
Artificial Intelligence Methods for Social Good

M4-4 [Sequential Decision Making]:

Ecosystem Management

08-537 (9-unit) and 08-737 (12-unit)

Instructor: Fei Fang

feifang@cmu.edu

Wean Hall 4126

5/8/20181

mailto:feifang@cmu.edu


Outline

 Multi-Armed Bandit

 Invasive Species Management

 Wildfire Management

5/8/2018Fei Fang2



Learning Objective

 Understand the concept of

 Multi-Armed Bandit (MAB)

 Zero-regret strategy

 Upper Confidence Bound (UCB)

 Probably approximately correct (PAC)

 Describe how ecosystem management problems are 

modeled as MDPs and the key challenges

 Describe the key ideas in the solution approaches for 

these problems
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Multi-Armed Bandit (MAB)

 𝐾 arms

 Each arm 𝑘 is associated with 

a reward distribution 𝑅𝑘 , 

with expected reward 𝜇𝑘

 Gambler does not know 𝑅𝑘 , 

𝜇𝑘

 In each round 𝑡 ∈ {1…𝑇}, 
gambler chooses one arm 𝑘𝑡, 

and observe a reward  𝑟𝑡
drawn from the distribution
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Multi-Armed Bandit (MAB)

 Let 𝜇∗ = max
𝑘

𝜇𝑘

 Define regret 𝜌 = 𝑇𝜇∗ −  𝑡=1
𝑇  𝑟𝑡

 A typical research problem in MAB: find zero-regret 

strategy

 lim
𝑇→∞

𝜌

𝑇
= 0

 Probably approximately correct (PAC): with high 

probability, it is close to being correct

Pr 𝑒𝑟𝑟𝑜𝑟 ≤ 𝜖 ≥ 1 − 𝛿

 PAC version of zero-regret strategy

Pr( lim
𝑇→∞

𝜌

𝑇
≤ 𝜖) ≥ 1 − 𝛿

5/8/2018Fei Fang5



Quiz 1

 If we model MAB as an MDP, which of the following 
representation of the state allows for the highest 
level of expressiveness of a policy?

 A: 𝑠𝑡 =< 1 >, i.e., single state MDP

 B: 𝑠𝑡 =<  𝜇1, … ,  𝜇𝐾 > where  𝜇𝑘 =average reward 
when 𝑘 is chosen in rounds 1,… , 𝑡 − 1

 C: 𝑠𝑡 =< 𝑁 1 , 𝜇1, … , 𝑁 𝐾 ,  𝜇𝐾 > where 𝑁(𝑘) =
number of rounds that 𝑘 is chosen in rounds 
1,… , 𝑡 − 1

 D: 𝑠𝑡 =< 𝑘1,  𝑟1, 𝑘2,  𝑟2, … , 𝑘𝑡−1,  𝑟𝑡−1 > where 𝑘𝜏 =
arm chosen in round 𝜏
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Multi-Armed Bandit (MAB)

 Model MAB as an MDP

 State 𝑠𝑡 =< 𝑘1,  𝑟1, 𝑘2,  𝑟2, … , 𝑘𝑡−1,  𝑟𝑡−1 >

 Action 𝑘𝑡 ∈ 1…𝐾

 Transition matrix: 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑘𝑡 = 𝑝𝑘𝑡
( 𝑟𝑡) if 𝑠𝑡+1 =<

𝑠𝑡 , 𝑘𝑡 ,  𝑟𝑡 >

 Reward 𝑟𝑡 = 𝑅 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1 =  𝑟𝑡
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Binary MAB

 𝐾 arms

 Reward is either 0 or 1, 𝑅𝑘: Pr 𝑟 = 1 = 𝑝𝑘 , Pr(𝑟 =
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Upper Confidence Bound in Binary MAB

 Let 𝑁(𝑘) be the number of times that 𝑘 is chosen

 Let 𝐻(𝑘) be the number of times that 𝑘 is chosen 

and reward is 1

 Let  𝜇𝑘 = 𝐻(𝑘)/𝑁(𝑘), average reward when 𝑘 is 

chosen

 Given 𝑁(𝑘), 𝐻(𝑘),  𝜇𝑘, 𝛿, we can estimate the range 

of 𝜇𝑘, i.e., we can compute 𝜇𝐿𝐵
𝑘 and 𝜇𝑈𝐵

𝑘 such that 

Pr 𝜇𝐿𝐵
𝑘 ≤ 𝜇𝑘 ≤ 𝜇𝑈𝐵

𝑘 ≥ 1 − 𝛿
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Upper Confidence Bound in Binary MAB

 Chernoff-Hoeffding Bound: Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be 

independent random variables in the range 0, 1 with 

𝔼 𝑋𝑖 = 𝜇. Then for 𝑎 > 0

Pr(
1

𝑛
 

𝑖=1

𝑛

𝑋𝑖 ≥ 𝜇 + 𝑎) ≤ 𝑒−2𝑎2𝑛

Pr(
1

𝑛
 

𝑖=1

𝑛

𝑋𝑖 ≤ 𝜇 − 𝑎) ≤ 𝑒−2𝑎2𝑛

 That is, with high probability, the observed average 

value of 𝑋𝑖 is very close to the expected value of 𝑋𝑖
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Upper Confidence Bound in Binary MAB

