Artificial Intelligence Methods for Social Good M3-2 [Machine Learning]: Predicting Poaching Activity and Urban Crime

08-537 (9-unit) and 08-737 (12-unit) Instructor: Fei Fang <u>feifang@cmu.edu</u> Wean Hall 4126

Outline

Predicting Poaching Activity

- Model I: CAPTURE
 - Dynamic Bayesian Network
- Model 2: INTERCEPT
 - Spatially Aware Decision Tree Ensemble
- Model 3: Hybrid Model
 - Gaussian Mixture Model × Decision Tree with Bagging + Markov Random Fields
- Predicting Urban Crime
 - Dynamic Bayesian Network

Learning Objectives

- Describe a few models for real-world spatiotemporal prediction tasks such as predicting poaching activity and urban crime
- Answer the representation, inference, learning questions w.r.t. the models
- Describe several evaluation metrics for these models
- Describe methodologies of field tests for these tasks

Wildlife Protection in Uganda

Forest Area: QEPA

- Covers 2520 sq. km
- Divided into a grid of 1km×1km

Poachers: Set trapping tools (e.g., snare)

Rangers: Conduct patrols

- On foot or by ground vehicles
- From 2003-2017

Collaborators: Wildlife Conservation Society, Uganda Wildlife Authority, Rangers Pictures: Trip to Indonesia with World Wide Fund for Nature

5/8/2018

Dataset Covariates: Queen Elizabeth Park

Challenges: Data Uncertainty

Challenges: Small Number of Recorded Attacks

Outline

Predicting Poaching Activity

- Model I: CAPTURE
 - Dynamic Bayesian Network
- Model 2: INTERCEPT
 - Spatially Aware Decision Tree Ensemble
- Model 3: Hybrid Model
 - Gaussian Mixture Model × Decision Tree with Bagging + Markov Random Fields
- Predicting Urban Crime
 - Dynamic Bayesian Network

CAPTURE – Single Time Step

5/8/2018

CAPTURE – Multiple Time Steps

Temporally-aware Dynamic Bayes Net

CAPTURE – Multiple Time Steps

- Conditional probabilities
 - Logistic model

$$p(a_{t,i} = 1 | a_{t-1,i}, c_{t,i}, x_{t,i}) = \frac{e^{\lambda^{T}[a_{t-1,i}, c_{t,i}, x_{t,i}, 1]}}{1 + e^{\lambda^{T}[a_{t-1,i}, c_{t,i}, x_{t,i}, 1]}}$$

$$p(o_{t,i} = 1 | a_{t,i} = 1, c_{t,i}, x_{t,i}) = c_{t,i} \times \frac{e^{w^{T}[x_{t,i}, 1]}}{1 + e^{w^{T}[x_{t,i}, 1]}}$$

Learning in CAPTURE

- Learn/Train CAPTURE
 - Given a set of data
 - Find weights λ, w (Expectation Maximization Algorithm + Parameter Separation + Target Abstraction)

Inference with CAPTURE

- Make inferences given trained CAPTURE
 - Infer the past
 - Input: Geospatial features, patrol coverage $c_{t,i}$, observations $o_{t,i}$, $t = 1 \dots T$
 - Output: Probability of poaching activity $a_{t,i}$, $t = 1 \dots T$
 - Predict the future
 - Input: Geospatial features, patrol coverage $c_{t,i}$, observations $o_{t,i}$, $t = 1 \dots T$; future patrol coverage $c_{T+1,i}$ (controlled by defender)
 - Output: Probability of poaching activity $a_{T+1,i}$ and probability of observing poaching activity $o_{T+1,i}$

- How to evaluate CAPTURE?
 - Data: Observations o only (no ground truth of a)
 - Evaluate "predict the future" task using historical data
 - Training/test sets
 - Training I: Data in 2003–2006; Test I: Data in 2007
 - ▶ ...
 - Training 8: Data in 2010-2013; Test 8: Data in 2014

