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This lecture

• First half: modelling
• Examples of MDPs

• Learn how to model MDPs

• Familiarize with how the parameters of MDPs affect solutions

• Second half: solving
• Value iteration

• Policy iteration

• Extensions (optional)



The story so far…

• Equilibrium concepts in games (Nash, SE)

• Decision Trees

• Graphical Models (GMM, DBN, MRF)

Focus is on 
prediction, 
not control!

Intelligence is more than just predicting `stuff’

MDPs: Markov Chain + Reward + Control
Loosely speaking:

boring fun



START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700

• Choose to move left, right or keep still at each time step
• Restricted to staying within bounds

• The game ends once you reach the rightmost tile.
• Suffer penalties every time step when in red tiles.
• Best strategy = ?

“Extremely exciting” game (EEG)



START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700

• Choose to move left, right or keep still at each time step
• Restricted to staying within bounds

• The game ends once you reach the rightmost tile.
• Suffer penalties every time step when in red tiles.
• A strong wind is blowing leftward, causing you to move back 

with probability 𝑝 = 0.25 regardless of your action.
• Best strategy = ?
• Not obvious if penalties / probabilities are non-uniform.

“Extremely exciting” game (Part 2)

𝑝 = 0.25



Foundation for many cool applications

• Robotics

• `Game’ playing

• Traffic Control

• Server management

• Modelling human behavior

• Useful starting point for many 
problems!
• Go, Atari games

• Closely related areas
• Reinforcement Learning
• Imitation learning, Inverse RL

Google news for ‘Markov Decision Process robotics’

If you have no idea how to proceed, formulating something as an MDP and 
doing Monte-Carlo Tree search probably works reasonably well…

- A wise man



Videos



MDP = (S, A, T, R, 𝛾)
• S: set of states, 𝑠𝑡 ∈ 𝑆 (where can I be?)

• A: set of actions, 𝑎𝑡 ∈ 𝐴 (what can I do?)

• Transition function: 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) (what happens next?)

• Reward function 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡) (what do I gain?) 

• 𝛾 ∈ [0, 1] (discount factor)

st = {𝑖|location 𝑖 occupied}
𝑎𝑡 ∈ {left, right, rotate}
𝑇 = some tetris physics,
"distribution of next tile”
𝑅 𝑠𝑡 = #complete rows

st = 𝑥𝑡, 𝑥𝑡
′, 𝜃𝑡, 𝜃𝑡

′

𝑎𝑡 ∈ {left, right}
𝑇 = some physics
𝑅 𝑠𝑡 = height of pole

Q1: What are S,A,T,R for the previous game?
Q2: How large is |𝑆|?

Markov Chains! 



Behaving (near)-optimally in an MDP
• Assume 𝑡 = 0,1,2…

• Total expected discounted reward:  𝑡 𝛾
𝑡𝑟𝑡, 0 ≤ 𝛾 < 1

• Payoffs now worth more than in the future
• Model compound interest, opportunity costs etc.

• Technical convenience (useful later when solving)

• Define a policy 𝜋 𝑠 = 𝑎
• Maps state to action, defines a plan

• Goal: find 𝜋 to maximize expected discounted reward
• 𝜋∗ = argmax𝜋𝔼𝜋[ 𝑡 𝛾

𝑡𝑅(𝑠𝑡 , 𝜋(𝑠𝑡))]

• Myopic strategy does not work: 𝑎𝑡 affects future states



Grid World
• The canonical example for MPDs

• Move in desired direction with probability 0.8

• Move in perpendicular direction with probability 0.1

• No movement when hitting walls

+1

-100

0.8

0.10.1

What is the best 
policy?



Behaving (near)-optimally in an MDP

• Q1: Should 𝜋 depend on 𝑡? Or just 𝑠𝑡? Do we have to care 
about histories of states and actions?
• Independence from 𝑡 is reasonable due to Markov Property

• Q2: Could we ever benefit from non-deterministic 𝜋 ?
• No: could always do better by switching to the more rewarding deterministic 

policy.

• Grey Area: when there are aliased states (not in this lecture) 



M4-1 Quiz 1 (Markov Property)

Which of the following state representations are 
suitable for pole-cart balancing ?

