Artificial Intelligence Methods for Social Good

M4-2 [Sequential Decision Making]: Policy Gradient and Its Applications

08-537 (9-unit) and 08-737 (12-unit)
Instructor: Fei Fang
feifang@cmu.edu
Wean Hall 4126
Recap: Value Iteration and Policy Iteration

- Bellman Equation

\[V_t^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V_{t-1}^\pi(s') \]

\[V_0^\pi = 0 \]

- Value Iteration

\[V^*(s) = \max_{a \in A} [R(s, a) + \gamma \sum_{s'} P(s'|s, a)V^*(s')] \]

- Policy Iteration
 - Policy evaluation

\[V_{i+1}^\pi(s) \leftarrow R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, a)V_i^\pi(s'), V_0^\pi(s) \leftarrow 0 \]

 - Policy update

\[\pi(s) := \arg\max_{a \in A} [R(s, a) + \gamma \sum_{s'} P(s'|s, a)V^\pi(s')] \]

Q-value
Policy Gradient

- Policy gradient
 - Most popular class of continuous action reinforcement learning algorithms
 - Also provides an alternative approach for discrete action problems

- Parameterize the policy

- Greedy policy update: Potentially unstable learning process with large policy jumps

- Soft policy update: Stable learning process with smooth policy improvement
 - Update the parameters towards the direction that increase the objective function (e.g., expected reward)
 - Challenge: hard to compute the gradient w.r.t. policy parameters due to uncertainty in MDPs
 - Finite difference methods
 - Likelihood ratio methods
Policy Gradient – Finite Difference Methods

- Perturb one parameter by a small amount and approximate the gradient
- Perturb all parameters by a small but different amount n times and approximate the gradient
- Slow, noisy and inefficient
Policy Gradient – Likelihood Ratio Gradient

- Policy Gradient Theorem
 \[\nabla_{\theta} \mathbb{E}_X[f(X)] = \mathbb{E}_X[f(X) \nabla_{\theta} \log p(X|\theta)] \]

- Can be approximated by sampling \(X\) and compute average \(g(X)\)!
Policy Gradient – Likelihood Ratio Gradient

- Now rewrite the gradient of the objective function with respect to policy parameters

- Estimate gradient through sampling
 - Sample possible histories of actions (dependent on both policy and environment)
 - If probability of getting such history is a known differentiable function w.r.t. policy parameters, compute the gradient
 - Estimate the gradient of objective function w.r.t. policy parameters
Policy Gradient: Beyond MDPs

- Essentially a way to improve a parameterized policy/strategy through gradient descent
- Instead of writing down the full objective function and compute gradient, use finite difference or likelihood ratio + sampling to estimate the gradient
Forest Protection

- Green dots: Valuable trees
- Blue dots: Defender location
- Red dots: Logging locations
- Zero-sum game
- Goal: Find defender strategy or defender policy
Key idea 1: Represent defender strategy using logit normal distribution in polar coordinate system

\[d \sim P\left(\mathcal{N}\left(\mu_d, \sigma_d^2\right)\right) \]
\[\theta \sim P\left(\mathcal{N}\left(\mu_\theta, \sigma_\theta^2\right)\right) \]
If attacker’s mixed strategy is fixed (but unknown to the defender), how to find the best defender strategy? In this case, the best value of $\mu_d, \sigma_d, \mu_\theta, \sigma_\theta$?

Use policy gradient!

- Randomly initialize $\mu_d, \sigma_d, \mu_\theta, \sigma_\theta$
- Compute the gradient of the objective function (defender’s utility) w.r.t. to the parameters
- Update the parameters
- Repeat
Compute Gradient using Policy Gradient Theorem

Recall

\[\nabla_{\theta} \mathbb{E}_{X}[f(X)] = \mathbb{E}_{X}[f(X) \nabla_{\theta} \log p(X|\theta)] \]

- \(X \): defender location
- \(\theta \): parameters representing defender strategy \((\mu_d, \sigma_d, \mu_\theta, \sigma_\theta)\)
- \(f(X) \): utility for the defender
- \(p \): probability that the defender chooses this location
Compute Gradient using Policy Gradient Theorem

- m defenders
- Gradient of defender’s expected utility w.r.t. $\theta_D = (\mu_d, \sigma_d, \mu_\theta, \sigma_\theta)$:

$$\nabla_{\theta_D} J_D = E_{a_D} [r_D \nabla_{\theta_D} \log \pi_D]$$

- The probability of taking action $a_D = (d, \theta), d \in \mathbb{R}^m$

$$\pi_D(d, \theta | s) = \prod_{i \in [m]} p_{ln}(d_i; \mu_d,i, \nu_d,i)p_{ln}\left(\frac{\theta_i}{2\pi}; \mu_\theta,i, \nu_\theta,i\right)$$

$$p_{ln}(X; \mu, \nu) = \frac{1}{\sqrt{2\pi \nu}} \frac{1}{x(1-x)} e^{-\frac{(\text{logit}(x) - \mu)^2}{2\nu^2}}$$
Solving Game through Learning from Self Play

- More advanced version
- Key idea 2: Represent a “policy” with Convolutional Neural Network
 - Policy: mapping from game setting to strategy
 - CNN: Tree Distribution \rightarrow Mean/Std of d and θ
Compute Gradient using Policy Gradient Theorem

\[\nabla_\theta \mathbb{E}_X[f(X)] = \mathbb{E}_X[f(X) \nabla_\theta \log p(X | \theta)] \]

- \(X \): defender location
- \(\theta \): parameters representing the defender policy (weights in CNN)
- \(f(X) \): utility for the defender
- \(p \): probability that the defender chooses this location
Compute Gradient using Policy Gradient Theorem

- m defenders
- Gradient of defender’s expected utility w.r.t. w_D:
 $$\nabla_{w_D} J_D = E_{a_D} [r_D \nabla_{w_D} \log \pi_D]$$
Solving Game through Learning from Self Play

- Key idea 3: Approximate Fictitious Play
 - Fictitious Play: Best responds to opponent's average strategy
 - Average strategy → Random samples from history
 - Best response → Update neural network
Solving Game through Learning from Self Play

- Put them together

Algorithm 1: OptGradFP

Initialization. Initialize policy parameters w_D and w_O, replay memory mem;

for $ep \in \{0, \ldots, ep_{\text{max}}\}$ **do**

- Simulate n_s game play. Sample game setting and actions from current policy π_D and π_O n_s times, save in mem;
- Replay for defender. Draw n_b samples from mem, resample defender action from current policy π_D;
- Update parameter for defender. Update defender policy parameter $w_D := w_D + \frac{\alpha_D}{1+ep \, \beta_D} \ast \nabla w_D \, J_D$;
- Replay for attacker. Draw n_b samples from mem, resample attacker action from current policy π_O;
- Update parameter for attacker. Update attacker policy parameter $w_O := w_O + \frac{\alpha_O}{1+ep \, \beta_O} \ast \nabla w_O \, J_O$
Solving Game through Learning from Self Play

- Single game setting
 - Cournot Adjustment
 - StackGrad
 - OptGradFP

- Multiple game setting
 - Train on 1000 forest states, predict on unseen forest state
 - 7 days for training, Prediction time 90 ms
 - Shift computation from online to offline
Solving Game through Learning from Self Play

- **OptGradFP** (Kamra et al., 2018)
 - **Pro**
 - Can predict defender strategy for unseen setting
 - **Con**
 - Restricted to specific parameterization + Slow convergence