Evaluate CAPTURE

- What metrics can be used?
 - Accuracy / Recall / Precision / FI?
 - Need binary decision from probabilities
 - Set a threshold on probability
 - Value dependent on threshold
 - Receiver operating characteristic (ROC) curve
 - Area under the Curve (AUC)

Quiz I

- In ROC curve, the x-axis is false positive rate, and yaxis is true positive rate. Which point in the ROC space corresponds to a perfect classifier that makes correct predictions for all data points? Which point in the ROC space corresponds to a classifier that makes predictions based on the flip of a balanced coin?
- ▶ (0,1), (0.5,0.5)
- ▶ (0.5,0.5), (1,0)
- ▶ (1,0), (0.5,0.5)
- ▶ (0,1),(1,1)

Human Behavioral Model: CAPTURE

Limitations of CAPTURE

- Good at predicting observations o but not poaching activities a
- Difficulty to interpret
- Slow to run

Outline

Predicting Poaching Activity

- Model I: CAPTURE
 - Dynamic Bayesian Network
- Model 2: INTERCEPT
 - Spatially Aware Decision Tree Ensemble
- Model 3: Hybrid Model
 - Gaussian Mixture Model × Decision Tree with Bagging + Markov Random Fields
- Predicting Urban Crime
 - Dynamic Bayesian Network

Basic Decision Tree

- Goal: Predict whether or not having poaching activity based on a set of input features
- Input features: Geospatial features + patrol coverage
- Label: Have poaching?
- Learn/Train the tree
 - Greedy decision tree learning
 - Greedily choose a feature and a threshold at a time
- Inference: traverse the tree

BoostIT: Spatially Aware Decision Tree

- Consider spatial correlations (hotspots)
 - Learn a decision tree
 - Compute predictions
 - Hotspot proximity computation
 - Feature = 1 if #positive neighbors $\geq \alpha$
 - Learn a new decision tree with hotspot proximity as a feature
 - Repeat until a stopping condition is reached

Hotspot Proximity

INTERCEPT: Build an Ensemble

- Set different stopping criteria for decision tree retraining
- Set different cost for false positive and false negative predictions

5/8/2018

- How to evaluate INTERCEPT?
 - Treat detections as labels for poaching activity but with uncertainty in negative label
 - Evaluate "predict the future" task using historical data
- Datasets
 - Trained: 2003-2014, Tested: 2015
 - Trained: 2003-2013, Tested: 2014

Evaluate INTERCEPT

Metrics

- INTERCEPT outputs binary label directly
- Accuracy?
 - No. Class imbalance
- Precision / Recall / FI?
 - Not enough. Does not consider the uncertainty in negative label
- L&L score
 - Accounts for negative label uncertainty
 - Rewards recall heavily
 - Rewards selective models

$$L\&L(D,T_e) = \frac{recall^2}{\Pr[f(T_e) = 1]}$$

Probability of positive prediction

Quiz 2

- In the test set, 20% of the data points are actually positive. What is the L&L score of a perfect classifier? What is the L&L score of a classifier that predict every point to be positive?
- ► I,0
- 4,0
- ▶ 5, I

► 5, 0

Evaluate INTERCEPT

Empirical Evaluation

- 40 models w/ total of 192 model variations
- Best model: Decision tree ensemble with Standard decision tree
 + 2 BoostITs (α = 2, 3) + 2 Decision Trees (FP cost = 0.6, 0.9)

Deploy INTERCEPT

- Fast runtime and interpretability led to its deployment
- Two 3x3 sq. km patrol areas
 - Infrequent patrols
 - Predicted hotspot
- Trespassing
 - > 19 signs of litter, ashes, etc.
- Poached Animals
 - I poached elephant
- Snaring
 - I active snare
 - I cache of IO antelope snares
 - I roll of elephant snares

Historical Base Hit Rate	Our Hit Rate
Average: 0.73	<u>3</u>

Deploy INTERCEPT

Outline

Predicting Poaching Activity

- Model I: CAPTURE
 - Dynamic Bayesian Network
- Model 2: INTERCEPT
 - Spatially Aware Decision Tree Ensemble
- Model 3: Hybrid Model
 - Gaussian Mixture Model × Decision Tree with Bagging + Markov Random Fields
- Predicting Urban Crime
 - Dynamic Bayesian Network

