Artificial Intelligence Methods for Social Good M2-I [Game Theory]: Basics of Game Theory

> 08-537 (9-unit) and 08-737 (12-unit) Instructor: Fei Fang <u>feifang@cmu.edu</u> Wean Hall 4126

Quiz I: Recap: Optimization Problem

- Given coordinates of n residential areas in a city (assuming 2-D plane), denoted as x¹, ..., xⁿ, the government wants to find a location that minimizes the sum of (Euclidean) distances to all residential areas to build a hospital. The optimization problem can be written as
 - A: $\min_{x} \sum_{i} |x^{i} x|$
 - B: $\min_{x} \sum_{i} ||x^{i} x||_{2}$
 - C: $\min_{x} \sum_{i} (x^{i} x)^{2}$
 - D: none of above

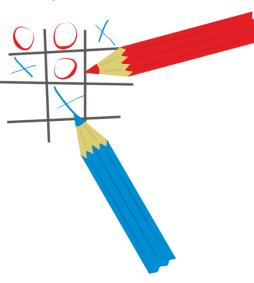
From Games to Game Theory

- The study of mathematical models of conflict and cooperation between intelligent decision makers
- Used in economics, political science etc

Outline

- Basic Concepts in Games
- Basic Solution Concepts
- Compute Nash Equilibrium
- Compute Strong Stackelberg Equilibrium

Learning Objectives


- Understand the concept of
 - Game, Player, Action, Strategy, Payoff, Expected utility, Best response
 - Dominant Strategy, Maxmin Strategy, Minmax Strategy
 - Nash Equilibrium
 - Stackelberg Equilibrium, Strong Stackelberg Equilibrium
- Describe Minimax Theory
- Formulate the following problem as an optimization problem
 - Find NE in zero-sum games (LP)
 - Find SSE in two-player general-sum games (multiple LP and MILP)
- Know how to find the method/algorithm/solver/package you can use for solving the games
- Compute NE/SSE by hand or by calling a solver for small games

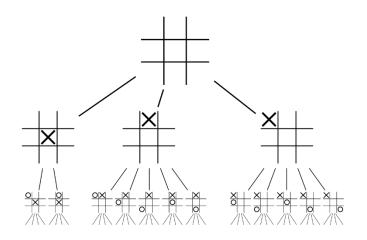
Let's Play! Classical Games

- Exp I: Rock-Paper-Scissors (RPS)
 - Rock beats Scissors
 - Scissors beats Paper
 - Paper beats Rock
- Exp 2: Prisoner's Dilemma (PD)
 - If both Cooperate: I year in jail each
 - If one Defect, one Cooperate: 0 year for (D), 3 years for (C)
 - If both Defect: 2 years in jail each

Let's Play! Classical Games

- Exp 3: Battle of Sexes (BoS)
 - ▶ If football together: Alex ☺☺, Berry ☺
 - ▶ If concert together: Alex ☺, Berry ☺☺
 - ▶ If not together: Alex ☺, Berry ☺
- Tic-Tac-Toe (TTT)

- Def I: Game
 - Players
 - Actions
 - Payoffs


Representation

- Normal form (Matrix form, Strategic form, Standard form)
 - Move simultaneously
 - Bimatrix game (Two-player)
 Exp 2: PD

	Player 2		
		Cooperate	Defect
Player I	Cooperate	-1,-1	-3,0
	Defect	0,-3	-2,-2

Extensive form

- Timing, Sequence of move
- Game tree
- Information
- Natural description

- Pure Strategy
 - Choose one action deterministically
- Def 2: Mixed Strategy
 - Play randomly
 - Support: chosen with non-zero probability
- Def 3: Expected utility
 - Average utility weighted by probability

Quiz 2: Basic Concepts in Games

In Exp I (Rock-Paper-Scissors), if $s_1 = (\frac{1}{3}, \frac{2}{3}, 0), s_2 = (0, \frac{1}{2}, \frac{1}{2}), \text{ what is } u?$ u = (0,0) $u = (-\frac{1}{3}, \frac{1}{3})$ $u = (-\frac{1}{2}, \frac{1}{3})$ $u = (-\frac{1}{2}, \frac{1}{2})$ $u = (-\frac{1}{2}, \frac{1}{2})$

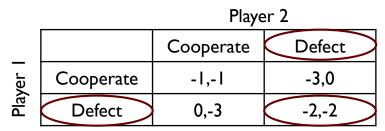
		Rock	Paper	Scissors
/er	Rock	0,0	-1,1	١,-١
Player	Paper	١,-١	0,0	-1,1
	Scissor	-1,1	۱,-۱	0,0

