Artificial Intelligence Methods for Social Good M3-3 [Machine Learning]: Regression

08-537 (9-unit) and 08-737 (12-unit) Instructor: Fei Fang <u>feifang@cmu.edu</u> Wean Hall 4126

Quiz I: Recap: Gradient Descent

Exp I

x _i	1.0	2.0	3.5
y_i	4.1	5.98	9.0

$$\min_{a,b} \sum_{i=1}^{3} (y_i - (ax_i + b))^2$$

s.t. $a, b \in \mathbb{R}$

- a⁰ = 1, b⁰ = 0.5, run one iteration of gradient descent, we get
- A: $a^1 > a^0$, $b^1 < b^0$
- B: $a^1 > a^0$, $b^1 > b^0$
- C: $a^1 < a^0$, $b^1 < b^0$
- ▶ D: $a^1 < a^0$, $b^1 > b^0$

Recap

• Input $x \to (Not fully hard-coded)$ Program $\to Output y$

Key questions

- Representation: How to represent the relationship between input and output
- Inference: How to infer the output from input
- Learning: How to learn the best model to describe the data?

Outline

- What is Regression
- Parametric Regression
 - Simple Linear Regression
 - Linear Regression with Multiple Features
- Evaluation
 - Loss function
 - Train error, true error, test error
 - Overfitting
 - Model selection: Validation set
- Regularization
 - Ridge regression (L2)
 - Gradient descent
 - Lasso regression (LI)
 - Coordinate descent
 - Cross validation
- Non-parametric regression
 - K-Nearest Neighbors
 - Kernel Regression
- Logistic Regression

Learning Objectives

- Understand the concept of
 - Regression
 - Regularization
 - Cross validation
 - K-NN
 - Kernel regression
- Describe coordinate descent algorithm and can apply it to small scale problem
- Know how to find the algorithm/solver/package to do linear regression / kernel regression

What is Regression

- Continuous-valued output
- Exp 2: Predict house price
 - Input: size (sqft), #bedrooms, #bathrooms
 - Output: price of house
- Exp 3: Predict probability of detecting snares

- Input: #followers, topic
- Output: #likes
- Other examples?

Parametric Regression

- Data: input-output pairs (x_i, y_i)
- Representation: How to represent the relationship between input and output
 - Output is a function of input + noise, $y_i = f(x_i) + \epsilon_i$
 - Potential functions: constant, linear, quadratic, ...
 - Which class of functions is more reasonable?
 - > Within a class of functions (parameterized), which function is most reasonable?

_	
▶ F	-xn l

x _i	1.0	2.0	3.5
Уi	4.1	5.98	9.0

$$f(x) = c?f(x) = ax + b?f(x) = ax^2 + bx + c?$$

Exp 2: Predict house price

f(housesize, #bedrooms, #bathrooms) = $a \cdot \text{housesize} + b \cdot \text{#bedrooms} + c \cdot \text{#bathrooms} + d$? f(housesize, #bedrooms, #bathrooms) = $a \cdot \log(\text{housesize}) + b \cdot \text{#bedrooms}^2 + c \cdot \text{#bathrooms}^2 + d$?

Parametric Regression

Inference: How to infer the output from input

• Estimate the output to be f(x)

Exp I:

$$f(x) = 2x + 2$$

x _i	1.0	2.0	3.5
y_i	4.1	5.98	9.0

Exp 2: Predict the price of a house

f(housesize, #bedrooms, #bathrooms)

 $= 100 \cdot housesize + 20 \cdot #bedrooms + 10 \cdot #bathrooms + 10000$

Parametric Regression

Learning: How to learn the best model to describe the data?