 So 𝜇𝐿𝐵
𝑘 =  𝜇𝑘 −

1

2𝑁(𝑘)
ln(

2

𝛿
), 𝜇𝑈𝐵

𝑘 =  𝜇𝑘 +
1

2𝑁(𝑘)
ln(

2

𝛿
) ensures Pr 𝜇𝐿𝐵

𝑘 ≤ 𝜇𝑘 ≤
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Invasive Species Management
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https://www.nasa.gov/vision/earth/environ

ment/invasive_species_MM.html

https://www.cbp.gov/travel/clearing-cbp/bringing-

agricultural-products-united-states

 Invasive Species

 Reduce biodiversity

 E.g., Tamarisk: Native in Middle 

East, Outcompete native 

vegetation in US for water



Invasive Species Management

 Manage spatially-spreading organism

 Tamarisk spread along rivers

 Seed travel along rivers (mostly downstream)

 Interventions: eradicate the invasive species and/or 

plant native species
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Published Rule of Thumb Policies

 Intuition: upstream is important, severity of invasion is 
important

 Triage policy
 Treat most-invaded edge (river reach) first

 Break ties by treating upstream first

 Leading edge
 Eradicate along the leading edge of invasion

 Chades, et al.
 Treat most-upstream invaded edge first

 Break ties by amount of invasion
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MDP Model for Invasive Species Management

 State 𝑠𝑡 ∈ 𝑆: current status of invasion
 Tree-structured river network

 Directed

 Each edge 𝑒 ∈ 𝐸 has 𝐻 sites for trees to grow

 Status of each site ∈ {empty, occupied by native, occupied by 
invasive}

 𝑠𝑡: status of all sites

 Action 𝑎𝑡 ∈ 𝐴: management action for the invasive 
species
 Action for each edge ∈ {do nothing, eradicate, plant, eradicate + 

plant}

 𝑎𝑡: action on all edges

 Practical constraint: at most one edge has a non “do-nothing” 
action → Feasible action set 𝐴
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MDP Model for Invasive Species Management

 Transition probability 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡): describes the change of 
state due to the management action and natural dynamics
 Nature

 Natural death

 Seed production: every occupied site may generate seed

 Seed dispersal: generated seeds dispersed to downstream sites (upstream also 
possible, but less likely)

 Seed competition: seeds dispersed to the same site compete to become 
established

 Couple all edges together

 Make probabilistic inference intractable: with current observation, infer status of sites

 Encapsulated with an (expensive) simulator

 Reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡): cost of action + penalty of invasion

 More Tamarisk trees → higher penalty

 Policy 𝜋: 𝑆 → 𝐴: 
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Quiz 2

 If we use a table to store the non-zero transition 

probabilities 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) in this model, at least how 

many entries are needed (roughly)?

 A: 32𝐸𝐻 ⋅ 𝐸𝐻

 B: 32𝐸𝐻 ⋅ 4𝐸

 C: 3𝐸𝐻 ⋅ 𝐸𝐻 ⋅ 3𝐻
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MDP Model for Invasive Species Management

 Optimization problem: choose optimal policy 𝜋∗ to 

maximize discounted cumulative reward 

𝐽 𝜋 = 𝔼[ 

𝜏=0

∞

𝛾𝜏𝑟𝜏 |𝑠0, 𝜋]

 Value function 𝑉𝜋 𝑠𝑡 = 𝔼[ 𝜏=𝑡
∞ 𝛾𝜏−𝑡𝑟𝜏 |𝑠𝑡 , 𝜋]
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MDP Model for Invasive Species Management

 Why MDP is an appropriate model for the problem?

 MDP policy balances short-term and long-term impact of 

intervention

 We can set the discount factor 𝛾 to control the balance: US Forest 

Service set the discount factor to be 0.96

 MDP models uncertainty of environment
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Solve the MDP

 If all elements are known: Value iteration

 Challenge: 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) is not given in a table, 

instead, we only have access to a simulator

 Simulator: given 𝑠, 𝑎, provide a sample of 𝑠′

 Option 1: run enough simulations to get 𝑃, then run 

value iteration

 Too slow, Too many samples needed (exponential)

 Option 2: directly interact with the simulator when 

update policy
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Solve the MDP with Access to Simulator

 Slightly change the goal: Find policy  𝜋 that is near 

optimal with high probability without running too 

many simulations

 Pr 𝑉∗ 𝑠0 − 𝑉 𝜋 𝑠0 ≤ 𝜖 ≥ 1 − 𝛿

 Draw a polynomial number of samples from the simulator

 Called PAC-RL (Probably approximately correct 

reinforcement learning)

 Equivalently: 𝑉𝑈𝐵(𝑠0) − 𝑉𝐿𝐵(𝑠0) ≤ 𝜖
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Solve the MDP with Access to Simulator

 Key problem: How to sample from the simulator to 

reduce confidence level?

