Artificial Intelligence Methods for Social Good Lecture 2-4: Mechanism Design with Money

08-537 (9-unit) and 08-737 (12-unit) Instructor: Fei Fang <u>feifang@cmu.edu</u> Wean Hall 4126

Quiz I: Recap: Dominant Strategy Solution (on Piazza)

- Is there a dominant strategy solution in the following game?
 - A:Yes
 - B:No

Quiz 2: Recap: Nash Equilibrium

- How many Pure Strategy Nash Equilibria are there in Battle of Sexes?
 - ► A:0
 - ▶ B: I
 - C: 2
 - D:4

		Berry		
		Football	Concert	
Alex	Football	2,1	0,0	
	Concert	0,0	١,2	

3

Quiz 3: Recap: Optimization Problem

- For the following optimization problem, which value is closest to the optimal value of a?
 - ► A:1.0
 - **B**: 2.0
 - **C**: 2.1
 - **D**: 1.9

x _i	1.0	2.0	3.5
y_i	2.01	3.98	7.0

$$\min_{a} \sum_{i=1}^{3} (y_i - ax_i)^2$$

s.t. $a \in \mathbb{R}$

Let's Play!

- I bonus point in HW7 per person, one piece of paper per person
- I box of milk chocolate to be purchased using your bonus point
- Write down your name and how much you are willing to pay to get the chocolate on the paper. Fold it and give it to me.
- I will give the chocolate to the one with the highest value written on the paper. The person needs to pay a price that equals the second highest value written by anyone.

Outline

- Mechanism Design with Money (Non-Bayesian Case)
 - Basic Concepts
 - Desirable Properties
 - Goals
- Mechanism Design with Money (Bayesian Case)
 - Basic Concepts
 - Desirable Properties
 - Goals
- Case Study: Second-Price Auction

Learning Objectives

- Understand the concept of
 - Transferable utility
 - Mechanism
 - Induced game
 - Bayesian Game
 - Direct Mechanism
- Check properties for a given mechanism
 - Truthfulness
 - Incentive Compatibility
 - Budget Balance
 - Individual Rationality
 - Tractability
- Compute objective values given a mechanism
 - Revenue Maximization
 - Maximin Fairness
 - Price of Anarchy Minimization

Recap: Game Theory

• A game: (N, A, u)

- Outcome
- Def I:Transferable Utility
 - An outcome is divided into nonmonetary part (who gets the chocolate) and a monetary part (how much each player pays)
 - Utility = utility of nonmonetary part monetary part
 - Note
 - "money" can be virtual currency
 - Quasilinear utility function: linear in one argument (virtual currency)

- ▶ A game setting: (N, O, u) where $u_i: O \rightarrow \mathbb{R}$
- Def 2: Mechanism (A, M)
 - Designer of a mechanism (auctioneer in the chocolate auction)
 - Know possible outcomes and agents' preferences
 - Specify action sets for the agents
 - Specify mapping from joint actions to outcomes
 - Agent/Participant
 - Know what the designer knows
 - Know what designer specifies
 - Cannot change outcomes
 - Utility based on outcome

Def 3: Induced game

- Once mechanism is announced, then agents play in a multiplayer game
- Solution concepts: dominant strategy solution, Nash Equilibrium

- With transferable utility
- Split a deterministic mapping in a mechanism into
 - Def 4: Choice rule
 - Def 5: Payment rule

- Mechanism designer's task
 - Pick a mechanism that can will cause rational agents to behave in a desired way, i.e., the solution of the induced game
 - Satisfy some constraints
 - Optimize certain goals
 - An optimization problem

Quiz 4: Mechanism Design with Money (Non-Bayesian Case) (on Piazza)

- What do you think are desired properties in the chocolate auction
 - A:The person who wants the chocolate the most gets it
 - B: Everyone can afford the required payment
 - C: If someone does not get the chocolate, he does not pay
 - D: Everyone is willing to write down a price that equals his true valuation of the chocolate

- What do you think can be a reasonable goal for the auctioneer?
 - A: Maximize total payment he collects from the participants
 - B: Minimize the maximum difference among the participants' payments
 - C: Maximize the value to the person who gets the chocolate
 - > D: Make everyone hate the auctioneer

- Some common desirable properties
- Def 6: Efficiency
 - If include the mechanism as an agent whose utility is just the total payments he collects, then efficiency ensures the total utility of all agents is maximized
 - Also called economic efficiency

- Def 7: Budget Balance
 - The mechanism disburses and collects same amount of money to and from the participants
 - How to make the chocolate auction budget balanced?
 - Def:Weak budget balance: the mechanism may make a profit

- Def 8: Individual rationality
 - No agent loses by participating in the mechanism

- Def 9:Tractability
 - > The mechanism can compute choice and payment efficiently