- Given a class of functions (parameterized), find the best parameters
- Solve an optimization problem that minimizes loss function
- Example loss function Residual sum of squares (RSS):

•
$$RSS = \sum_i (y_i - f(x_i))^2$$

Exp I:

f(x) = ax + b

x _i	1.0	2.0	3.5
y_i	4.1	5.98	9.0

$$\min_{a,b} \sum_{i=1}^{3} (y_i - (ax_i + b))^2$$

s.t. $a, b \in \mathbb{R}$

Simple Linear Regression

- Assume
 - $\bullet f(x) = ax + b$
 - $\flat \ y_i = ax_i + b + \epsilon_i$
- Easy to find the best parameter values when using RSS as the loss function
 - Approach I: set gradient = 0, get closed-form solution
 - Approach 2: use gradient descent
- Exp I:

Quiz 2

In Exp I of M3-3, what is the closed form representation for the optimal value of a if there are N data points? Explain how you get the formula.

A:
$$a = \sum_{i} x_{i} y_{i} / \sum_{i} x_{i}^{2}$$

B: $a = \frac{\sum_{i} x_{i} y_{i} - \frac{\sum_{i} x_{i} \sum_{i} y_{i}}{N}}{\sum_{i} (x_{i}^{2}) - \frac{(\sum_{i} x_{i})^{2}}{N}}$
C: $a = \frac{\sum_{i} x_{i} y_{i} - \frac{\sum_{i} x_{i} \sum_{i} y_{i}}{N}}{(\sum_{i} x_{i})^{2} - \frac{\sum_{i} x_{i} y_{i}}{N}}$
D: $a = \frac{\sum_{i} x_{i}^{2} - \frac{\sum_{i} x_{i} y_{i}}{N}}{(\sum_{i} x_{i})^{2} - \frac{\sum_{i} x_{i} y_{i}}{N}}$

$$\min_{a,b} \sum_{i=1}^{N} (y_i - (ax_i + b))^2$$

s.t. $a, b \in \mathbb{R}$

Simple Linear Regression

Exp 2: Ignore other input features f(housesize) = a · housesize + b

- Other cost functions?
 - E.g., higher cost for over-estimation in Exp 2 (no offer)

Linear Regression with Multiple Features

What if

f(housesize) = $w_0 + w_1 \cdot \text{housesize} + w_2 \cdot \text{housesize}^2$?

f (housesize, #bedrooms, #bathrooms) = $a \cdot housesize + b \cdot #bedrooms + c \cdot #bathrooms + d?$

f(housesize, #bedrooms, #bathrooms) = $a \cdot \log(\text{housesize}) + b \cdot \text{#bedrooms}^2 + c \cdot \text{#bathrooms}^2 \cdot \text{#bedrooms}^2$

Generalized model

- x = (x[1], x[2], ..., x[d]): a vector of d dimensions
- $h_j(x)$: a known function of x (no unknown parameters)

•
$$f(x) = \sum_j w_j h_j(x)$$

 $\flat \ y_i = f(x) + \epsilon_i$

Linear Regression with Multiple Features

- Residual sum of squares (RSS):
 - $\blacktriangleright RSS = \sum_i (y_i f(x_i))^2$
- Find the best parameter values
 - Write down the optimization problem
 - Solve the optimization problem
 - Approach I: Set gradient = $0 \rightarrow$ closed form solution
 - □ Rewrite in matrix form
 - □ Computational challenge: compute the inverse of a matrix can be time consuming! $(O(D^3))$
 - Approach 2: Gradient descent
 - □ More general, Can be more efficient

Evaluation

Access performance

- Make predictions/estimations with the trained model at input x
- Ideally: y = f(x)
- Measure loss in non-ideal case: define a loss function
 - Absolute loss: L = |y f(x)|
 - Squared loss: $L = (y f(x))^2$

Evaluation

- On which data points do you access the performance?
 - Training error
 - Average loss on all points in training set
 - Overly optimistic
 - True error
 - Average loss on all possible points weighted by likelihood
 - You don't know all points and how likely they are
 - Test error
 - Average loss on a set of points that are not used to train the model
 - Approximate true error
- Overfitting: low training error, high true error