 Algorithm 1: DDV

 Algorithm 2: LGCV
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DDV Algorithm

 Idea 1: Optimism Principle

 For every state 𝑠, only consider action with highest upper 

confidence level 𝑄𝑈𝐵 𝑠, 𝑎 (similar to MCTS)

 Idea 2: Value of Information

 Δ𝑉 𝑠0 = 𝑉𝑈𝐵 𝑠0 − 𝑉𝐿𝐵 𝑠0
 DDV=Δ𝑠,𝑎Δ𝑉 𝑠0 =Δ𝑉 𝑠0 -Δs,a𝑉′ 𝑠0

 For every (𝑠, 𝑎), how much Δ𝑉 𝑠0 will change as a result of sampling 

(𝑠, 𝑎)

 Compute/Estimate DDV for every (𝑠, 𝑎) pair satisfying 

Optimism Principle, choose (𝑠, 𝑎) with highest DDV

 The key is to estimate 𝑉(𝑠0)!
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DDV Algorithm

 Idea 3: Optimal Sampling for Policy Evaluation

 Goal: Estimate V𝜋 s0 through simulator so that the 

estimated value  𝑉𝜋(𝑠0) satisfy

Pr(  𝑉𝜋 𝑠0 − V𝜋 s0 ≤ 𝜖) ≥ 1 − 𝛿

 Compute occupancy measure 𝑢𝜋(𝑠): the discounted 

probability that a policy 𝜋 visits state 𝑠

 Use Extended Value Iteration: Sample (𝑠, 𝑎) in proportion to 

𝑢𝜋 𝑠
2

3

 Or use Monte Carlo Trials: Sample (𝑠, 𝑎) in proportion to 

𝑢𝜋(𝑠)
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DDV Algorithm

 Repeat

 Sample (𝑠, 𝑎) with highest estimated DDV

 Until width of estimated confidence interval ≤ 𝜖

 Confidence interval is estimated using Extended Value 

Iteration algorithm based on optimal sampling
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LGCV Algorithm

 Key idea: Improve DDV by improving the way to compute 
confidence intervals

 Two different ways to compute confidence interval
 Extended Value Iteration (EVI)

 Monte Carlo (MC) samples drawn according to a fixed policy

 LGCV
 Use EVI to compute 𝑉𝑈𝐵(𝑠0)
 Use EVI+MC to compute 𝑉𝐿𝐵 𝑠0
 In each iteration

 Either Draw a minibatch of samples to improve EVI interval

 Or Draw a minibatch of samples to improve MC interval
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Evaluate the algorithms

 Evaluate different policies with the simulator: MDP 

based policies improves rule-of-thumb policies by ≈
25%!
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Wildfire Management

 Ideal state: a natural state with large pine trees, open understory, frequent 
ground fires that remove understory plants but do not damage trees

 Lack of controllable fires leads to densely distributed pine trees, heavy 
accumulation fuels in understory, high risk of large catastrophic fires that kill 
all trees and damage soils

 Selectively extinguish natural wildfires or even conduct prescribed burns to 
reduce risk
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https://www.tahoedailytribune.com/news/lake-tahoe-forest-service-to-conduct-fall-

prescirbed-burns-and-wildfire-management/

https://www.fs.usda.gov/detail/r6/landmanagement/res

ourcemanagement/?cid=stelprdb5423597



Wildfire Management

 Study area: Deschutes National Forest

 Management question: When lightning ignites a fire, 

should we let it burn or extinguish it?
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Wildfire Management

 How can AI help?

 Develop simulators

 Evaluate rule-of-thumb policies

 Design better policies
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Wildfire Management

 Formulate the problem as an MDP

 State 𝑠𝑡 :
 Grid representation of the area (4000 cells)

 For each grid cell: # and age of trees, fuel load

 𝑠𝑡: state of all cells, 254000 states!

 Action 𝑎𝑡: {LetBurn, Suppress} when there is a fire ignition

 Reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑙𝑡): cost of lost timber value, cost of 

fire suppression

 Transition function 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 = 𝑃 𝑙𝑡 𝑠𝑡 , 𝑎𝑡 𝑃 𝑠𝑡+1 𝑠𝑡
 Optimization goal: max

𝜋
𝔼[ t 𝛾

𝑡𝑟𝑡]
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Solve the MDP

 Possible approaches

 Policy Gradient

 Represent policy as a parameterized function 𝜋 𝑠; 𝜃

 Estimate gradient 𝛻𝜃𝐽(𝜋 𝑠; 𝜃 ) via Monte Carlo trials

 Perform gradient ascent

 Does work well: noisy gradient, hard to stabilize with limited samples

 Bayesian Optimization with regression tree (SMAC)
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Practical Challenge

 Visualize rollout policies of MDP (MDPVis.github.io)

 How Cumulative Timber Loss increases over time in 

different trials given the policy

 Debug the system

 Interpret policies and communicate with stakeholders
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Extensions

 Multiple owners of forest, multiple fire mangers
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