- Def 4: Best Response
 - Set of actions or strategies leading to highest expected utility
- Thm I (Nash 1951): A mixed strategy is BR iff all actions in the support are BR

Learning Objectives

- Understand the concept of
 - Game, Player, Action, Strategy, Payoff, Expected utility, Best response
 - Dominant Strategy, Maxmin Strategy, Minmax Strategy
 - Nash Equilibrium
 - Stackelberg Equilibrium, Strong Stackelberg Equilibrium
- Describe Minimax Theory
- Formulate the following problem as an optimization problem
 - Find NE in zero-sum games (LP)
 - Find SSE in two-player general-sum games (multiple LP and MILP)
- Know how to find the method/algorithm/solver/package you can use for solving the games
- Compute NE/SSE by hand or by calling a solver for small games

Outline


- Basic Concepts in Games
- Basic Solution Concepts
- Compute Nash Equilibrium
- Compute Strong Stackelberg Equilibrium

- How should a player play?
- Def 5: Dominant Strategy
 - One strategy is always better/never worse/never worse and sometimes better than any other strategy
 - Focus on single player's strategy
 - Exp 2: PD

	Player 2		
		Cooperate	Defect
/er	Cooperate	-1,-1	-3,0
Player	Defect	0,-3	-2,-2

- Dominant strategy equilibrium/solution
 - Every player plays a dominant strategy
 - Focus on strategy profile for all players

- Def 6: Nash Equilibrium
 - Every player's strategy is a best response to others' strategy profile
 - Focus on strategy profile for all players
 - One cannot gain by unilateral deviation
 - Pure Strategy Nash Equilibrium (PSNE)
 - Mixed Strategy Nash Equilibrium (MSNE)
 - Exp 2: PD

- Thm 2 (Nash 1951): NE always exists in finite games
 - Brouwer's fixed point theorem

- Def 7: Maxmin Strategy (applicable to multiplayer games)
 - Maximize worst case expected utility
 - Focus on single player's strategy
- Def 8: Minmax Strategy (two-player games only)
 - Minimize best case expected utility for the other player (just want to harm your opponent)
 - Focus on single player's strategy

- Thm 3: (Minimax Theorem, von Neumann 1928) Minmax=Maxmin in 2-player zero-sum games
- Further, Minmax=Maxmin=NE (Nash 1951)

- Exp 4: Power of Commitment
 - NE utility=(2,1)
 - If leader (player I) commits to playing b, then player has to play d, leading to a utility of 3 for leader
 - If leader (player 1) commits to playing a and b uniformly randomly, then player still has to play d, leading to a utility of 3.5 for leader

	Player 2		
_		С	d
Player	а	2,1	4,0
Ы	b	١,0	3,2

- Def 9: Best Response Function
 - A mapping from a strategy of one player to a strategy of another player in the best response set
- Def 10: Stackelberg Equilibrium
 - Leader vs follower game
 - Leader commits to a strategy
 - Follower responds according a best response function
 - Focus on strategy profile for all players

Def I I: Strong Stackelberg Equilibrium (SSE)

Follower breaks tie in favor of the leader

- Def I I: Strong Stackelberg Equilibrium (SSE)
 - Follower breaks tie in favor of the leader
 - Leader can induce the follower to do so by perturbing the strategy in the right direction
 - SSE always exist in two-player finite games

Quiz 3: Basic Solution Concepts

- What is the relationship of leader's expected utility in SSE and NE in two-player games?
 - $u^{SSE} \ge u^{NE}$
 - $u^{SSE} = u^{NE}$
 - $u^{SSE} \leq u^{NE}$
 - none of the above

Learning Objectives

- Understand the concept of
 - Game, Player, Action, Strategy, Payoff, Expected utility, Best response
 - Dominant Strategy, Maxmin Strategy, Minmax Strategy
 - Nash Equilibrium
 - Stackelberg Equilibrium, Strong Stackelberg Equilibrium
- Describe Minimax Theory
- Formulate the following problem as an optimization problem
 - Find NE in zero-sum games (LP)
 - Find SSE in two-player general-sum games (multiple LP and MILP)
- Know how to find the method/algorithm/solver/package you can use for solving the games
- Compute NE/SSE by hand or by calling a solver for small games

Outline

- Basic Concepts in Games
- Basic Solution Concepts
- Compute Nash Equilibrium
- Compute Stackelberg Equilibrium

- Find pure strategy Nash Equilibrium (PSNE)
 - Enumerate all action profile
 - Check if no incentive to deviate

