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Recap: Value Iteration and Policy Iteration

 Bellman Equation

𝑉𝑡
𝜋 𝑠 = 𝑅 𝑠, 𝜋(𝑠) + 𝛾 

𝑠′

𝑃(𝑠′|𝑠, 𝜋(𝑠))𝑉𝑡−1
𝜋 𝑠′

𝑉0
𝜋 = 0

 Value Iteration

𝑉∗ 𝑠 = max
𝑎∈𝐴
[𝑅 𝑠, 𝑎 + 𝛾 

𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑉∗ 𝑠′ ]

 Policy Iteration
 Policy evaluation

𝑉𝑖+1
𝜋 𝑠 ← 𝑅 𝑠, 𝜋(𝑠) + 𝛾 

𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑉𝑖
𝜋 𝑠′ , 𝑉0

𝜋 𝑠 ← 0

 Policy update

𝜋 𝑠 ≔ argmax
𝑎∈𝐴
[𝑅 𝑠, 𝑎 + 𝛾 

𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑉𝜋 𝑠′ ]
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Q-value



Policy Gradient

 Policy gradient
 Most popular class of continuous action reinforcement learning algorithms

 Also provides an alternative approach for discrete action problems

 Parameterize the policy

 Greedy policy update: Potentially unstable learning process with large 
policy jumps

 Soft policy update: Stable learning process with smooth policy improvement
 Update the parameters towards the direction that increase the objective function 

(e.g., expected reward)

 Challenge: hard to compute the gradient w.r.t. policy parameters due to uncertainty 
in MDPs
 Finite difference methods

 Likelihood ratio methods
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Policy Gradient – Finite Difference Methods

 Perturb one parameter by a small amount and 

approximate the gradient

 Perturb all parameters by a small but different 

amount 𝑛 times and approximate the gradient

 Slow, noisy and inefficient
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Policy Gradient – Likelihood Ratio Gradient

 Policy Gradient Theorem

 Can be approximated by sampling 𝑋 and compute 

average 𝑔(𝑋)！
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𝑔(𝑋)



Policy Gradient – Likelihood Ratio Gradient

 Now rewrite the gradient of the objective function 

with respect to policy parameters

 Estimate gradient through sampling

 Sample possible histories of actions (dependent on both 

policy and environment)

 If probability of getting such history is a known differentiable 

function w.r.t. policy parameters, compute the gradient

 Estimate the gradient of objective function w.r.t. policy 

parameters
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Policy Gradient: Beyond MDPs

 Essentially a way to improve a parameterized 

policy/strategy through gradient descent

 Instead of writing down the full objective function 

and compute gradient, use finite difference or 

likelihood ratio + sampling to estimate the gradient
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Forest Protection

 Green dots: Valuable trees

 Blue dots: Defender location

 Red dots: Logging locations

 Zero-sum game

 Goal: Find defender strategy or 
defender policy
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Forest Protection

 Key idea 1: Represent defender strategy using logit 

normal distribution in polar coordinate system
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𝜃

𝑑~𝑃 𝒩 𝜇𝑑, 𝜎𝑑
2

𝜃~𝑃(𝒩 𝜇𝜃 , 𝜎𝜃
2 )



Forest Protection

 If attacker’s mixed strategy is fixed (but unknown to 

the defender), how to find the best defender 

strategy? In this case, the best value of 𝜇𝑑 , 𝜎𝑑 , 𝜇𝜃 , 𝜎𝜃?

 Use policy gradient!

 Randomly initialize 𝜇𝑑 , 𝜎𝑑 , 𝜇𝜃 , 𝜎𝜃
 Compute the gradient of the objective function (defender’s 

utility) w.r.t. to the parameters

 Update the parameters

 Repeat
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Compute Gradient using Policy Gradient Theorem

 Recall

 𝑋: defender location

 𝜃: parameters representing defender strategy 

(𝜇𝑑 , 𝜎𝑑 , 𝜇𝜃 , 𝜎𝜃)

 𝑓(𝑋): utility for the defender

 𝑝: probability that the defender chooses this 

location
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Compute Gradient using Policy Gradient Theorem

 𝑚 defenders

 Gradient of defender’s expected utility w.r.t. 𝜃𝐷 =
(𝜇𝑑 , 𝜎𝑑 , 𝜇𝜃 , 𝜎𝜃):

𝛻𝜃𝐷𝐽𝐷 = 𝐸𝑎𝐷[𝑟𝐷𝛻𝜃𝐷 log 𝜋𝐷]

 The probability of taking action 𝑎𝐷 = 𝑑, 𝜃 , 𝑑 ∈
𝑅𝑚, 𝜃 ∈ 𝑅𝑚 is given by
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Solving Game through Learning from Self Play

 More advanced version

 Key idea 2: Represent a “policy” with Convolutional 

Neural Network

 Policy: mapping from game setting to strategy

 CNN: Tree Distribution →Mean/Std of 𝑑 and 𝜃
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Compute Gradient using Policy Gradient Theorem

 𝑋: defender location

 𝜃: parameters representing the defender policy 

(weights in CNN)

 𝑓(𝑋): utility for the defender 

 𝑝: probability that the defender chooses this 

location
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Compute Gradient using Policy Gradient Theorem

 𝑚 defenders

 Gradient of defender’s expected utility w.r.t. 𝑤𝐷:
𝛻𝑤𝐷𝐽𝐷 = 𝐸𝑎𝐷[𝑟𝐷𝛻𝑤𝐷 log 𝜋𝐷]
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Solving Game through Learning from Self Play

 Key idea 3: Approximate Fictitious Play

 Fictitious Play: Best responds to opponent's average strategy

 Average strategy → Random samples from history

 Best response → Update neural network
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Solving Game through Learning from Self Play
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 Put them together



Solving Game through Learning from Self Play
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Cournot Adjustment StackGrad OptGradFP

 Single game setting

 Multiple game setting
 Train on 1000 forest states, predict on unseen forest state

 7 days for training, Prediction time 90 ms

 Shift computation from online to offline



Solving Game through Learning from Self Play

 OptGradFP (Kamra et al., 2018)

 Pro

 Can predict defender strategy for unseen setting

 Con

 Restricted to specific parameterization + Slow convergence

5/8/201819 Policy Learning for Continuous Space Security Games using Neural Networks

Nitin Kamra, Umang Gupta, Fei Fang, Yan Liu, Milind Tambe

In AAAI-18: The Thirty-Second AAAI Conference on Artificial Intelligence, February 2018