Classifier: Decision Tree

PROS

- High speed
- Learn global poachers behavior
- Learn nonlinearity in geo-spatial predictor

CONS

- No explicit temporal dimension
- No aspect for label uncertainty

Bagging Ensemble: More Stable, Less Noisy due to Diversification

- Low speed
- Data greedy

PROS

CONS

•

•

•

Observed Data Cliques

Spatial Cliques

Backward Temporal Cliques

Observed Data Cliques

$$\phi = \begin{bmatrix} P(o_i = 0 | a_i = 0) & P(o_i = 0 | a_i = 1) \\ P(o_i = 1 | a_i = 0) & P(o_i = 1 | a_i = 1) \end{bmatrix}$$
$$\phi = \begin{bmatrix} 1 & \frac{1}{1 + e^{-\beta \cdot [c_i, p_i, 1]^T}} \\ 0 & \frac{e^{-\beta \cdot [c_i, p_i, 1]^T}}{1 + e^{-\beta \cdot [c_i, p_i, 1]^T}} \end{bmatrix}$$

- Coverage, C_i
- Distance from patrol post, p_i

Spatial Cliques

$$\psi = \begin{bmatrix} P(a_i = 0 | u_{N_i}^{t-1}) \\ P(a_i = 1 | u_{N_i}^{t-1}) \end{bmatrix}$$
$$\psi = \begin{bmatrix} \frac{1}{1 + e^{-\alpha \cdot [X, u_{N_i}^{t-1}, c_i, 1]^T}} \\ \frac{e^{-\alpha \cdot [X, u_{N_i}^{t-1}, c_i, 1]^T}} \\ \frac{1 + e^{-\alpha \cdot [X, u_{N_i}^{t-1}, c_i, 1]^T}} \end{bmatrix}$$

- Coverage, *c_i*
- Fraction of neighbors which are attacked, $u_{N_i}^{t-1}$
- All static features including distance from patrol posts, **X**

Learn Parameters: EM

- **Goal:** $\theta^* = \operatorname{argmax} P(o|\theta)$
- **E-step**, $\theta = \{\alpha, \beta\}$:

$$Q(\theta|\theta^{(k)}) = \mathbb{E}_{\boldsymbol{a}\sim\boldsymbol{o},\theta^{(k)}}[logP(\boldsymbol{a},\boldsymbol{o}|\theta)]$$
$$= \sum_{\boldsymbol{a}\in\mathcal{A}} P(\boldsymbol{a}|\boldsymbol{o},\theta^{(k)}).logP(\boldsymbol{a},\boldsymbol{o}|\theta)$$

• M-step:

 $\theta^{(k+1)} = \operatorname{argmax}_{\theta} Q(\theta | \theta^{(k)})$

• Update θ until convergence:

 $\theta^{(k)} \leftarrow \theta^{(k+1)}$

Geo-clustering

Geo-clusters around patrol posts to learn:

- local poachers' behavior
- Distinct parameters to expedite the local training of MRF

Hybridizing Bagging Model with Markov Random Fields

Boost by geo-clustered behaviorally inspired models:

- Improve the accuracy
- Learn local poachers' behavior; distinct parameters

Empirical Evaluation

 $L\&L Score = \frac{Recall^2}{Probability of making a Positive Prediction}$

- 27 areas, 9-sq km each
- 2 experiment groups HIGH: 5 areas LOW: 22 areas

- 27 areas, 9-sq km each
- 2 experiment groups HIGH: 5 areas LOW: 22 areas

41

• 8 month, 452 km patrolled in total

- 27 areas, 9-sq km each
- 2 experiment groups HIGH: 5 areas LOW: 22 areas
- 8 month, 452 km patrolled in total
- Catch Per Unit Effort (CPUE) Unit Effort = km walked Historical CPUE: **0.03**

