Artificial Intelligence Methods for Social Good

M1-4 [Optimization]:
Influence Maximization

08-537 (9-unit) and 08-737 (12-unit)
Instructor: Fei Fang
feifang@cmu.edu
Wean Hall 4126
Outline

- Propagation Process
- Influence Propagation Models
 - Independent Cascade Model
 - Linear Threshold Model
- Influence Maximization Problem
Learning Objectives

- Understand the concept of Submodular function
- Describe
 - Independent Cascade Model
 - Linear Threshold Model
 - Influence Maximization Problem
 - Greedy Algorithm for Influence Maximization Problem
Propagation Process

- Viral propagation
 - Virus/Rumors
 - Get infected immediately and spread automatically
 - Individual agent does not make decisions

- Decision based models
 - Individual agent makes decisions
 - Influence and adoption
Influence Response Function

- Discuss: when would you adopt a recommendation from your friends?
Influence Response Function

- Influence Response Function
 - Independent Draws
 - n friends recommend it to me
 - $P(n) = 1 - (1 - p)^n$
 - Diminishing return (concave function)
 - Linear Threshold
 - b percentage of my friends bought the item
 - $P(b) = \delta(b > b_0)$
 - Critical Mass
Influence Propagation Models

- **Independent Cascade Model** (Goldenberg, 2001)
 - Model 1
 - Initial set of active nodes
 - Discrete time steps
 - On every step, an active node can activate connected neighbor with a probability $p_{v,w}$ (single chance, if failed, no more trial on this edge)
 - If v succeeds, w becomes active on the next time step
 - Process runs until no more activations possible
Influence Propagation Models

- Independent Cascade Model (Goldenberg, 2001)
 - Exp 1
Quiz 1

- How many time steps are needed to achieve global cascade in Exp 1?
 - 2
 - 3
 - 4
 - 5
Influence Propagation Models

 - Each node i has a threshold θ_i
 - Each edge has a weight w_{ij} indicating the influence of node i to node j
 - Activated if total weight of active neighbors exceeds threshold
 - Given initial set of active nodes, proceed iteratively with discrete time steps
 - Once activated, keep active
 - Model 2
Quiz 2

- Let θ_0 = common threshold, N_0 = common number of neighbors. $w_{ij} = \frac{1}{N_0}$. Consider the following three scenarios
 - S1: $\theta_0 = a, N_0 = b$
 - S2: $\theta_0 = a + 0.1, N_0 = b$
 - S3: $\theta_0 = a, N_0 = b + 1$

- When $b > 1$, what is ordering of the probability of getting global cascade following the LTM model under this three scenarios?
 - A: $S1 \geq S2 \geq S3$
 - B: $S3 \geq S2 \geq S1$
 - C: $S2 \geq S1, S3 \geq S1$, relationship between $S2, S3$ is unknown
Influence Maximization Problem

- How to select initial nodes A_0 to maximize influence $\sigma(A_0)$, under the constraint that A_0 has no more than k nodes
 - Problem 1
- NP-Hard (reduction from Set Cover, Kempe, Kleinberg & Tardos, 2003, 2005)
Greedy Algorithm

- Submodular Functions
 - Def 1
 - Diminishing return (similar to concave function)
 - Exp: Team of defensive resources

- Greedy algorithm leads to $1 - \frac{1}{e}$ approximation for submodular monotone function
 - Exp: Maximum Coverage problem

- Theorem: In both LTM and ICM, $\sigma(A_0)$ is a submodular function (Kempe, Kleinberg & Tardos, 2003)

- Alg 1
Extensions

- Further propagation
 - If I bought the product, then I need to decide whether or not to recommend to others
 - May choose the level of advocating effort based on my satisfaction, e.g., twit about it, talk about it to my friend etc

- Compete with other sources of influence
 - Quit drinking/unhealthy behavior
Summary

- Propagation Process

- Influence Propagation Models
 - Independent Cascade Model
 - Linear Threshold Model

- Influence Maximization Problem
Acknowledgment

- The slides are prepared based on lecture slides of Leonid Zhukov.