- Some common optimization goals
- Def 10: Revenue maximization
 - Maximize the total payment the mechanism collects
- Def II: Revenue minimization
 - Minimize the total payment the mechanism collects

Quiz 6: Mechanism Design with Money (Non-Bayesian Case) (on Piazza)

- Which of the following do you think is the fairest outcome in the chocolate auction?
 - A: Everyone pays 0, give the chocolate to the one who wrote the lowest price on paper
 - B: Everyone pays I/N of the actual cost of buying the chocolate, give the chocolate randomly
 - C: Everyone pays I/N of the actual cost of buying the chocolate, give the chocolate to the one who wrote the highest price on paper
 - D:The one who wrote the highest price on paper gets the chocolate, and pays the amount he wrote. Everyone else pays 0.

- Def I2: Maximin fairness
 - Make the least-happy agent the happiest

- Keep in mind that one the mechanism is specified, it is a game among participating agents
- Def 13: Price of Anarchy Minimization
 - Minimize the ratio between optimal social welfare and the social welfare achieved in equilibrium given the mechanism

Learning Objectives

- Understand the concept of
 - Transferable utility
 - Mechanism
 - Induced game
 - Bayesian Game
 - Direct Mechanism
- Check properties for a given mechanism
 - Truthfulness
 - Incentive Compatibility
 - Efficiency (Social Welfare Maximization)
 - Budget Balance
 - Individual Rationality
 - Tractability
- Compute objective values given a mechanism
 - Revenue Maximization/Minimization
 - Maximin Fairness
 - Price of Anarchy Minimization

Outline

- Mechanism Design with Money (Non-Bayesian Case)
 - Basic Concepts
 - Desirable Properties
 - Goals
- Mechanism Design with Money (Bayesian Case)
 - Basic Concepts
 - Desirable Properties
 - Goals
- Case Study: Second-Price Auction

Recap: Game Theory

Def 14: Bayesian Game

- A player's utility function depends on his "type"
- In security games, a terrorist may have different utility function from a smuggler
- In chocolate auction, a person on diet may have different valuation of the chocolate from a person who loves chocolate and is not on diet, leading to different utility functions. Each participant knows his own type but only knows a prior distribution of other players' type. (Keep in mind that one the auction mechanism is specified, it is a game among participating agents)

 Let's revisits all the concepts, properties and goals in the Bayesian case

- Def Ib:Transferable Utility
 - An outcome is divided into nonmonetary part (who gets the chocolate) and a monetary part (how much each player pays)
 - Utility = utility of nonmonetary part monetary part

• A Bayesian game setting: (N, O, Θ, p, u) where $u_i: O \times \Theta \to \mathbb{R}$

Def 2b: Mechanism

- Designer of a mechanism (auctioneer in the chocolate auction)
 - Know possible outcomes, the agents' type space and distribution over type space, and agents' preferences for each type (how much I value the chocolate when I had or didn't have breakfast)
 - Specify action sets for the agents
 - Specify mapping from joint actions to outcomes
- Agent/Participant
 - Know what the designer knows
 - Knows his own type (e.g., whether I had breakfast this morning, called private information)
 - Know what designer specifies
 - Cannot change outcomes
 - Utility based on outcome

- Def 3b: Induced game with independent private type and incomplete information
 - Agent knows his own type and the prior distribution of other agents' type
 - Agent's utility only depends on his own type and the joint action of all agents, does not depend on other agents' types
 - Once mechanism is announced, then agents play in a multiplayer incomplete information game
 - Solution concepts: dominant strategy solution, Bayes-Nash
 Equilibrium

- With transferable utility
- Split a deterministic mapping in a mechanism into
 - Def 4b: Choice rule
 - Def 5b: Payment rule

- Definition 15: Direct mechanism
 - Instead of specifying a mapping from the joint actions of players to outcomes, just specifying a mapping from the joint type profile to outcomes
 - What is the action set for the players?
 - Declare his type to the mechanism (he may lie)
 - Direct mechanism leads to a simple normal form game
 - Indirect mechanism may lead to an extensive form game, e.g., Dutch auction

- Definition 16:Valuation Function
 - With transferrable utility
 - A mapping from nonmonetary outcomes to real values
 - Agent type \Leftrightarrow valuation function
 - Declaring agent's type is equivalent to declaring agent's valuation function
 - > Denote true valuation function as v_i and declared valuation function as $\hat{v_i}$

Mechanism designer's task

- Pick a mechanism that can will cause rational agents to behave in a desired way, i.e., the solution of the induced game
 - Satisfy some constraints
 - Optimize certain goals
- An optimization problem