- Find all Nash Equilibrium (two-player)
 - Special case: Zero-sum game
 - Polynomial time solvable (minmax or maxmin LP)
 - General case
 - PPAD-Complete (Chen & Deng, 2006)
 - □ Unlikely to have polynomial time algorithm
 - □ Conjecture: slightly easier than NP-Complete problems

Find all Nash Equilibrium (two-player)

- Support Enumeration Method
 - Enumerate support pair
 - For each possible support pair
 - Compute the probability so as to keep the other player indifferent among actions in the support
 - □ Check if no incentive to deviate
 - □ Or combine the two steps: solve an LP

- Exp 3 (Battle of Sexes)
 - Enumerate support pair
 - Support size=1: PSNE!
 - Support size=2:Alex: (Football, Concert), Berry: (Football, Concert)
 - Different support size: no NE exist (#constraints>#variables)
 - Compute the probability so as to keep the other player indifferent among actions in the support
 - Why? (check Thm I)

	Berry		
		Football	Concert
Alex	Football	2,1	0,0
A	Concert	0,0	١,2

Quiz 4: Compute Nash Equilibrium

- What is the probability of Berry choosing Football in NE of Exp 3 (Battle of Sexes) with support size=2?
 - 01 $\frac{1}{3}$ $\frac{2}{3}$

		Berry	
		Football	Concert
Alex	Football	2,1	0,0
A	Concert	0,0	١,2

Find all Nash Equilibrium (two-player)

- Support Enumeration Method
 - Enumerate support pair
 - For each possible support pair
 - Compute the probability so as to keep the other player indifferent among actions in the support
 - □ Check if no incentive to deviate
 - □ Or combine the two steps: solve an LP

Lemke-Howson Algorithm

- Linear Complementarity (LCP) formulation (another special class of optimization problem)
- Solve by pivoting on support (similar to Simplex algorithm)
- In practice, available solvers/packages: nashpy (python), gambit project (<u>http://www.gambit-project.org/</u>)

Learning Objectives

- Understand the concept of
 - Game, Player, Action, Strategy, Payoff, Expected utility, Best response
 - Dominant Strategy, Maxmin Strategy, Minmax Strategy
 - Nash Equilibrium
 - Stackelberg Equilibrium, Strong Stackelberg Equilibrium
- Describe Minimax Theory
- Formulate the following problem as an optimization problem
 - Find NE in zero-sum games (LP)
 - Find SSE in two-player general-sum games (MILP)
- Know how to find the method/algorithm/solver/package you can use for solving the games
- Compute NE/SSE by hand or by calling a solver for small games

Outline

- Basic Concepts in Games
- Basic Solution Concepts
- Compute Nash Equilibrium
- Compute Strong Stackelberg Equilibrium

Compute Strong Stackelberg Equilibrium

- Find Strong Stackelberg Equilibrium (not restricted to pure strategy)
 - Special case (zero-sum): SSE=NE=Minmax=Maxmin
 - General case: Polynomial time solvable
 - Multiple Linear Programming
 - Mixed Integer Linear Programming
 - □ Exponential in theory
 - □ Efficient in practice in some cases
 - Solvers available? Course project idea (9 units only): develop a SSE solver package in Python

Learning Objectives

- Understand the concept of
 - Game, Player, Action, Strategy, Payoff, Expected utility, Best response
 - Dominant Strategy, Maxmin Strategy, Minmax Strategy
 - Nash Equilibrium
 - Stackelberg Equilibrium, Strong Stackelberg Equilibrium
- Describe Minimax Theory
- Formulate the following problem as an optimization problem
 - Find NE in zero-sum games (LP)
 - Find SSE in two-player general-sum games (MILP)
- Know how to find the method/algorithm/solver/package you can use for solving the games
- Compute NE/SSE by hand or by calling a solver for small games

Summary

- Basic Concepts in Games
- Basic Solution Concepts
- Compute Nash Equilibrium
- Compute Strong Stackelberg Equilibrium

• Key take-away:

- There are various solution concepts in games
- In two-player zero-sum games, many solution concepts lead to same strategy and utility
- Finding NE or SSE can be formulated as one or more optimization problem

Summary

Solution Concepts	Key Algorithm In Class
Minmax/Maxmin	LP
Nash Equilibrium	LP for zero-sum, Support enumeration for general-sum
Strong Stackelberg Equilibrium	LP for zero-sum, multiple LP or MILP for general-sum

Game Theory: Additional Resources

- Text book
 - Algorithmic Game Theory 1st Edition, Chapters 1-3
 - Noam Nisan (Editor), Tim Roughgarden (Editor), Eva Tardos (Editor), Vijay V.Vazirani (Editor)
 - http://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmicgame-theory.pdf
- Online course
 - https://www.youtube.com/user/gametheoryonline