A) st = 𝑥𝑡 , 𝑥𝑡
′ , 𝜃𝑡 , 𝜃𝑡

′

B) st = 𝑥𝑡 , 𝜃𝑡
C) st = 𝑥𝑡 , 𝑥𝑡−1, 𝜃𝑡 , 𝜃𝑡−1
D) st = 𝑥𝑡

′ , 𝜃𝑡 , 𝜃𝑡
′



Relationship to other models (optional)



𝑠𝑡 𝑠𝑡+1

Markov Chains
• Find stationary/limiting distribution
• Find time to first return
• Find distribution of states at time t given state at time t-n

𝑠𝑡 𝑠𝑡+1

𝑧𝑡 𝑧𝑡+1

HMM
• Tractable inference, Viterbi etc.
• Filtering, e.g. Kalman filters, EKF, IKF …
• Sample based filtering, particle, histogram filters… 

Markov Decision Processes
Classic theory on MDPs borrow from Markov Chain theory



Are these well modelled by MDPs?

Poker Monopoly

Mario Pacman

Minesweeper

2048

Snake and ladders



Importance of discount factors & time
• Infinite horizon discounted reward is not the only formulation

• Average reward (not in this lecture)

• Finite horizons

• What happens if 𝛾 = 0.25? What about 𝛾 = 0.99?
• Future discounted reward is too low to compensate for short-term pain

• What if the game only carries on for 𝑡max = 8 steps?
• Impossible to reach goal after being pushed back once.

• Time-dependent policy 𝜋𝑡 𝑠 , or augmented state (𝑠, 𝑡)

• Dynamic programming

START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700

𝑝 = 0.00001



M4-1 Quiz 2

+1 START +10

-100 -100 -100 -100 -100 -100 -100 -100

Actions:
• up, down, left, right
• Taking any action on blue tiles 

causes you to fall down with 
probability 𝑝.

Q: Which of the settings for 
gamma and p result in an optimal 
agent's first action to be "Left"?

Legend: 
Grey: walls, Red: cliff (terminal 
state), Orange: gold (terminal 
state), Blue: slippery slope

A: 𝛾 = 0.1, 𝑝 = 0
B: 𝛾 = 0.99999, 𝑝 = 0
C: 𝛾 = 0.1, 𝑝 = 0.2
D: 𝛾 = 0.99999, 𝑝 = 0.2



Solving MDPs (not exhaustive!)

•Exact
• Value Iteration
• Policy Iteration
• Linear Programming

•Approximate
• Sampling based
• Function approximation



Value Functions (finite horizon H)

• The value function at time 𝑡, for policy 𝜋 is

• 𝑉𝑡
𝜋 𝑠 = expected total reward assuming 

• We adopt 𝜋

• We begin in 𝑠

• We have 𝑡 timesteps remaining

• Bellman Equations: 

𝑉𝑡
𝜋 𝑠 = 𝑅 𝑠, 𝜋(𝑠) + 𝛾 

𝑠′

𝑃(𝑠′|𝑠, 𝜋(𝑠))𝑉𝑡−1
𝜋 𝑠′

𝑉0
𝜋 = 0

• Value of state = immediate reward + future reward 



Optimal Value Functions (finite horizon)

• The value function for the optimal policy is 𝑉𝑡
𝜋∗ 𝑠

• Abbreviated as  𝑉𝑡
∗ 𝑠

𝑉𝑡
∗ 𝑠 = max

𝑎∈𝐴
[𝑅 𝑠, 𝑎 + 𝛾 

𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑉𝑡−1
∗ 𝑠′ ]

𝑉0
∗ = 0

• Pick the action which maximizes current + future reward (assuming 
continued optimal behavior)

• Similar in spirit to dynamic programming.



Value Iteration (Infinite Horizon)
• 𝑉∗ 𝑠 = max

𝑎∈𝐴
[𝑅 𝑠, 𝑎 + 𝛾  𝑠′𝑃(𝑠

′|𝑠, 𝑎)𝑉∗ 𝑠′ ]

• Self referencing fixed point equations! 