- Statistical Significance
- Cohen's D

Effect size: A standardized measure of the difference between two Means

 $d = \frac{experimental mean - control mean}{pooled standard deviation}$

Interpretation*

0.2: Small

0.5: Medium (Visible to naked eye)

0.8: Large (Grossly perceptible)

High Group Mean (std)	Low Group Mean (std)	p-value	Cohen's d
0.12 (0.44)	0.01 (0.13)	p<0.0001	0.52

Outline

Predicting Poaching Activity

- Model I: CAPTURE
 - Dynamic Bayesian Network
- Model 2: INTERCEPT
 - Spatially Aware Decision Tree Ensemble
- Model 3: Hybrid Model
 - Gaussian Mixture Model × Decision Tree with Bagging + Markov Random Fields
- Predicting Urban Crime
 - Dynamic Bayesian Network

Urban Crime: Opportunistic Attack

- Opportunistic adversaries (OA)
 - Seek opportunities to commit attacks
 - Flexible in executing the plan
 - Flexibility: Adapt plan with real time information

Predicting Opportunistic Crime

- Criminology based approach
 - General principles "crime predicts crime"
 - Have used many ML techniques SVM, Regression, STL

- Ignores strategic interaction between defender and adversaries
 - Essential for planning patrols

Real-World Data

- Opportunistic crime on the campus of University of Southern California (USC)
 - Department of Public Safety (DPS) allocates officers to 5 areas
 - Three patrol shifts per day
 - Criminals react opportunistically

Crime Report for 3 years

Area	CaseNbr	ccClass	DateOccured	TimeOccured
D	1200668	DISTURBANCE	02/16/12	9:00
С	1200669	CHILD	02/16/12	10:08
В	1200672	TRAFFIC	02/16/12	11:23
C	1200674	TRAFFIC	02/16/12	15:25
A	1200675	THEFT-PETTY	02/16/12	15:10
С	1200676	SERVICE	02/16/12	15:20
D	1200677	PROPERTY	02/16/12	18:30
С	1200679	DOMESTIC	02/16/12	17:30
A	1200680	THEFT-PETTY	02/16/12	19:15

Real-World Data

Patrol Schedule for 3 years

Manually generated by domain experts

AREA		DAY		
Α	P3	1060 Oosterhof		
Α	P23	1062	Hudson	
В	P22	1051	Bouligny	
С	P51	1187	Ramirrez	
D	P30	1067	Guerra	
E	P46	1061	Harris	

Real-World Data

 Count number of crimes/officers in each shift in each area

Shift	A	В	С	D	E
1	1	1	2	2	2
2	1	1	1	2	1
3	2	1	1	3	1

Table 1: Crime data for 3 shifts.

Shift	A	В	C	D	E
1	2	1	1	1	1
2	1	1	2	2	2
3	2	1	1	3	1

Table 2: Patrol data for 3 shifts.

Dynamic Bayesian Network Model

 DBN captures interaction between officers and criminals

Fei Fang

- D: Number of defenders (known)
- X: Number of criminals (hidden)
- Y: Number of crimes (known)
- ► T: Step = Shift

Dynamic Bayesian Network Model

- Learn/Train the model
 - Directly apply Expectation Maximization does not work:
 - Huge transition matrix and output matrix
 - Over-fitting
 - Exponential Runtime
 - EMC²: Improve EM for this specific problem
 - Factorize output matrix
 - Pairwise transition matrix
 - Distributive law

Evaluate the Model

Metric:Accuracy

Summary

Predicting Poaching Activity

- Model I: CAPTURE
 - Dynamic Bayesian Network
- Model 2: INTERCEPT
 - Spatially Aware Decision Tree Ensemble
- Model 3: Hybrid Model
 - Gaussian Mixture Model × Decision Tree with Bagging + Markov Random Fields
- Predicting Urban Crime
 - Dynamic Bayesian Network

Quiz 3

- For the problem of identifying fraudulent firms, which statements of the following are true?
 - The dataset is unbalanced
 - The dataset only has positive labels
 - Decision tree-based approach can be a good fit
 - The dataset has entries with the same features but different labels