}^k) \ge 1 - \delta$

Upper Confidence Bound in Binary MAB

- Chernoff-Hoeffding Bound: Let X_1, X_2, \ldots, X_n be independent random variables in the range [0, 1] with $\mathbb{E}[X_i] = \mu$. Then for a > 0 $\Pr(\frac{1}{n}\sum_{i}X_{i} \ge \mu + a) \le e^{-2a^{2}n}$ $\Pr(\frac{1}{n}\sum_{i=1}^{n}X_{i} \le \mu - a) \le e^{-2a^{2}n}$
- That is, with high probability, the observed average value of X_i is very close to the expected value of X_i

Upper Confidence Bound in Binary MAB

• So
$$\mu_{LB}^k = \widehat{\mu_k} - \sqrt{\frac{1}{2N(k)} \ln(\frac{2}{\delta})}, \mu_{UB}^k = \widehat{\mu_k} + \sqrt{\frac{1}{2N(k)} \ln(\frac{2}{\delta})}$$
 ensures $\Pr(\mu_{LB}^k \le \mu_k \le \mu_k \le \mu_k)$

Invasive Species Management

TRAVELERS: AVOID FINES AND DELAYS

Foreign insects, plant and animal diseases, and invasive plants can be harmful to United States agriculture.

www.cbp.gov

https://www.cbp.gov/travel/clearing-cbp/bringingagricultural-products-united-states

U.S. Customs and

order Protection

- Invasive Species
 - Reduce biodiversity
 - E.g., Tamarisk: Native in Middle East, Outcompete native vegetation in US for water

https://www.nasa.gov/vision/earth/environ ment/invasive_species_MM.html

Invasive Species Management

- Manage spatially-spreading organism
- Tamarisk spread along rivers
- Seed travel along rivers (mostly downstream)
- Interventions: eradicate the invasive species and/or plant native species

Published Rule of Thumb Policies

- Intuition: upstream is important, severity of invasion is important
- Triage policy
 - Treat most-invaded edge (river reach) first
 - Break ties by treating upstream first
- Leading edge
 - Fradicate along the leading edge of invasion
- Chades, et al.
 - Treat most-upstream invaded edge first
 - Break ties by amount of invasion

MDP Model for Invasive Species Management

- State $s_t \in S$: current status of invasion
 - Tree-structured river network
 - Directed
 - Each edge $e \in E$ has H sites for trees to grow
 - Status of each site ∈ {empty, occupied by native, occupied by invasive}
 - s_t : status of all sites
- Action $a_t \in A$: management action for the invasive species
 - Action for each edge ∈ {do nothing, eradicate, plant, eradicate + plant}
 - a_t : action on all edges
 - Practical constraint: at most one edge has a non "do-nothing" action \rightarrow Feasible action set A

MDP Model for Invasive Species Management

- Transition probability $P(s_{t+1}|s_t, a_t)$: describes the change of state due to the management action and natural dynamics
 - Nature
 - Natural death
 - Seed production: every occupied site may generate seed
 - Seed dispersal: generated seeds dispersed to downstream sites (upstream also possible, but less likely)
 - Seed competition: seeds dispersed to the same site compete to become established
 - Couple all edges together
 - □ Make probabilistic inference intractable: with current observation, infer status of sites
 - Encapsulated with an (expensive) simulator
- Reward $r_t = R(s_t, a_t)$: cost of action + penalty of invasion
 - More Tamarisk trees \rightarrow higher penalty
- Policy $\pi: S \to A$:

Quiz 2

- If we use a table to store the non-zero transition probabilities P(s_{t+1}|s_t, a_t) in this model, at least how many entries are needed (roughly)?
- A: $3^{2EH} \cdot EH$
- **B**: $3^{2EH} \cdot 4^{E}$
- C: $3^{EH} \cdot EH \cdot 3^{H}$

MDP Model for Invasive Species Management

• Optimization problem: choose optimal policy π^* to maximize discounted cumulative reward

$$J(\pi) = \mathbb{E}\left[\sum_{\tau=0}^{\infty} \gamma^{\tau} r_{\tau} \,|\, s_0, \pi\right]$$

• Value function $V^{\pi}(s_t) = \mathbb{E}[\sum_{\tau=t}^{\infty} \gamma^{\tau-t} r_{\tau} | s_t, \pi]$

MDP Model for Invasive Species Management

- Why MDP is an appropriate model for the problem?
 - MDP policy balances short-term and long-term impact of intervention
 - We can set the discount factor γ to control the balance: US Forest Service set the discount factor to be 0.96
 - MDP models uncertainty of environment

Solve the MDP

- If all elements are known: Value iteration
- Challenge: $P(s_{t+1}|s_t, a_t)$ is not given in a table, instead, we only have access to a simulator
 - Simulator: given s, a, provide a sample of s'
- Option I: run enough simulations to get P, then run value iteration
 - Too slow, Too many samples needed (exponential)
- Option 2: directly interact with the simulator when update policy