• Fixed point iteration
• Pretend we have a really long horizon

• Perform dynamic programming!

• Initialize 𝑉0
∗ 𝑠 ← 0

• Iterate 𝑉𝑖+1
∗ 𝑠 ← max

𝑎∈𝐴
[𝑅 𝑠, 𝑎 + 𝛾  𝑠′ 𝑃(𝑠

′|𝑠, 𝑎)𝑉𝑖
∗ 𝑠′ ]

• aka ‘Value update’, ‘Bellman backups/updates’



• Q1: How does 𝑉∗ help us get the optimal policy?
• Optimal policy is retrieved using one step look-ahead
• 𝜋∗ 𝑠 = argmax

𝑎∈𝐴
[𝑅 𝑠, 𝑎 + 𝛾  𝑠′ 𝑃(𝑠

′|𝑠, 𝑎)𝑉∗ 𝑠′ ]

• Q2: Is the value function always finite?
• Yes, if 𝛾 < 1

• Total payoff cannot exceed 
𝑅max
1−𝛾

.

• Q3: Does value iteration converge to 𝑉∗ ?
• Yes, use the fact that Bellman backups are a contraction.

• Q4: Is the fixed point 𝑉∗ unique?
• Yes.



Value Iteration: Example

START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700
𝑝 = 0.1, 𝛾 =0.9

0 -100 -100 -100 -100 -100 -100 +700𝑉1

0 0 0 0 0 0 0 0𝑉0

0 -100 -190 -190 -190 -190 458 +700𝑉2

Demo by TA + Video



Policy Iteration

• Value iteration: 𝑉∗ estimates gradually improved by Bellman 
backups
• Optimal policy is induced by 𝑉∗

• Q: Is it necessary to get an accurate estimate of 𝑉∗ to 
induce 𝜋∗

• Policy iteration: 𝜋 gradually ‘improved’. 
• 𝑉𝜋 used to evaluate policy

• New idea: Iterate between 2 steps
• Policy Evaluation (check how good current policy is)
• Policy Improvement (get a ‘better’ policy)



Policy iteration (con’t)
• Policy Evaluation

• Method 1: Use value iteration

• 𝑉𝑖+1
𝜋 𝑠 ← 𝑅 𝑠, 𝜋(𝑠) + 𝛾  𝑠′ 𝑃(𝑠

′|𝑠, 𝑎)𝑉𝑖
𝜋 𝑠′ , 𝑉0

𝜋 𝑠 ← 0

• Method 2: Solve system of linear equations (no max operator for fixed 𝜋)

• Terminate if Bellman equations holds

• Policy Improvement
• Since Bellman equations did not hold, some condition was violated

• 𝜋 𝑠 ≠ argmax
𝑎∈𝐴
[𝑅 𝑠, 𝑎 + 𝛾  𝑠′ 𝑃(𝑠

′|𝑠, 𝑎)𝑉𝜋 𝑠′ ]

• Improve 𝜋 by setting this to be true

• Theorem: Policy iteration converges to the optimal policy in a finite 
number of steps



Extensions (Optional)

• Scaling up: Function Approximation & Fitted Value Iteration

• Online vs. Offline planning
• Which do I really need, 𝜋∗ or 𝜋∗(𝑠0)?

• What happens if my model of the environment is inaccurate? 

• Options (macro-actions) 



Value Iteration



Value iteration example

START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700
𝑝 = 0.1, 𝛾 =0.9

Problem definition: numbers are rewards/penalties per timestep

Step 0: Initialization, 𝑉0 = 0

0 0 0 0 0 0 0 0

Current value function, written as an array.
Recall
The objective is to find a good 
estimate of 𝑉∗, by repeatedly 
refining our estimate. 



START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700
𝑝 = 0.1, 𝛾 =0.9

Problem definition: numbers are rewards/penalties per timestep

Iteration 1: Perform Bellman Backups
For each state, compute expected cumulative 
rewards for each action

Lets consider the second last square.



