Artificial Intelligence Methods for Social Good MI-4 [Optimization]: Influence Maximization

> 08-537 (9-unit) and 08-737 (12-unit) Instructor: Fei Fang <u>feifang@cmu.edu</u> Wean Hall 4126

Outline

Propagation Process

Influence Propagation Models

- Independent Cascade Model
- Linear Threshold Model

Influence Maximization Problem

Learning Objectives

- Understand the concept of
 - Submodular function
- Describe
 - Independent Cascade Model
 - Linear Threshold Model
 - Influence Maximization Problem
 - Greedy Algorithm for Influence Maximization Problem

Propagation Process

- Viral propagation
 - Virus/Rumors
 - Get infected immediately and spread automatically
 - Individual agent does not make decisions
- Decision based models
 - Individual agent makes decisions
 - Influence and adoption

Influence Response Function

Discuss: when would you adopt a recommendation from your friends?

Influence Response Function

Influence Response Function

- Independent Draws
 - n friends recommend it to me
 - ▶ $P(n) = 1 (1 p)^n$
 - Diminishing return (concave function)
- Linear Threshold
 - b percentage of my friends bought the item
 - $\blacktriangleright P(b) = \delta(b > b_0)$
 - Critical Mass

Influence Propagation Models

- Independent Cascade Model (Goldenberg, 2001)
 - Model I
 - Initial set of active nodes
 - Discrete time steps
 - On every step, an active node can activate connected neighbor with a probability $p_{v,w}$ (single chance, if failed, no more trial on this edge)
 - If v succeeds, w becomes active on the next time step
 - Process runs until no more activations possible

Influence Propagation Models

Independent Cascade Model (Goldenberg, 2001)
Exp I

Quiz I

- How many time steps are needed to achieve global cascade in Exp 1?
 - ► 2
 - ▶ 3
 - ▶ 4
 - ▶ 5

Influence Propagation Models

- Linear Threshold Model (M. Granovetter, 1978, T. Schelling, 1970, 1978)
 - Each node *i* has a threshold θ_i
 - Each edge has a weight w_{ij} indicating the influence of node i to node j
 - Activated if total weight of active neighbors exceeds threshold
 - Given initial set of active nodes, proceed iteratively with discrete time steps
 - Once activated, keep active
 - Model 2

Quiz 2

- Let θ_0 = common threshold, N_0 = common number of neighbors. $w_{ij} = \frac{1}{N_0}$. Consider the following three scenarios
 - $\blacktriangleright SI: \theta_0 = a, N_0 = b$

S2:
$$\theta_0 = a + 0.1$$
, $N_0 = b$

S3:
$$\theta_0 = a$$
, $N_0 = b + 1$

- When b > 1, what is ordering of the probability of getting global cascade following the LTM model under this three scenarios?
 - $\blacktriangleright A: S1 \ge S2 \ge S3$
 - $\bullet \quad \mathsf{B}: S3 \ge S2 \ge S1$
 - C: $S2 \ge S1$, $S3 \ge S1$, relationship between S2, S3 is unknown

Influence Maximization Problem

- How to select initial nodes A₀ to maximize influence σ(A₀), under the constraint that A₀ has no more than k nodes
 - Problem I
- NP-Hard (reduction from Set Cover, Kempe, Kleinberg & Tardos, 2003, 2005)

Greedy Algorithm

- Submodular Functions
 - Def I
 - Diminishing return (similar to concave function)
 - Exp:Team of defensive resources
- Greedy algorithm leads to $1 \frac{1}{e}$ approximation for submodular monotone function
 - Exp: Maximum Coverage problem
- Theorem: In both LTM and ICM, σ(A₀) is a submodular function (Kempe, Kleinberg & Tardos, 2003)
- Alg I

Extensions

Further propagation

- If I bought the product, then I need to decide whether or not to recommend to others
 - May choose the level of advocating effort based on my satisfaction, e.g., twit about it, talk about it to my friend etc

Compete with other sources of influence

Quit drinking/unhealthy behavior

Propagation Process

Influence Propagation Models

- Independent Cascade Model
- Linear Threshold Model

Influence Maximization Problem

Acknowledgment

The slides are prepared based on lecture slides of Leonid Zhukov.