- Def I7.Truthfulness
 - Every agent will declare his true valuation function in dominant strategy equilibrium
 - If everyone telling the truth is a dominant strategy equilibrium: Dominant Strategy Incentive Compatible (DSIC), Strategyproof, Truthful
 - If everyone telling the truth is a Bayes-Nash equilibrium: Bayesian-Nash Incentive Compatible (BNIC)

- Some common desirable properties
- Def 6b: Efficiency
 - If include the mechanism as an agent whose utility is just the total payments he collects, then efficiency ensures the total utility of all agents is maximized
 - Also called economic efficiency, social-welfare maximization

- Def 7b: Budget Balance
 - The mechanism disburses and collects same amount of money to and from the participants
 - Def:Weak budget balance: the mechanism may make a profit
 - May only hold ex ante

- Def 8b: Ex interim Individual rationality
 - No agent loses by participating in the mechanism
 - For every possible valuation for agent *i*, in expectation of other agents' valuations
- Def 8c: Ex post Individual rationality
 - No agent loses by participating in the mechanism
 - For every possible valuation for all agents

- Def 9b:Tractability
 - The mechanism can compute choice and payment efficiently given any declared valuation function

- Some common optimization goals
- Def 10b: Revenue maximization
 - Maximize the expected total payment the mechanism collects
- Def I I b: Revenue minimization

40

Minimize the worst case total payment the mechanism collects

- Def I2b: Maximin fairness
 - Make happiness level of the least-happy agent highest in expectation

- Keep in mind that one the mechanism is specified, it is a game among participating agents
- Def I3b: Price of Anarchy Minimization
 - Minimize the worst-case ratio between optimal social welfare and the social welfare achieved in equilibrium given the mechanism

- Revelation principle
 - A social choice function is a mapping from true joint type profile to outcome
 - We say a mechanism implements a social choice function if in equilibrium (dominant strategy solution or BNE) of the induced game, the outcome is the same as what is specified by the social choice function
 - If there exists a mechanism that implements a social choice function, then there exists a truthful direct mechanism that implements the social choice function
 - Reasoning: Let the new mechanism lie for each player

Learning Objectives

- Understand the concept of
 - Transferable utility
 - Mechanism
 - Induced game
 - Bayesian Game
 - Direct Mechanism
- Check properties for a given mechanism
 - Truthfulness
 - Incentive Compatibility
 - Efficiency (Social Welfare Maximization)
 - Budget Balance
 - Individual Rationality
 - Tractability
- Compute objective values given a mechanism
 - Revenue Maximization/Minimization
 - Maximin Fairness
 - Price of Anarchy Minimization

Outline

- Mechanism Design with Money (Non-Bayesian Case)
 - Basic Concepts
 - Desirable Properties
 - Goals
- Mechanism Design with Money (Bayesian Case)
 - Basic Concepts
 - Desirable Properties
 - Goals
- Case Study: Second-Price Auction

Case Study: Second-Price Auction

- I bonus point in HW7 per person, one piece of paper per person
- I box of milk chocolate to be purchased using your bonus point
- Write down your name and how much you are willing to pay to get the chocolate on the paper. Fold it and give it to me.
- I will give the chocolate to the one with the highest value written on the paper. The person needs to pay a price that equals the second highest value written by anyone.

Case Study: Second-Price Auction

- Understand the concept of
 - Transferable utility?
 - Mechanism: Allocation rule? Payment rule?
 - Induced game: Players? Actions? Payoffs?
 - Bayesian Game: Bayesian?
 - Direct Mechanism?
- Check properties for a given mechanism
 - Truthfulness?
 - Incentive Compatibility: Dominant Strategy Incentive Compatible? BNIC?
 - Efficiency (Social Welfare Maximization)?
 - Budget Balance?
 - Individual Rationality?
 - Tractability?
- Compute objective values given a mechanism
 - Revenue Maximization/Minimization: value=?
 - Maximin Fairness: value=?
 - Price of Anarchy Minimization: value=?

Summary

- Mechanism Design with Money (Non-Bayesian Case)
- Mechanism Design with Money (Bayesian Case)
- Case Study: Second-Price Auction
- Key takeaways:
 - The mechanism decides the rule of the game
 - If you are asked to compare two mechanisms, check all these properties and goals
 - Select the right mechanism to achieve a specific goal or properties (e.g., maximize social welfare)

Mechanism Design: Additional Resources

- Text book
 - Algorithmic Game Theory 1 st Edition, Chapter 9
 - by Noam Nisan (Editor), Tim Roughgarden (Editor), Eva Tardos (Editor), Vijay V.Vazirani (Editor)
 - http://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmicgame-theory.pdf
- Online course
 - https://www.youtube.com/user/gametheoryonline

Acknowledgment

 The slides are prepared based on course slides of "Game Theory Online II" (Matt Jackson, Kevin Leyton-Brown, Yoav Shoham)