Solve the MDP with Access to Simulator

Slightly change the goal: Find policy \(\hat\) that is near optimal with high probability without running too many simulations

$$\Pr(\left|V^*(s_0) - V^{\widehat{\pi}}(s_0)\right| \le \epsilon) \ge 1 - \delta$$

- Draw a polynomial number of samples from the simulator
- Called PAC-RL (Probably approximately correct reinforcement learning)
- Equivalently: $V_{UB}(s_0) V_{LB}(s_0) \le \epsilon$

Solve the MDP with Access to Simulator

- Key problem: How to sample from the simulator to reduce confidence level?
- Algorithm I: DDV
- Algorithm 2: LGCV

DDV Algorithm

Idea I: Optimism Principle

- For every state s, only consider action with highest upper confidence level $Q_{UB}(s, a)$ (similar to MCTS)
- Idea 2:Value of Information

$$\Delta V(s_0) = V_{UB}(s_0) - V_{LB}(s_0)$$

$$DDV = \Delta_{s,a} \Delta V(s_0) = \Delta V(s_0) - \Delta_{s,a} V'(s_0)$$

- For every (s, a), how much ΔV(s₀) will change as a result of sampling (s, a)
- Compute/Estimate DDV for every (s, a) pair satisfying Optimism Principle, choose (s, a) with highest DDV
- The key is to estimate $V(s_0)!$

DDV Algorithm

- Idea 3: Optimal Sampling for Policy Evaluation
 - ► Goal: Estimate $V^{\pi}(s_0)$ through simulator so that the estimated value $\hat{V}^{\pi}(s_0)$ satisfy $\Pr(|\hat{V}^{\pi}(s_0) - V^{\pi}(s_0)| \le \epsilon) \ge 1 - \delta$
 - Compute occupancy measure $u^{\pi}(s)$: the discounted probability that a policy π visits state s
 - Use Extended Value Iteration: Sample (s, a) in proportion to $u^{\pi}(s)^{\frac{2}{3}}$
 - Or use Monte Carlo Trials: Sample (s, a) in proportion to $u^{\pi}(s)$

Fei Fang

DDV Algorithm

- Repeat
 - Sample (s, a) with highest estimated DDV
- Until width of estimated confidence interval $\leq \epsilon$
- Confidence interval is estimated using Extended Value Iteration algorithm based on optimal sampling

LGCV Algorithm

- Key idea: Improve DDV by improving the way to compute confidence intervals
- Two different ways to compute confidence interval
 - Extended Value Iteration (EVI)
 - Monte Carlo (MC) samples drawn according to a fixed policy

LGCV

- Use EVI to compute $V_{UB}(s_0)$
- Use EVI+MC to compute $V_{LB}(s_0)$
- In each iteration
 - Either Draw a minibatch of samples to improve EVI interval
 - Or Draw a minibatch of samples to improve MC interval

► Evaluate different policies with the simulator: MDP based policies improves rule-of-thumb policies by ≈ 25%!

- Ideal state: a natural state with large pine trees, open understory, frequent ground fires that remove understory plants but do not damage trees
- Lack of controllable fires leads to densely distributed pine trees, heavy accumulation fuels in understory, high risk of large catastrophic fires that kill all trees and damage soils
- Selectively extinguish natural wildfires or even conduct prescribed burns to reduce risk

https://www.fs.usda.gov/detail/r6/landmanagement/res ourcemanagement/?cid=stelprdb5423597

https://www.tahoedailytribune.com/news/lake-tahoe-forest-service-to-conduct-fall-prescirbed-burns-and-wildfire-management/

- Study area: Deschutes National Forest
- Management question: When lightning ignites a fire, should we let it burn or extinguish it?

- How can AI help?
 - Develop simulators
 - Evaluate rule-of-thumb policies
 - Design better policies

- Formulate the problem as an MDP
 - State s_t :
 - Grid representation of the area (4000 cells)
 - For each grid cell: # and age of trees, fuel load
 - s_t : state of all cells, 25^{4000} states!
 - Action a_t : {LetBurn, Suppress} when there is a fire ignition
 - Reward $r_t = R(s_t, a_t, l_t)$: cost of lost timber value, cost of fire suppression
 - Fransition function $P(s_{t+1}|s_t, a_t) = P(l_t|s_t, a_t)P(s_{t+1}|s_t)$
 - Optimization goal: $\max_{\pi} \mathbb{E}[\sum_{t} \gamma^{t} r_{t}]$

Solve the MDP

- Possible approaches
 - Policy Gradient
 - Represent policy as a parameterized function $\pi(s; \theta)$
 - Estimate gradient $\nabla_{\theta} J(\pi(s; \theta))$ via Monte Carlo trials
 - Perform gradient ascent
 - Does work well: noisy gradient, hard to stabilize with limited samples
 - Bayesian Optimization with regression tree (SMAC)

Fei Fang

Practical Challenge

- Visualize rollout policies of MDP (MDPVis.github.io)
 - How Cumulative Timber Loss increases over time in different trials given the policy
 - Debug the system
 - Interpret policies and communicate with stakeholders

Multiple owners of forest, multiple fire mangers

Acknowledgment

 Slides are prepared based on Prof. Thomas Dietterich's presentation slides