START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700
𝑝 = 0.1, 𝛾 =0.9

Problem definition: numbers are rewards/penalties per timestep

Currently updating value of this state

Iteration 1:

0 0 0 0 0 0 0 0

Current value function from previous iteration

Possible action 1: RIGHT
Immediate reward = -100 (state we are in)
Future reward = 0.9 * 0 (if we move end up right)

+ 0.1 * 0 (if we move end up left)
=> Expected total reward = -100 + 0 = -100
Why 0? Because we use the values from the 
previous iteration for all estimates of future rewards.

The probabilities 0.9 and 0.1 are 
obtained from the transition 
function 𝑃(𝑠′|𝑠, 𝑎). 



START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700
𝑝 = 0.1, 𝛾 =0.9

Problem definition: numbers are rewards/penalties per timestep

Currently updating value of this stateIteration 1:

0 0 0 0 0 0 0 0

Current value function from previous iteration
Applying this to all 
other actions gives: 

Possible action 1: RIGHT
Expected total reward = -100 + 0 = -100

Possible action 1: LEFT
Expected total reward = -100 + 0 = -100

Possible action 1: NONE
Expected total reward = -100

=>Value of best action (tied) = -100
TBD TBD TBD TBD TBD TBD -100 TBD

Updated value function



START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700
𝑝 = 0.1, 𝛾 =0.9

Problem definition: numbers are rewards/penalties per timestep

Iteration 1:

0 0 0 0 0 0 0 0

Current value function from previous iteration

Applying this to all states gives: 

0 -100 -100 -100 -100 -100 -100 +700

Updated value function
End of iteration 1

Use for iteration 2



START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700
𝑝 = 0.1, 𝛾 =0.9

Problem definition: numbers are rewards/penalties per timestep

Currently updating value of this state

Iteration 2:

0 -100 -100 -100 -100 -100 -100 +700

Current value function from previous iteration

Possible action 1: RIGHT
Immediate reward = -100 (state we are in)
Future reward = 0.9 * 700 (if we end up right)

+ 0.1 * -100 (if we end up left)
=> Expected total reward = -100 + 𝛾620 = 458
We use the values from the previous iteration for all 
estimates of future rewards. Do not forget 
discounting!

The probabilities 0.9 and 0.1 are 
obtained from the transition 
function 𝑃(𝑠′|𝑠, 𝑎). 



START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700
𝑝 = 0.1, 𝛾 =0.9

Problem definition: numbers are rewards/penalties per timestep

Currently updating value of this stateIteration 2

0 -100 -100 -100 -100 -100 -100 +700

Current value function from previous iteration
Applying this to all 
other actions gives: 

Possible action 1: RIGHT
Expected total reward = 458

Possible action 1: LEFT
Expected total reward = -100 + 𝛾(−100) = -190

Possible action 1: NONE
Expected total reward = -100 + 𝛾(−100) = -190

=>Value of best action (right) = 458
TBD TBD TBD TBD TBD TBD 458 TBD

Updated value function



START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700
𝑝 = 0.1, 𝛾 =0.9

Problem definition: numbers are rewards/penalties per timestep

Iteration 2:

0 -100 -100 -100 -100 -100 -100 +700

Current value function from previous iteration

Applying this to all states gives: 

0 -190 -190 -190 -190 -190 +458 +700

Updated value function
End of iteration 2

Use for iteration 3



Repeated iterations converge to the optimal value 
function 

0 -100 -93.7 18.88 157.2 315.4 495.4 +700

Value function converges to 𝑉∗

Now, perform one step lookahead to extract 𝜋∗



0 -100 -93.7 18.88 157.2 315.4 495.4 +700

𝑉∗ we computed after many iterations

Suppose we want the 
best action at this state

START
0

-$100 -$100 -$100 -$100 -$100 -$100 +$700
𝑝 = 0.1, 𝛾 =0.9

Problem definition: numbers are rewards/penalties per timestep

Possible action 1: RIGHT
Immediate reward = -100 (state we are in)
Future reward = 0.9 * 157.2 (if we end up right)

+ 0.1 * -93.7 (if we end up left)
=> Expected total reward = -100 + 𝛾620 = 18.88
We use the values from 𝑉∗ for future rewards. 
Do not forget discounting!

Perform for all actions 
to obtain the best 



---       ---

Final policy after extracting best action at each state

End of Algorithm