Regression with Regularization

- Balance fitness to training data and model complexity to avoid overfitting
- Total cost = measure of fit + measure of model complexity

Ridge Regression (L2 Regularization)

- When model is complex, some trained parameter values would be very high
- Ridge total cost = measure of fit + measure of magnitude of coefficients = $RSS(w) + \lambda ||w||_2^2$
 - > λ : control the balance

Ridge Regression (L2 Regularization)

Exp I:

$$f(x) = ax + b$$

$$\hline x_i & 1.0 & 2.0 & 3.5 \\ y_i & 4.1 & 5.98 & 9.0 \\ \hline \end{array}$$

$$\min_{a,b} \sum_{i=1}^{3} (y_i - (ax_i + b))^2 + \lambda(a^2 + b^2)$$

s.t. $a, b \in \mathbb{R}$

Ridge Regression (L2 Regularization)

• How to choose λ ?

Validation set

Training set	Validation set	Test set
80%	10%	10%

- K-fold cross validation (Typically, K = 5 or 10)
 - Randomly assign data to K groups
 - Train on data from K-I groups and compute error on remaining group (validation set)
 - Compute average error $CV(\lambda)$ for difference choice of validation set
 - Choose λ that minimizes $CV(\lambda)$

Lasso Regression (LI Regularization)

- Lasso total cost = measure of fit + measure of magnitude of coefficients = $RSS(w) + \lambda ||w||_1$
 - > λ : control the balance
- Lead to sparse solutions in practice (less features with w > 0)
- Indicate which features are more important
- Trading off efficiency with interpretability

Lasso Regression (LI Regularization)

Exp I:

f(x) = ax + b

x	1.0	2.0	3.5
y_i	4.1	5.98	9.0

$$\min_{a,b} \sum_{i=1}^{3} (y_i - (ax_i + b))^2 + \lambda(|a| + |b|)$$

s.t. $a, b \in \mathbb{R}$

- If a = 0, b = 3, how to apply one step of gradient descent?
 - How to compute the gradient?
- Use coordinate decent instead of gradient descent!

Coordinate descent algorithm

- In every iteration, pick a coordinate j, fix the values in all other coordinates and pick the best value in jth coordinate
 - To pick the best value in jth coordinate: solve an optimization problem
 - Compute gradient
 - Set gradient = 0

Coordinate descent algorithm for Lasso Regression

- Initialize *w*
- While not converged
 - For j=0..D
 - Compute $z_j = \sum_i h_j (x_i)^2$
 - Compute $\rho_j = \sum_i h_j(x_i)(y_i \hat{y}_i(w_{-j}))$ where $\hat{y}_i(w_{-j}) = \sum_{k \neq j} w_k h_k(x_i)$
 - Update w_j as

$$(\rho_j + \frac{\lambda}{2})/z_j \text{ if } \rho_j < -\frac{\lambda}{2}$$

$$0 \text{ if } -\frac{\lambda}{2} \le \rho_j < \frac{\lambda}{2}$$

$$(\rho_j - \frac{\lambda}{2})/z_j \text{ if } \rho_j > \frac{\lambda}{2}$$

Coordinate descent algorithm for Lasso Regression

- Exp I:
- Initialize a = 0, b = 3
- Apply coordinate descent
- Step I: Update a
 - Check g(a, b = 3)

$$\min_{a,b} g(a,b) = \sum_{i=1}^{3} (y_i - (ax_i + b))^2 + \lambda(|a| + |b|)$$

s.t. $a, b \in \mathbb{R}$

Coordinate descent algorithm for Lasso Regression

- Exp I:
- Initialize a = 0, b = 3
- Apply coordinate descent
- Step I-n: Update *a*, *b*, *a*, *b*, ...¹
 - Check contour map of g(a, b)

$$f(x) = ax + b$$

x _i	1.0	2.0	3.5
y_i	4.1	5.98	9.0

$$\min_{a,b} g(a,b) = \sum_{i=1}^{3} (y_i - (ax_i + b))^2 + \lambda(|a| + |b|)$$

s.t. $a, b \in \mathbb{R}$

How to handle intercept parameter

- Motivation of using Ridge or Lasso regression: get smaller parameter value so as to avoid overfitting
- Recall $f(x) = \sum_{j} w_{j} h_{j}(x)$. Often $h_{0}(x) = 1$, w_{0} is the intercept parameter
- Ridge regression cost = $RSS(w) + \lambda ||w||_2^2$: requires w_0 to be small. However, a large value of w_0 does not indicate overfitting!
- If y value of a dataset is shifted by M, the learned model should simply shift by M. But Ridge regression penalizes this shift heavily.

How to handle intercept parameter

- Solution I: (used by many packages, e.g., sklearn)
 - Exclude intercept term in the loss function
 - Use modified Ridge regression cost = $RSS(w_0, w_{j\neq 0}) + \lambda \|w_{j\neq 0}\|_2^2$
- Solution 2: Shift the data first so that $\overline{y} = 0$, therefore $w_0 = 0$ for the shifted dataset. Train a model using standard ridge regression, and then shift back.

Outline

- What is Regression
- Parametric Regression
 - Simple Linear Regression
 - Linear Regression with Multiple Features
- Evaluation
 - Loss function
 - Train error, true error, test error
 - Overfitting
 - Model selection: Validation set
- Regularization
 - Ridge regression (L2)
 - Gradient descent
 - Lasso regression (LI)
 - Coordinate descent
 - Cross validation
- Non-parametric regression
 - K-Nearest Neighbors
 - Kernel Regression
- Logistic Regression

- If we don't want to represent the relationship between x and y using an explicit function with tobe-learned parameters, can we still make assumptions?
- Simplest approach: Nearest neighbor regression

Nearest Neighbor Regression

- I-NN regression
 - Predicted value = value of "closest" point in training data
 - Distance metric: (Scaled) Euclidean distance, Manhattan
 - Limitation: poor performance in areas with little data; sensitive to noise

K-NN regression

- Predicted value = average value of k "closest" point in training data
- Robust to noise
- Limitation: poor performance in areas with little data or boundary; discontinuous predictions
- Choose k: cross validation

Quiz 3

- Given the following training data, what is the price of Alice's house with house size = 1300 sqft through k-NN with k=3
 - > 220
 - 235
 - > 213.3
 - > 256.7

House size (sqft)	Sale price (\$)
1200	220
1000	170
800	150
1500	250
1800	300

Kernel Regression

- Weighted K-NN regression
 - Predicted value = weighted average value of k "closest" point in training data
 - Smaller distance \rightarrow Higher weight
- Kernel regression
 - Predicted value = weighted average value of all points in training data
 - Weight is a function of distance: kernel
 - Example kernel: Gaussian, Triangle, Uniform
 - Gaussian: $kernel_{\lambda}(|x_i x_q|) = e^{-\frac{|x_i x_q|^2}{\lambda}}$
 - Choose bandwidth parameter λ : cross validation

Kernel Regression

https://www.coursera.org/learn/ml-regression

Logistic Regression

When the output is binary (or categorical), but we want to predict the probability of having positive label

•
$$p(y = 1) = \frac{1}{1 + e^{\sum_{j} w_{j} h_{j}(x)}}$$

Fei Fang

Tips for Regression in Practice

- Normalize the feature values
- Center the data
- Packages: sklearn (Python), fitlm(MATLAB)

Additional Resources

- Text book
 - Pattern Recognition and Machine Learning, Chapters 3,6
 - Christopher Bishop
- Online course
 - https://www.coursera.org/learn/ml-regression
 - https://www.coursera.org/learn/ml-classification
 - https://www.coursera.org/learn/machine-learning